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Abstract: Estimates of global population growth are often cited as a significant challenge for global
food production. It is estimated that by 2050 there will be approximately two- billion additional
people on earth, with the greatest proportion of that growth occurring in central Africa. To meet
recommended future protein needs (60 g/d), approximately 120 million kg of protein must be
produced daily. The production of ruminant meat (particularly beef cattle) offers the potential to aid
in reaching increased global protein needs. However, advancements in beef cattle production are
necessary to secure the industry’s future sustainability. This article draws attention to a subset of
sustainable beef cattle production challenges, including the role of ruminant livestock in meeting
global human protein needs, the environmental relationships of advanced beef cattle production,
and big data and machine learning in beef cattle production. Considering the significant quantities
of resources necessary to produce this form of protein, such advancements are not just a moral
imperative but critical to developing advanced beef cattle production practices and predictive models
that will reduce costs and liabilities and advance industry sustainability.

Keywords: beef cattle production; sustainability; environmental change; environmental biophysics;
big data; machine learning; forage

1. Introduction

Since the term sustainable development was used in the Brundtland Report [1], the recog-
nition of the role of agriculture in sustainable development has significantly expanded [2].
Using a recommended 0.8 g/kg of protein per day [3] and the difference between the
current human population and that expected in 2050, society needs to sustainably produce
approximately 120,000,000 kg per day of additional protein, balanced for the amino acid
requirements of humans, to meet future demands. Consequently, there are significant
needs for advancements that will lead to improved efficiencies, security, and sustainability
of industries that support such needs. Beef cattle production requires many technological
advancements, given the substantial resources necessary to produce this form of protein.

Current challenges in the beef cattle industry are numerous and necessitate remedia-
tion through science-based approaches. For example, animal agriculture’s negative impact
on global greenhouse gas emissions is well documented, with livestock responsible for
~15% of annual anthropogenic emissions. Ruminant livestock, particularly beef and dairy
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cattle, contribute most of these emissions [4]. The majority of ruminant livestock emissions
are due to the natural production of methane (CH4) via ruminal fermentation of high-
energy feedstuffs (e.g., high-starch grains such as corn, sorghum, and barley) and rumen
microbes [5]. High consumption of red meat (beef, pork, and lamb) has been shown to have
adverse health effects, and it has been recommended that animal protein consumption
decreases in wealthy countries where it is often consumed in excess [6]. However, many
populations worldwide depend on agri-pastoral systems for income and animal protein
from livestock.

Further, ruminants can convert roughage containing complex carbohydrates, such
as cellulose, which is not digestible by humans, into complete amino acids that humans
need for survival. The ability of ruminants to digest these complex carbohydrates enables
the utilization of land unsuitable for food crop production in many regions globally [7].
Additionally, many populations continue to face significant burdens of undernutrition,
and obtaining adequate quantities of micronutrients from plant-source foods alone can be
difficult, particularly in developing countries with rapidly growing populations [6,8]. Iron
deficiency is the most common nutritional disorder, with over 30% of the global population
being anemic [9]. Though anemia is prevalent in industrialized countries, it primarily
affects women and children in developing countries. Heme iron is the most bioavailable
form and is found only in animal meats, with the most considerable quantities occurring
in red meat [10,11]. Zinc, iron, and vitamin A deficiencies, especially in children of Latin
America, Africa, and Asia, are considered top priority issues that should be addressed
for humanity and global stability [12–14]. Beef also contains additional micronutrients,
such as creatine and carnitine, that are difficult to obtain elsewhere in the diet without
supplementation [15]. It is noteworthy in this context that high heme intake is associated
with an increased risk of several cancers, type-2 diabetes, and coronary heart disease.
However, excess red meat consumption is almost entirely endemic to wealthy, developed
nations and, thus, a small proportion of the global population. Perhaps most nutritionally
critical, beef protein is among the most bioavailable sources of animal protein according to
the protein digestibility-corrected amino acid score (PDCAAS) [16]. However, increased
beef consumption alone will not solve global hunger and nutrient deficiencies. In some
populations, it would only serve to advance health crises caused by poor diet and excess
animal protein consumption [6]. Increasing beef production using current unsustainable
systems would be environmentally disastrous, increase GHG emissions, and directly
damage global ecosystems [17,18]. However, if present and future global protein needs
are to be met with highly bioavailable protein and micronutrient sources, beef may serve
as a promising option. If beef production is to be maintained or increased, as projected
due to consumer demand, to aid in meeting global protein needs, sustainable beef cattle
production systems must be researched and implemented [19].

Considering the agricultural advancements of recent decades, the beef industry is
well-positioned to evolve toward the needs of the future. For example, it is now cultur-
ally accepted that properly managed grazed grassland systems serve local and global
ecosystems by improving soil, sequestering carbon, increasing soil microbe diversity, and
transforming low-quality plant matter into high-quality animal protein [20]. These transfor-
mational benefits are attributable to the complex interactions among pasture management
practices, pasture composition, edaphic conditions, and climate [21]. Considering future
climate changes, pasture composition, grassland management practices, and animal selec-
tion will need to adapt to sustainably meet protein needs. For example, current approaches
to grazing and grazing research and pasture-attribute modeling are inadequate to adapt
grasslands to increased global protein demand and, simultaneously, a changing climate.
Current standard grazing research methods are labor-intensive, time-consuming, and costly,
limiting the development of climate-adapted forages and appropriate grazing management
and understanding key relationships among grazing livestock and the pasture system.

The field of environmental biophysics [22] has shown great promise in identifying
relationships between the variability of the physical environment and the biological organ-
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isms that inhabit those environments [23] and may play an essential role in the adaptive
management needs of increased beef cattle production amidst a changing climate. Ideally,
environmental biophysical research leads to an improved understanding of how an organ-
ism functions in its microenvironment and how an organism responds to environmental
change [22–25]. There is progress in this regard, and beef cattle production increasingly
includes the integration of ecological and climatologic infrastructure coupled with animal
water and feed efficiency monitoring infrastructure. However, the costs of these technolo-
gies are often prohibitively high for producers. To develop complex grazing livestock
environmental biophysical models that advance environmental-dry matter and water effi-
ciency(ies), technologies must be contemporary and accessible to producers (practitioners).
Such advancements will improve management practices and reduce costs related to graz-
ing livestock production and sustainability, meeting future human population protein
requirements.

The use of remote-sensing and machine learning technologies is similarly a way for-
ward to streamline grassland research, improve forage diversity and management, and
elucidate animal-grassland relationships critical to future sustainable livestock production.
Fortunately, a new era of digital data, with increased resolution and precision, is repre-
sented in current animal production research utilizing sensors, cameras, and rapid data
acquisition technologies, such as in-pen/walk-over weigh scales, wearable accelerometers,
and environmental sensors [26]. For large and variable digital files that include beef cattle
physiology, grazing conditions, feed and water quality and quantity, and ecological/climate
biophysical data to converge into useful information, there is a growing need for big data
and machine learning (ML) techniques. Unfortunately, machine learning in livestock pro-
duction has lagged behind that of other agricultural applications [27,28]. To utilize modern
computing power, it will become essential to normalize information pathways so that cattle
production researchers are fluent in big data and machine learning techniques [26].

Given the preceding, the following subset of challenges and implicit plea for action
related to sustainable beef cattle production are presented, including (a) the role of rumi-
nant livestock in meeting future protein needs, (b) the environmental biophysics of beef
cattle production, and (c) big data and machine learning in beef cattle production. It is
anticipated that increased awareness generated through this article will mobilize assistance
and generate new information that will strengthen the resilience of the beef cattle industry
during a time of significant development and environmental change.

1.1. The Role of Ruminant Livestock

Grazing is the most ubiquitous land use practice in grassland ecosystems [29,30]. Beef
cattle are often grazed on marginal lands because they will harvest forages of lower quality
from land with no or few alternatives for other crops [31]. Ruminant livestock is also
grazed on converted forestland, with the conversion of forests to grazing land accounting
for over 40% of global forest loss [19]. However, deforestation is not required to introduce
new grazing lands. It is well-established that ruminant livestock benefits from grazing
forestland in silvopasture systems, with increased gain, well-being, and performance [32].
Ecologically, silvopasture-managed systems benefit from increased biodiversity, carbon
storage, and productivity [32,33]. Livestock production on marginal lands or lands that
serve an additional ecological function is essential given that, in the United States and other
developed economies, more than 60% of the protein comes from animal sources.

In contrast, the contribution of animal sources in Africa, India, and other food-deficient
countries is 20–25% of total protein [34]. Of the sources of animal protein, those from
ruminants play a vital role in the global food system, as pre-gastric fermentation facilitates
the conversion of low-quality and low-protein forages into high-quality meat and milk.
However, regardless of the source of animal protein, all animal proteins have significant
footprints (carbon, methane, water, etc.), and large portions of those footprints result
from the large footprint of plant materials they consume to assimilate those high-quality
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proteins [35–37]. Therefore, efforts to reduce the footprint of human food production need
to include a focus on understanding and improving animal feed utilization efficiency.

Of the approximately 109 million head of ruminant livestock that utilizes United
States grassland systems alone, about 61 million are located in cool-season-dominated
grassland systems [38]. The total economic value of forage and grasslands used in rumi-
nant animal production is approximately USD 44 billion annually and is generated from
the various goods produced by ruminant systems (meat, fibers, manure, and milk), with
hay and other conserved forage crops (i.e., silage and haylage) production accounting for
over USD 18 billion of agricultural income [38]. Approximately 40% of all anthropogenic
emissions of CH4, which has 21 times the global warming potential of CO2, originate from
animal agriculture [5,39]. Improper manure management accounts for 10% of all agricul-
tural CH4 emissions [39]. Cattle feedlot finishing systems account for much of animal
agriculture methane due to the high-energy feedstuffs provided by feedlots altering rumen
bacterial communities and altering ruminal fermentation [39]. The ability of grasslands
to sequester carbon, improve soil fertility and structure, and increase soil water-holding
capacity is well documented [20]. Grassland-based animal agriculture has the potential
to be carbon-negative if proper management techniques, including the incorporation of
rotational grazing and diverse botanical compositions that include N-fixing leguminous
forages, can reduce N2O emissions [40,41]. Continuously stocked pastures and feedlots,
if transitioned into adaptive multi-paddock / rotational grazing systems in which over-
grazing, manure mismanagement, and soil erosion can be prevented through proactive
management, have the potential to be far more sustainable and reduce overall greenhouse
gas (GHG) emissions by ruminants [41,42]. However, the challenge of managing grasslands
in response to a changing climate must be addressed to ensure that grassland agriculture
can sustainably meet projected future protein requirements and aid in mitigating climate
change.

1.2. Environmental Biophysics of Beef Cattle Production

Environmental Biophysics is the study of organisms and the physical environment
(macro- to microenvironment) that they inhabit [23]. In general, environmental biophys-
ical research is undertaken to understand (a) the micrometeorological environment of
a given organism of interest, (b) how an organism functions (i.e., natural history) in its
microenvironment, and (c) how an organism responds to micro-environmental perturba-
tion either caused by natural or anthropogenic pressures [22–25]. The exchange processes
between the atmosphere, microhabitat, and biological organisms form the component
of environmental biophysics with the most significant temporal and spatial variability.
Exchange processes may include fluxes of water, heat, carbon, and other bio-climatically
relevant substances [23,24]. Despite the often-apparent direct dependence of these pro-
cesses on atmospheric gas exchanges, water vapor, and heat flux, scientists know little
about the mechanistic dynamics controlling them. For example, large-scale vegetation
and animal agricultural practices respond to the state of the atmosphere but also influence
local, regional, and continental weather processes primarily through complex evaporation,
transpiration (or respiration), and carbon flux exchange processes. This is partly because
terrestrial plant and animal-atmosphere heat and gas exchange processes are heavily de-
pendent on vegetative and animal species composition, morphology, and density [22,24].
Because these conditions can vary significantly over relatively small spatial scales, they can
facilitate highly variable impacts on processes that govern fauna (individual or group) life
histories and relationships that are even less well understood than for vegetation. This is
attributable to the transient nature of most fauna and coupled complex metabolic pathways
(e.g., endotherms). Regardless, this understanding is critically important since advanced
knowledge can help determine whether a given location or set of conditions is suitable for
raising animals such as beef cattle, which greatly depend on vegetation production [22–24].

Classic studies acknowledge the importance of cattle feed/water intake relationships
and the local environment [43]. Furthermore, recent studies suggest that heat production of
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cattle related to digestive processes may also result in metabolic energy that may be crucial
for cow metabolism, food and water intake-related growth, and, therefore, production
efficiencies [44]. However, it is not well-understood how environmental conditions (heat-
ing and cooling) may improve or exacerbate metabolic processes and beef cattle growth
regimes or the timing and rate of growth (mass) gains. There is, therefore, an ongoing
need to develop advanced methods to predict relationships between micrometeorological
conditions, intake (e.g., dry matter), metabolism, and animal growth and health processes
to improve animal feed efficiencies [23,43,44].

1.3. Big Data and Machine Learning in Beef Cattle Production

To make wise decisions within and outside the cattle industry, it is essential to consider
the growing ecosystem of data information generated by booming digitalized technology
and incorporate those data into both mechanistic and data-driven algorithms [11]. For
example, in the beef industry, more precise predictions (based on massive, difficult-to-
discriminate data sets) aid in finding more efficient animals (feed and water efficient).
Results can be used in future positive and negative genetic selections that can be utilized in
future breeding to focus the production on more efficient animals, which contributes to
greater production efficiencies, smaller environmental footprint, and sustainability of the
industry. Ultimately, big data and machine learning in the beef industry lag behind other
fields due to many challenges [11,34].

The term Big Data can be challenging to define as it depends on the available com-
puting power at the time of publication. However, a practical definition may be data that
are too large for basic manual (human) visual inspection of all rows and columns [45].
Thus, the need for data visualization and exploration becomes increasingly necessary.
Machine learning (ML) is a branch of computer science aimed at enabling computers to
learn new behavior based on empirical data to design algorithms that allow the computer
to display behavior learned from experience rather than human instruction [46]. The main
types of machine learning are supervised-, unsupervised-, semi-supervised, transduction,
reinforcement-, and learning-to-learn methods [46,47]. Current publications on ML use in
agriculture primarily focus on crop production [27,28]. Most publications applying ML to
livestock production are related to animal welfare. Between 2018 and 2020, the number of
publications on ML in agriculture more than doubled compared to the previous 14 years.
However, publications on ML use in livestock production increased slightly [28]. These
trends thus indicate a growing body of literature (livestock production) that is not growing
as fast as other ML applications in agriculture.

Utilization of ML for feed efficiency [48] in beef steers in the United Kingdom, in-
cluding information from individual feed intake electronic feeders, feeding behavior using
accelerometer, age, and daily weight for 56 days was shown to produce low predictive
precision in multiple linear regression, random forests, and support vector regressor. Model
precision was compared to repeated measures correlations. The root mean square error
of random forest prediction (encompassing the difference between actual and predicted
DMI) ranged from 1.15 to 1.61 kg. However, the dataset did not include any climate or
water intake variables. Repeated measures techniques are available in both mechanistic
and ML approaches, for example, repeated measures random forest [49]. Researchers in
Ireland [50] developed a mechanistic stepwise regression model using n-alkane to estimate
DMI while grazing, collecting multiple non-invasive animal measurements, including body
condition score, linear type scoring, thermography, and grazing behavior, and generated
94 variables to predict the DMI of grazing lactating beef cows. The repeated measurements
were averaged across three time points, and averages were analyzed in multiple linear
regression models showing promising results with R2 of 0.68 on training (88 cows) and R2

of 0.59 in independent validation herd (60 cows). Other recent works integrated multiple
additional indices in ML techniques, including image-based analyses and body weight
estimation [45,51], prediction of body condition score (BCS) [28], and prediction of energy
and water consumption [28].
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Modern beef cattle production generates significant amounts of complex data requiring
knowledgeable researchers and powerful machine learning algorithms. Generally, it is
insufficient to describe correlations in complex animal production systems. Still, a deeper
understanding of the impact of multiple data sources is needed on a layer-by-layer basis [52].
The applied intersection of ML and animal growth physiology requires exploration. Animal
sciences education and curriculum face a two-fold challenge: to prepare researchers in all
layers—from molecular to applied practical depth of knowledge of the physical animal
science, plus to equip them with the big data analysis and machine learning skills to
advance sustainable farming practices.

2. Challenges in Sustainable Beef Cattle Production
2.1. The Role of Ruminant Livestock

Reducing the footprint of low-quality feedstuffs conversion into high-quality protein
for human consumption requires advancements in feed efficiency. A significant limitation
to further progress is the inability to measure individual DMI effectively in grazing systems.
For example, the breeding herd (cows, bulls, and replacement heifers) consumes 82% of the
feed in a calf-to-beef system. Most heifers and cows are grazing or fed harvested forage [53].
Progress regarding cow herd health and production efficiency requires methods to estimate
individual DMI of grazing animals [54]. Selection of breeding stock that consumes less feed
than expected is possible. As early as 2015, a genetic tool was developed to compare bulls
that varied in the genetic potential (i.e., Expected Progeny Difference or EPD) for Residual
Feed Intake (RFI) and Residual Water Intake (RWI). Unfortunately, direct measurement of
RFI is currently prohibitively expensive and limited to animals reared in confinement [53].
Upon the development of a tool to directly measure individual animal DMI and RWI,
animal geneticists would be able to identify animals that are both efficient in water and
feed use and work to generate efficient breeding stock.

Generally, grazing research tends to be relatively labor-intensive [55], requires artifi-
cially small grazing plots, and does not benefit from automated data collection. Currently,
animals are most often grazed in 0.1–0.3 acres (0.04–1.21 hectare) plots, estimating herbage
mass before and after grazing with plate meters and paired clipped samples. Results
are then scaled to group averages, making determinations of individual grazing intake
impossible [56,57]. The primary disadvantage of this approach is that it limits the number
of locations that can be monitored, thereby slowing many areas of grazing research (e.g.,
new climate-adapted forage varieties, innovative approaches to grazing management to
enhance ecosystem services, etc.). Additionally, this approach can limit biomass compar-
isons within heterogeneous study sites, such as those typically found in variable landscape
environments [58]. By grazing small plots, data are oversimplified relative to what occurs
in most real-world grazing conditions, and animal behavior is also constrained. As a result,
feedstock performance in confinement, used for determining animal feed efficiency, is
embedded in the assumption(s) that confinement and open-field grazing efficiencies are
the same. This is a critical mismatch to address for the beef industry, given that grazing
animals make up most ruminant livestock globally. Even those animals that may be finished
on grains spend most of their lives grazing (open field), with parental animals primarily
grazed or fed harvested forage.

Most pastureland grazing research, particularly research to mitigate the effects and
causes of climate change through grassland agriculture, is executed using rotational grazing
systems. The development of modern rotational grazing [59] and its subsequent use by
producers and researchers alike were predicated upon standardized grazing laws. How-
ever, these grazing laws are no longer adequate for managing grassland systems. Changing
plant community dynamics influenced by climate change are altering grassland botanical
composition and fundamental approaches to grazing [60]. For example, if cool-season
forages are to remain a necessary component of grassland systems, diversity in forage
species and system services must be incorporated into base grazing approaches. However,
those approaches have yet to be formalized for the industry. In several major cool-season
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types of grass, drought stress has been shown to substantially inhibit chlorophyll synthesis
and increase lipid peroxidation and protein degradation, and oxidative activity, and can
result in plant death [61]. Insufficient ground cover increases soil temperatures, influencing
metabolic rates more than the air temperature. Under prolonged flood conditions, carbo-
hydrate reserves are depleted, and soluble protein content substantially decreases. Gas
exchange functions are also drastically reduced, inhibiting photosynthesis and nutrient
uptake [62]. For grassland agriculture to meet the nutritional demands of pastured live-
stock under future population density pressures, forage diversity must be addressed. The
development of climate-adapted, grazing-tolerant cool-season forages and warm-season
forages with high digestibility and crude protein will be vital to these advancements.

2.2. Beef Cattle Production and the Environment

The energetics of animals is fundamental to their behavior, adaptation, growth, re-
production, and distribution [63]. However, due to the complexity and unpredictability
of environmental variables and the diversity of animals’ sizes, shapes, surfaces, and other
morphological features, developing a thorough understanding of energy exchange be-
tween animals and the local environment remains challenging. The variability of radiation,
temperature, wind, and humidity in microenvironments in animals’ locations necessitates
advanced methods of measuring and modeling techniques. This is important because
it is primarily through the flow of energy that micro-climate affects an organism. If the
organism is strongly coupled to a given climatic factor, then the organism’s temperature is
strongly influenced by this factor. If the organism is weakly coupled to the environmental
factor, then the temperature and energy content are little affected by the factor [63]. For
example, an animal is coupled to incident radiation by means of the absorptivity of the
organism’s surface. If the organism has an absorptivity of zero, reflecting 100% of incident
radiation, it will be wholly decoupled from incident radiation, and its temperature will not
be affected. If, however, the organism is black (such as some beef cattle breeds) and absorbs
100% of the incident radiation, it will be strongly coupled to the incident flux of radiation.
In this case, the quantity of incident radiation intimately affects the organism’s temperature.
In this manner, an animal’s color and, therefore, the surface area of an animal determines
the amount of coupling or decoupling to the environment. Quantifying this relationship is
vital given that all organisms have temperature tolerances, sometimes referred to as the
thermoneutral zone [64], that are more or less limited. Incident radiation can be highly
variable in many (if not most) animal habitats, for many organisms’ temperatures must be
between 0 ◦C and about 50 ◦C for metabolic processes to function. For mammals such as
cattle, this range is between approximately 21 ◦C and 45 ◦C [63] and can highly vary [65,66].
The narrow range maintained by cattle facilitates maximum production [67]. Unfortunately,
little is known about these relationships in geographically distinct locations, and much
research is needed to advance that understanding.

Additionally, while incident radiation can be a driving force for heating an animal, the
temperature of an organism is also affected by the amount of moisture evaporating from
the animal’s surface. Through the evaporative loss of moisture, an organism’s temperature
is coupled to the vapor pressure or relative humidity of the moisture in the air around
it. If the organism’s skin is impervious to moisture loss, then the organism’s tempera-
ture is completely decoupled from the vapor pressure. For larger animals such as beef
cattle, storage capacity may influence the energy exchange rate with the environment,
including water loss through respiration [22]. These relationships can be estimated, and
the energy budget (balance) equation is the preferred approach [22–24]. However, animal
metabolic rates are also necessary to balance the energy budget [22,24,63]. Physiologists
generally estimate metabolic rates per unit mass of the animal. However, most producers
do not regularly weigh their animals. However, this information is critical to estimating
metabolism and weight gains (or losses). Metabolic rates per unit mass of animals are
generally computed as a basal rate [22,63]. Basal rate (Watts) can be approximated for a
wide variety of animals by the equation (or other derivations thereof), Bm = Cm3/4, where
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m is the animal’s mass (kg), and C is a constant [22]. Fortunately, mass can be estimated
in several ways if direct measures are unavailable. Approximations in the literature vary
significantly for these methods, and a number uses a simple ratio function multiplied by the
animal’s estimated surface area (SA). Advanced techniques are greatly needed to calculate
SA that more accurately predicts animal metabolism and body mass changes. This is im-
portant to advance production efficiencies and long-term beef cattle industry sustainability,
particularly for producers. Such advancements will improve beef cattle production by
developing managed environmental conditions that optimize feed and water intake and,
therefore, mass growth and reduce animal feed and water requirements per kilogram of
mass gain, securing producer profits. While many SA computations have been published,
most are inaccurate, impractical, or may not be readily available when a determination
must be made. Regardless, the surface area is a reasonable method of estimation for body
mass given that heat (or cold) and, thus, energy exchange processes between an animal
and the environment occur through the animal’s surface [68]. This is important given
that, similar to very low temperatures, livestock performance at higher temperatures (e.g.,
sub-tropical, tropical) can result in poorer weight gain performance [67,69,70]. This latter
point implies the need for estimates of lower and upper critical temperatures and rates
of development of cold and heat stress at ambient temperatures that deviate from lower
critical temperatures [71]. There is a great need (and thus challenge) to advance beef cattle
environmental monitoring methods and animal surface area estimations and develop more
reliable methods of estimating animal stress.

2.3. Big Data and Machine Learning in Beef Cattle Production

Machine learning in animal production differs from typical artificial intelligence (AI)
applications due to unique challenges [26,51,52]. For example, extensive data sets are gen-
erated from a variety of different sources, such as daily to hourly farm operations from the
animals (eating, drinking, moving, growth, health, metabolism), feed availability, farming
equipment, marketing, weather, satellites or drone, or aircraft platforms, in addition to all of
the laboratory-generated-omics data (proteomics, genomics, transcriptomics, metabolomics,
etc. Farmers and animal science researchers are inundated with data, but there is no sys-
tematic ability for producers to process the extensive data into actionable insights [52].
Additionally, lifelong beef producers may encounter approximately 30–50 cycles of beef
rearing (from calving to marketing) over their production career. The risk associated with a
poor decision of culling or selecting animals to breed and sell may have serious material
consequences for a producer’s business for years or even decades. Changing climate condi-
tions from year-to-year, season to season, breed to breed, the topographic and economic
environment, and animal diseases involve random effects in statistical modeling, which
may add to the complexity of AI algorithms. Another challenge for ML implementation
into beef production is a lack of data analysis skills of animal science professionals (i.e., data
science, as applied to animal agriculture). Advancement will require a multidisciplinary
approach in undergraduate and graduate animal sciences college education [52]. In addi-
tion, agricultural lands are often situated in rural settings where internet infrastructure may
be lacking, ultimately limiting the adoption of new digital agriculture practices and big
data use, or ML approaches [51]. Finally, the initial upfront costs of the necessary hardware
and software may be prohibitive and, once deployed, can increase energy consumption
and energy costs, and therefore the financial liability of a beef cattle operation [51]. These
challenges, individually and collectively, imply significant needs for ML advancements
tailored for the beef industry.

3. Opportunities in Sustainable Beef Cattle Production
3.1. The Role of Ruminant Livestock

Lacking methods to evaluate various classes of livestock under normal grazing con-
ditions and progress to feed a growing human population sustainably will be highly
challenging. Requirements for livestock evaluation methods to be helpful in heterogeneous
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landscapes demand that the system(s) should (1) provide unbiased estimates over the range
of biomass studied, (2) be non-destructive, and if possible, (3) quick, easy, and inexpensive
to implement [72–74]. There are improvements in drought and heat tolerance in many
forages, such as heat-tolerant cultivars of Kentucky bluegrass and tall fescue that accumu-
late increased nonstructural carbohydrates during drought. There are highly heat-tolerant
cultivars of ryegrass-fescue hybrids, and tolerant forage varieties are often not tested under
grazing pressure [61,75,76]. However, due to projected changes in grassland composition
and the usefulness of grazing ruminant livestock, improved forages must be evaluated in
grazing systems. Similarly, the evaluation of the effect of livestock RFI class on grazing
habits and forage disappearance use has not been thoroughly researched [77]. Advances
in the relationships between livestock intake metrics (RFI, DMI, Residual Water Intake
[RWI]) must be developed to improve the genetic selection of efficient breeding stock and
increase the production of ruminant livestock without increasing land resources needs.
Opportunities for testing climate-adapted forages exist for integrated, interdisciplinary col-
laborations among researchers, producers, and the forage-production industry. Researchers
in functioning grazing systems should assess industry-developed novel forages. This is
important because there are many unknown relationships among climate-adapted forages,
animal WI and DMI (and many other factors). Collaboration among academia, industry
and beef producers is necessary to address these complex integrated agri-environmental
systems in a changing climate.

A great (perhaps the greatest) challenge preventing the grazing assessment of diverse,
climate-adapted forages, wide-scale physical modeling of changes in pasture composition,
and evaluation of intake phenotypes in grazing ruminants is the labor-intensive nature
of grazing research. Much of the labor associated with standard agronomic research
techniques can be reduced if nuanced models can be developed using imaging and machine
learning. Imaging has been used to measure ground cover changes and seasonal patterns in
biomass and foliage phenology in perennial grasslands. However, many past approaches
relied on ground-based imaging systems and did not benefit from efficient, pasture-wide
imaging [78–80]. The use of Unmanned Aerial Vehicles (UAV) to capture imaging and
sensing data from grasslands has increased, and machine-learning models that incorporate
remote-sensing data to predict pasture biomass and quality have been developed [81–83].
However, the performance of algorithms for pasture biomass has not been increasing, and
their accuracy is dependent on physical field samples, data sources, and known pasture
composition [84]. For continued improvement in climate-adapted forage research and
grazing management research, remote-sensing-based machine learning models must be
developed to accurately index and model pasture composition, determine forage biomass
and quality, and predict changes in pasture composition.

Similarly, there is currently no validated model for predicting DMI or RWI of pastured
cattle, nor are there published understandings of relationships between feed intake pheno-
types of pasture-based and confined livestock, RFI and forage use, or RWI and pasture-use
efficiencies. To make genetic progress in ruminant livestock and improve grassland man-
agement, machine learning models must be developed to explore and understand these
relationships, so grasslands can endure a changing climate while increasing ruminant
livestock production efficiencies. Agronomists and animal scientists must work with data
scientists to engineer tools to ensure that future beef cattle production is sustainable.

3.2. Beef Cattle Production and the Environment

Considering the challenges noted in Section 2.2, research is needed to advance the
use and practicality of environmental and climatologic infrastructure while simultane-
ously increasing the fiscal and logistic practicalities of animal water and feed efficiency
monitoring infrastructure. Such advancements could perpetuate the development of ad-
vanced beef cattle environmental biophysical relationships and models that will increase
environmental-dry matter and water efficiency(ies) understanding, thereby improving
management practices and costs related to beef cattle production and sustainability. In
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addition, digital photographic or other similar (automated, non-contact) methods must
be developed to estimate animal surface area and body mass more accurately. This will
produce more reliable estimates of heat (or cold) stress and thus give a fiscal impetus to
mitigate sub-optimal production environmental (micro-habitat) conditions. Digital pho-
tographic methods have been developed in recent years [85], but thus far remain limited
in accuracy and precision. Therefore, the application of this technology is in great need of
innovation, including coupling to other technologies to estimate body mass more accurately.
Other technologies could include distance sensors and smartphone applications using new
(or additional) information to estimate body size and mass more readily and affordably.

Current metabolic and heat stress models are often based on the physical character-
istics of heat exchange between an animal and its environment and published data on
the thermoregulatory responses of cattle. Information needs to be advanced to accom-
modate a great deal of variability in physio-morphological data of beef cattle for these
methods to become more physiologically and geographically dependable. For example,
new automated methods are needed to describe the beef cattle’s transient characteristics,
including metabolic heat production, skin evaporation capacity, hair coat depth, and the
local environment (temperature, humidity, radiation, and wind speed). Models that cur-
rently provide estimates and output of animal responses (e.g., respiratory heat loss, skin
evaporative and non-evaporative heat loss, and rate of body temperature change) are often
extremely limited in reliability (accuracy) and therefore practicality in terms of animal
management (practitioner) decision making. These advancements will yield improved
SA estimates and model-tested and validated estimates of heat loss and radiant heat loss
using new information and methodologies. This will improve producers’ ability and ease
to estimate SA and body weight of beef cattle and also improve estimations of timing and
conditions of environmentally stressful situations that may reduce weight gains. Mitigation
techniques for the latter may include protection from solar radiation, genetically selected
heat-resistant breeds, improved nutritional management, and other strategies.

3.3. Big Data and Machine Learning in Beef Cattle Production

To meet future human population protein needs and advance sustainable beef produc-
tion, the integration of large volumes of time-series environmental data with physiological
data of animals and geospatial data collected from digital proximal and remote machinery
must be established and become widely used. A combination of mechanistic and machine
learning models will need to be utilized [26,52,86]. Indeed [26] noted that mechanistic
modeling and machine learning (ML) have successfully predicted animal performance
and related intermediaries. The choice of methodology will likely depend on the objec-
tive of the model. Mechanistic models are better suited for manipulating the system for
problem-solving, troubleshooting, and knowledge-based decision-making [26]. However,
when the objective is prediction or forecasting (for example, what date a beef herd will
reach market weight), ML models may be more appropriate [87]. Ref. [26] concluded
that there exists a niche for hybridizing the two seemingly divergent approaches where
mechanistic modeling’s ability to infer causality and ML’s strong predictive abilities inform
(or quite literally be input into) one another in a feedback-loop-like relationship. More-
over, [88] described how big data and ML might aid in detecting animal health issues
that require intervention and improve breeding, feeding, and managing animals to meet
sustainability targets and ultimately reduce agriculture’s environmental footprint [88,89].
The gap between potentially expensive high-technology and low-resource farming settings
is obvious. It may be unrealistic to expect farmers to be financially situated to invest in
expensive technology. Instead, beef research investigators should collaborate with trained
ML analysts to generate predictive models based on advanced technology and apply the
developed models to broader rural producers. The scientific community needs to evaluate
the contribution of big data and the feasibility of implementing technologies for developing
relationships that can predict animal performance with high confidence without broad or
permanent technological investments.
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Of course, advancements in modeling approaches will only be as successful as the abil-
ities of the next generation of animal scientists to match the next generation of computing
power. To achieve this goal, it is necessary to investigate how programs in higher education
integrate data science, basic coding, and machine learning into animal science curricula
for undergraduate and graduate degrees. Finally, to further advance the development of
new ML techniques, multidisciplinary teams of collaborators working in tandem [26] will
be necessary. Animal physiologists, grazing experts, climate and energy scientists, data
scientists, statisticians, machine learning specialists, and other stakeholders must buy in,
collaborate and integrate their expertise in new novel ways to advance the beef industry
for a secure and sustainable future considering all pressures, not limited to the human
population, and changing climates [90] (Table 1).

Table 1. Key challenges and potential directions forward in beef production.

Key Challenges Consequences Key New Directions

• Contributions to global GHG
emission

• Negative environmental impacts
• Apocalyptic environmental anxiety,

alarmism, and panic among humans
• Increased beef production costs for

farmers and increased beef prices
for consumers

• Optimization of the size of the beef
population

• Selection of feed and water-efficient
animals

• Use of grass-land-based rotational
grazing system with diverse
botanical composition, including the
N-fixing leguminous forages

• Adverse effects of high
consumption of beef (mainly
processed meat) on human health in
developed countries

• Increase in cardiovascular diseases,
type-2 diabetes, and cancer

• Reduced intake of animal protein to
20 g/day in developed countries

• Protein, Vitamins B12, K2,
heme-iron, and zinc malnutrition in
developing countries

• Starvation and death of humans • Agricultural education, beef
farming, global nutrient
distribution, and fair trade

• Grazing on converted forestland • Forest loss • Utilization of grazing forest lands in
silvopasture systems

• Dependence on vegetation
production, which may be adversely
affected by climate variations due to
global warming

• Unstable pasture within the
growing season

• Improved understanding of how
environmental conditions can
predict beef cattle metabolic
processes

• Food vs. Feed vs. Biofuel
competition

• Beef production is less efficient than
crop per arable land

• Less land for beef feed due to
biofuel farming

• Increased animal feed and water
efficiency by genetic selection and
management

• Reserving arable land for farming
and low-quality land for other
purposes

• Low animal efficiency • High cost of beef production • Use of big data and machine
learning to aid in finding and
selecting more efficient animals

4. Conclusions

The recognition of the role of agriculture in sustainable development has significantly
expanded in recent years. However, developing a sustainable beef cattle industry to meet
future protein needs will require many advancements. To meet those needs, a great deal of
research is necessary to advance beef cattle production sustainability. While there are many
additional aspects of the beef cattle industry not represented here (e.g., feedlot management,
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nutritional supplements to minimize enteric methane production, data-based optimizations
in various segments of the industry, etc.), specific challenge areas identified in this article
include, (a) the role of ruminant livestock in meeting future human population growth
related protein needs, (b) beef cattle production and the environment, and (c) big data
and machine learning in beef cattle production. Such challenges and needs constitute
timely, high-impact research opportunities for investigators from various fields. Given
the potential of the beef cattle industry to supply needed protein to the future (growing)
global human population and the need to substantially reduce costs (e.g., feeds, animal
stress) in so doing, improvements to methods and integrated technologies will further
increase efficiencies and aid in utilizing federal, state, and other tax dollars most effectively.
Considering the obstacles currently slowing advancements to cattle industry efficiencies
globally (e.g., climate change, land use intensification/complexity, financial limitations,
competing stakeholder groups, the strain on water resources, human population growth,
and others), novel innovations for advancing the industry must be discovered that can
rapidly supply needed advancements.
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