Challenges in Sustainable Beef Cattle Production: A Subset of Needed Advancements
Abstract
:1. Introduction
1.1. The Role of Ruminant Livestock
1.2. Environmental Biophysics of Beef Cattle Production
1.3. Big Data and Machine Learning in Beef Cattle Production
2. Challenges in Sustainable Beef Cattle Production
2.1. The Role of Ruminant Livestock
2.2. Beef Cattle Production and the Environment
2.3. Big Data and Machine Learning in Beef Cattle Production
3. Opportunities in Sustainable Beef Cattle Production
3.1. The Role of Ruminant Livestock
3.2. Beef Cattle Production and the Environment
3.3. Big Data and Machine Learning in Beef Cattle Production
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Butlin, J. Our common future. By World commission on environment and development. (London, Oxford University Press, 1987, pp.383 £5.95.). J. Int. Dev. 1989, 1, 284–287. [Google Scholar] [CrossRef]
- Hajian, M.; Jangchi Kashani, S. Evolution of the concept of sustainability. From Brundtland Report to sustainable development goals. Sustain. Resour. Manag. 2021, 1–24. [Google Scholar] [CrossRef]
- Wu, G. Dietary protein intake and human health. Food Funct. 2016, 7, 1251–1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- NASA. Causes of Climate Change. Available online: https://climate.nasa.gov/causes/ (accessed on 9 September 2022).
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Moore, T.G. Global warming: The good, the bad, the ugly and the efficient. EMBO Rep. 2008, 9, S41–S45. [Google Scholar] [CrossRef] [Green Version]
- UN. Sustainable Development Goals: Goal 2: Zero Hunger. Available online: https://www.un.org/sustainabledevelopment/hunger/ (accessed on 5 November 2022).
- WHO. Micronutrient Deficiencies: Iron Deficiency. Available online: https://apps.who.int/nutrition/topics/ida/en/ (accessed on 5 November 2022).
- Powers, J.M.; Buchanan, G.R. Disorders of Iron Metabolism: New Diagnostic and Treatment Approaches to Iron Deficiency. Hematol. Oncol. Clin. N. Am. 2019, 33, 393–408. [Google Scholar] [CrossRef]
- Le, C.H.H. The Prevalence of Anemia and Moderate-Severe Anemia in the US Population (NHANES 2003–2012). PLoS ONE 2016, 11, e0166635. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.U.; Aamer, M.; Nawaz, M.; Rehman, A.; Aslam, T.; Afzal, U.; Shahzad, B.A.; Ayub, M.A.; Ahmed, F.; Qiaoying, M. Agronomic bio-fortification of wheat to combat zinc deficiency in developing countries. Pak. J. Agric. Res. 2021, 34, 201. [Google Scholar] [CrossRef]
- Mutangadura, G.B. World health report 2002: Reducing risks, promoting healthy life: World health organization, Geneva, 2002, 250 pages, US $13.50, ISBN 9-2415-6207-2. Agric. Econ. 2004, 30, 170–172. [Google Scholar] [CrossRef]
- Gupta, S.; Brazier, A.; Lowe, N. Zinc deficiency in low-and middle-income countries: Prevalence and approaches for mitigation. J. Hum. Nutr. Diet. 2020, 33, 624–643. [Google Scholar] [CrossRef]
- Purchas, R.; Busboom, J. The effect of production system and age on levels of iron, taurine, carnosine, coenzyme Q10, and creatine in beef muscles and liver. Meat Sci. 2005, 70, 589. [Google Scholar] [CrossRef] [PubMed]
- Schaafsma Gertjan, G. The Protein Digestibility-Corrected Amino Acid Score (PDCAAS)--a concept for describing protein quality in foods and food ingredients: A critical review. J. AOAC Int. 2005, 88, 988–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subak, S. Global environmental costs of beef production. Ecol. Econ. 1999, 30, 79. [Google Scholar] [CrossRef]
- Richter, B.D.; Bartak, D.; Caldwell, P.; Davis, K.F.; Debaere, P.; Hoekstra, A.Y.; Li, T.; Marston, L.; McManamay, R.; Mekonnen, M.M.; et al. Water scarcity and fish imperilment driven by beef production. Nat. Sustain. 2020, 3, 319–328. [Google Scholar] [CrossRef]
- OECD. OECD-FAO Agricultural Outlook 2021–2030; Department of Agriculture: Washington, DC, USA, 2021. [Google Scholar]
- Barnes, R.F.; Nelson, C.; Moore, K.; Collins, M. Forages: The Science of Grassland Agriculture Volume II; Wiley-Blackwell: Oxford, UK, 2007. [Google Scholar]
- Dias-Filho, M.B.; Davidson, E.A.; Carvalho, C. Linking Biogeochemical Cycles to Cattle Pasture Management and Sustainability in the Amazon Basin. Chapter 6; McClain, M.R.L.V., Ritchey, J., Eds.; Oxford University Press: New York, NY, USA, 2000; pp. 84–105. [Google Scholar]
- Campbell, G.; Norman, J. Introduction to Environmental Biophysics, 2nd ed.; Springer-Verlag: New York, NY, USA, 1998; p. 286. [Google Scholar]
- Hubbart, J. Environmental Biophysics. Encyclopedia 2019, 3. [Google Scholar] [CrossRef]
- Bonan, G. Ecological Climatology: Concepts and Applications, 3rd ed.; Cambridge Press: Cambridge, UK, 2015; p. 754. [Google Scholar]
- Monteith, J.L.; Unsworth, M.H. Principles of Environmental Physics: Plants, Animals, and the Atmosphere; Academic Press: London, UK, 2013; p. 395. [Google Scholar]
- Ellis, J.L.; Jacobs, M.; Dijkstra, J.; van Laar, H.; Cant, J.P.; Tulpan, D.; Ferguson, N. Review: Synergy between mechanistic modelling and data-driven models for modern animal production systems in the era of big data. Animal 2020, 14, s223–s237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liakos, K.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [Green Version]
- Benos, L.; Tagarakis, A.C.; Dolias, G.; Berruto, R.; Kateris, D.; Bochtis, D. Machine Learning in Agriculture: A Comprehensive Updated Review. Sensors 2021, 21, 3758. [Google Scholar] [CrossRef]
- Wayne Polley, H.; Frank, A.B.; Sanabria, J.; Phillips, R.L. Interannual variability in carbon dioxide fluxes and flux-climate relationships on grazed and ungrazed northern mixed-grass prairie. Glob. Change Biol. 2008, 14, 1620–1632. [Google Scholar] [CrossRef] [Green Version]
- Sheaffer, C.C.; Sollenberger, L.E.; Hall, M.H.; West, C.P.; Hannaway, D.B. Grazinglands, Forages, and Livestock in Humid Regions. In Grassland Quietness and Strength for a New American Agriculture; Wiley and Sons: Hoboken, NJ, USA, 2009; pp. 95–119. [Google Scholar]
- Fontenot, J.P.; Wilson, L.; Allen, V. Forages for Beef Cattle; Barnes, R.F.D.A.M., Nelson, C.J., Eds.; Iowa State University Press: Ames, IA, USA, 1995. [Google Scholar]
- Jose, S.; Dollinger, J. Silvopasture: A sustainable livestock production system. Agrofor. Syst. 2019, 93, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Jose, S.; Walter, D.; Mohan Kumar, B. Ecological considerations in sustainable silvopasture design and management. Agrofor. Syst. 2019, 93, 317. [Google Scholar] [CrossRef]
- Capper, J.L.; Berger, L.; Brashears, M.M.; Jensen, H.H. Animal feed vs. human food: Challenges and opportunities in sustaining animal agriculture toward 2050. Staff. Gen. Res. Pap. Arch. 2014, 53, 1–16. [Google Scholar]
- Davis, B.W.; Martz, F.A.; Gerrish, J.R.; Peterson, P.R.; Belyea, R.L. A comparison of stockpiled tall fescue forage intake: Forage availability vs. animal performance indices. In Proceedings of the American Forage and Grassland Council (USA), Lexington, KY, USA, 12–14 March 1995; pp. 219–222. [Google Scholar]
- Morrow, R.; Schulze-Tate, V.; Gerrish, J.; Roberts, C. Implications of daily quality changes is rotationally grazed pasture for beef cattle. In Proceedings of the Forage and Grassland Conference, University of Missouri, Columbia, MO, USA; 1991; pp. 145–149. [Google Scholar]
- DeRamus, H.A.; Clement, T.C.; Giampola, D.D.; Dickison, P.C. Methane Emissions of Beef Cattle on Forages. J. Environ. Qual. 2003, 32, 269. [Google Scholar] [CrossRef] [PubMed]
- OECD. A Year in Agriculture in Review. 2021. Available online: https://www.oecd.org/agriculture/2021-year-agriculture-review/ (accessed on 15 July 2022).
- Massey, R.; McClure, H.; Schneider, R. Agriculture and Greenhouse Gas Emissions; University of Missouri: Columbia, MO, USA, 2019; p. 5. [Google Scholar]
- Reay, D.S.; Davidson, E.A.; Smith, K.A.; Smith, P.; Melillo, J.M.; Dentener, F.; Crutzen, P.J. Global agriculture and nitrous oxide emissions. Nat. Clim. Change 2012, 2, 410–416. [Google Scholar] [CrossRef]
- Paige, L.; Stanley, J.E.R.; David, K.; Marcia, B.; DeLonge, S.; Michael, W.H. Impacts of soil carbon sequestration on life cycle greenhouse gas emissions in Midwestern USA beef finishing systems. Agric. Syst. 2018, 162, 249. [Google Scholar]
- Chang, J.; Ciais, P.; Gasser, T.; Smith, P.; Herrero, M.; Havlík, P.; Obersteiner, M.; Guenet, B.; Goll, D.S.; Li, W.; et al. Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nat. Commun. 2021, 12, 118. [Google Scholar] [CrossRef]
- Moe, P. Energy Metabolism of Dairy Cattle. J. Dairy Sci. 1981, 64, 1120. [Google Scholar] [CrossRef]
- Derno, M.; Nürnberg, G.; Kuhla, B. Characterizing the metabotype and its persistency in lactating Holstein cows: An approach toward metabolic efficiency measures. J. Dairy Sci. 2019, 102, 6559–6570. [Google Scholar] [CrossRef] [Green Version]
- Morota, G.; Ventura, R.V.; Silva, F.F.; Koyama, M.; Fernando, S.C. Big Data Analytics and Precision Animal Agriculture Symposium: Machine learning and data mining advance predictive big data analysis in precision animal agriculture1. J. Anim. Sci. 2018, 96, 1540–1550. [Google Scholar] [CrossRef]
- Tantawi, R.P. Machine learning. In Salem Press Encycl; EBSCO Publishing: Hackensack, NJ, USA, 2020. [Google Scholar]
- Dulhare, U.N.; Ahmad, K.; Ahmad, K.A.B. Machine Learning and Big Data: Concepts, Algorithms, Tools and Applications; John Wiley & sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Davison, C.; Bowen, J.M.; Michie, C.; Rooke, J.A.; Jonsson, N.; Andonovic, I.; Tachtatzis, C.; Gilroy, M.; Duthie, C.A. Predicting feed intake using modelling based on feeding behaviour in finishing beef steers. Animal 2021, 15, 100231. [Google Scholar] [CrossRef]
- Calhoun, P.; Levine, R.A.; Fan, J. Repeated measures random forests (RMRF): Identifying factors associated with nocturnal hypoglycemia. Biometrics 2021, 77, 343–351. [Google Scholar] [CrossRef]
- Williams, M.; O’Sullivan, K.P.R.; McCabe, S.; Kennedy, E.; Liddane, M.; Buckley, F. Developing and validating a model to predict the dry matter intake of grazing lactating beef cows. Animal 2019, 13, 2639. [Google Scholar] [CrossRef]
- Sharma, A.; Jain, A.; Gupta, P.; Chowdary, V. Machine Learning Applications for Precision Agriculture: A Comprehensive Review. IEEE Access 2021, 9, 4843–4873. [Google Scholar] [CrossRef]
- Beyer, D. Artificial Intelligence and Machine Learning in Industry; 9781491959336; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2017. [Google Scholar]
- Basarab, J.A.; Beauchemin, K.A.; Baron, V.S.; Ominski, K.H.; Guan, L.L.; Miller, S.P.; Crowley, J.J. Reducing GHG emissions through genetic improvement for feed efficiency: Effects on economically important traits and enteric methane production. Animal 2013, 7, 303–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, M.; MacNeil, M.; Dekkers, J.; Crews, D.; Rathje, T.; Enns, R.; Weaber, R. Review: Life-cycle, total-industry genetic improvement of feed efficiency in beef cattle: Blueprint for the Beef Improvement Federation11The development of this commentary was supported by the Beef Improvement Federation. Prof. Anim. Sci. 2013, 29, 559–565. [Google Scholar] [CrossRef] [Green Version]
- Ramoelo, A.; Majozi, N.; Mathieu, R.; Jovanovic, N.; Nickless, A.; Dzikiti, S. Validation of Global Evapotranspiration Product (MOD16) using Flux Tower Data in the African Savanna, South Africa. Remote Sens. 2014, 6, 7406–7423. [Google Scholar] [CrossRef] [Green Version]
- Mata-Padrino, D.J.; Pena-Yewtukhiw, E.M.; Belesky, D.P.; Bryan, W.B.; Bowdridge, S.A. Season-long, mixed stocking of a cool-temperate pasture. Grassl. Sci. 2021, 67, 12–23. [Google Scholar] [CrossRef]
- Rayburn, E.B.; Rayburn, S.B. A Standardized Plate Meter for Estimating Pasture Mass in OnFarm Research Trials. Agron. J. 1998, 90, 238. [Google Scholar] [CrossRef]
- Redjadj, C.; Duparc, A.; Lavorel, S.; Grigulis, K.; Bonenfant, C.; Maillard, D.; Saïd, S.; Loison, A. Estimating herbaceous plant biomass in mountain grasslands: A comparative study using three different methods. Alp. Bot. 2012, 122, 57–63. [Google Scholar] [CrossRef]
- Voisin, A. Grass Productivity: An Introduction to Rotational Grazing; Midwest Journal Press: Mexico, MO, USA, 1959. [Google Scholar]
- Tarumi, E.; Tsuiki, M.; Mori, A. Cool-season grass productivity estimation model evaluating the effects of global warming and climate adaptation strategies. Grassl. Sci. 2021, 67, 234–240. [Google Scholar] [CrossRef]
- Loka, D.; Harper, J.; Humphreys, M.; Gasior, D.; Wootton-Beard, P.; Gwynn-Jones, D.; Scullion, J.; Doonan, J.; Kingston-Smith, A.; Dodd, R.; et al. Impacts of abiotic stresses on the physiology and metabolism of cool-season grasses: A review. Food Energy Secur. 2019, 8, e00152. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Jiang, Y. Genotypic variation in growth and metabolic responses of perennial ryegrass exposed to short-term waterlogging and submergence stress. Plant Physiol. Biochem. 2015, 95, 57. [Google Scholar] [CrossRef]
- Gates, D.M. Biophysical Ecology; Springer-Verlag: New York, NY, USA, 1980; p. 611. [Google Scholar]
- Mader, T.L. Environmental stress in confined beef cattle1. J. Anim. Sci. 2003, 81, E110–E119. [Google Scholar] [CrossRef]
- Yousef, M.K. Stress Physiology in Livestock. Volume I. Basic Principles; CRC press: Boca Raton, FL, USA, 1985. [Google Scholar]
- Jacobsen, K.L. The well-being of dairy cows in hot and humid climates. I. Housing and effects of heat stress. Compend. Contin. Educ. Pract. Vet. 1996, 18, S59–S63. [Google Scholar]
- Brosh, A.; Aharoni, Y.; Degen, A.; Wright, D.; Young, B. Effects of solar radiation, dietary energy, and time of feeding on thermoregulatory responses and energy balance in cattle in a hot environment. J. Anim. Sci. 1998, 76, 2671. [Google Scholar] [CrossRef] [Green Version]
- Monteith, J. Principles of Environmental Physics; Edward and Arnold Publishers Limited: London, UK, 1973; p. 241. [Google Scholar]
- Blackshaw, J.; Blackshaw, A. Heat stress in cattle and the effect of shade on production and behaviour: A review. Aust. J. Exp. Agric. 1994, 34, 285. [Google Scholar] [CrossRef]
- Young, B.; Hall, A. Heat load in cattle in the Australian environment. In Australian Beef; Coombes, R., Ed.; Morescope Publishing: Melbourne, Australia, 1993; pp. 143–148. [Google Scholar]
- Berman, A. Effects of Body Surface Area Estimates on Predicted Energy Requirements and Heat Stress. J. Dairy Sci. 2003, 86, 3605–3610. [Google Scholar] [CrossRef] [PubMed]
- Catchpole, W.R.; Wheeler, C.J. Estimating plant biomass: A review of techniques. Austral Ecol. 1992, 17, 121. [Google Scholar] [CrossRef]
- Harmoney, K.R.; Moore, K.J.; George, J.R.; Brummer, E.C. Russell, J.R. Determination of Pasture Biomass Using Four Indirect Methods. Agron. J. 1997, 89, 665. [Google Scholar] [CrossRef]
- Mannetie, L.T.; Jones, R. Field and Laboratory Methods for Grassland and Animal Production Research. CAB International: Wallingford, UK, 2000. [Google Scholar]
- Sun, X.; Hu, L.; Xie, Y.; Fu, J. Evaluation of genotypic variation in heat tolerance of tall fescue by functional traits. Euphytica 2014, 199, 247–260. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, L.; Yu, J.; Dacosta, M.; Huang, B. Changes in Carbohydrate Metabolism in Two Kentucky Bluegrass Cultivars during Drought Stress and Recovery. J. Am. Soc. Hortic. Sci. 2013, 138, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Mata-Padrino, D.J.; Wilson, M.E.; Ogunade, I. The Effect of Residual Feed Intake Phenotype on Herbage Disappearance of a Permanent Pasture. In Proceedings of the 2021 ASA, CSSA, SSSA International Annual Meeting, Salt Lake City, UT, USA, 6–9 November 2021. [Google Scholar]
- Bennett, L.T.; Judd, T.S.; Adams, M.A. Close-range vertical photography for measuring cover changes in perennial grasslands. Rangel. Ecol. Manag. J. Range Manag. Arch. 2000, 53, 634–641. [Google Scholar]
- Schut, A.G.T.; Lokhorst, C.; Hendriks, M.M.W.B.; Kornet, J.G.; Kasper, G. Potential of imaging spectroscopy as tool for pasture management. Grass Forage Sci. 2005, 60, 34. [Google Scholar] [CrossRef]
- Inoue, T.; Nagai, S.; Kobayashi, H.; Koizumi, H. Utilization of ground-based digital photography for the evaluation of seasonal changes in the aboveground green biomass and foliage phenology in a grassland ecosystem. Ecol. Inform. 2015, 25, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Pullanagari, R.; Kereszturi, G.; Yule, I. Integrating Airborne Hyperspectral, Topographic, and Soil Data for Estimating Pasture Quality Using Recursive Feature Elimination with Random Forest Regression. Remote Sens. 2018, 10, 1117. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Guerschman, J.; Shendryk, Y.; Henry, D.; Harrison, M.T. Estimating Pasture Biomass Using Sentinel-2 Imagery and Machine Learning. Remote Sens. 2021, 13, 603. [Google Scholar] [CrossRef]
- Barnetson, J.; Phinn, S.; Scarth, P. Estimating Plant Pasture Biomass and Quality from UAV Imaging across Queensland’s Rangelands. AgriEngineering 2020, 2, 523–543. [Google Scholar] [CrossRef]
- Morais, T.G.; Teixeira, R.F.M.; Figueiredo, M.; Domingos, T. The use of machine learning methods to estimate aboveground biomass of grasslands: A review. Ecol. Indic. 2021, 130, 108081. [Google Scholar] [CrossRef]
- Kaya, M.; Bardakçioğlu, H.E. Estimation of body weight and body condition score in dairy cows by digital image analysis method. Mehmet Akif Ersoy Üniversitesi Vet. Fakültesi Derg. 2021, 6, 115–121. [Google Scholar] [CrossRef]
- Kalirad, A.; Sommer, R.J. The art of mechanistic modeling in biology. Nat. Comput. Sci. 2022, 2, 72–73. [Google Scholar] [CrossRef]
- Breiman, L. Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author). Stat. Sci. 2001, 16, 199–231. [Google Scholar] [CrossRef]
- Koltes, J.E.; Cole, J.B.; Clemmens, R.; Dilger, R.N.; Kramer, L.M.; Lunney, J.K.; McCue, M.E.; McKay, S.D.; Mateescu, R.G.; Murdoch, B.M.; et al. A Vision for Development and Utilization of High-Throughput Phenotyping and Big Data Analytics in Livestock. Front. Genet. 2019, 10, 1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez, B.C.; Xin, H.; Halbur, P.G.; Beermann, D.H.; Hansen, S.L.; Linhares, D.C.L.; Peschel, J.M.; Rademacher, C.J.; Reecy, J.M.; Ross, J.W.; et al. At the Intersection of Industry, Academia, and Government: How Do We Facilitate Productive Precision Livestock Farming in Practice? Animals 2019, 9, 635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hubbart, J.A. The Coming Food Crisis: A Moment for Organizational Change at a Global Level. Int. J. Agric. Res. Environ. Sci. 2022, 3, 3. [Google Scholar] [CrossRef]
Key Challenges | Consequences | Key New Directions |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hubbart, J.A.; Blake, N.; Holásková, I.; Mata Padrino, D.; Walker, M.; Wilson, M. Challenges in Sustainable Beef Cattle Production: A Subset of Needed Advancements. Challenges 2023, 14, 14. https://doi.org/10.3390/challe14010014
Hubbart JA, Blake N, Holásková I, Mata Padrino D, Walker M, Wilson M. Challenges in Sustainable Beef Cattle Production: A Subset of Needed Advancements. Challenges. 2023; 14(1):14. https://doi.org/10.3390/challe14010014
Chicago/Turabian StyleHubbart, Jason A., Nathan Blake, Ida Holásková, Domingo Mata Padrino, Matthew Walker, and Matthew Wilson. 2023. "Challenges in Sustainable Beef Cattle Production: A Subset of Needed Advancements" Challenges 14, no. 1: 14. https://doi.org/10.3390/challe14010014