Investigating Thermal Performance of Residential Buildings in Marmari Region, South Evia, Greece
Abstract
:1. Introduction
1.1. Literature Background upon Building Energy Use in Europe and Worldwide
1.2. Literature Background upon Indoor Environmental Quality and Building Energy Use
2. Energy Consumption and Environmental Conditions in the Construction Sector in Greece
3. Buildings’ Description Materials and Methods
3.1. Meteorological and Climatic Data—An Overview
3.1.1. Temperature
3.1.2. Humidity
3.1.3. Water Precipitation
3.1.4. Wind profile
3.1.5. Microclimatic Monitoring According European Standards
3.2. The Green and Smart House A1
3.2.1. Structural Characteristics
3.2.2. Windows
3.2.3. Cooling
3.2.4. Heating
3.2.5. Solar Water Heater
3.2.6. Housing Automation–Central System of Vacuum Cleaner
3.2.7. Exploration of Other in-House Interventions
3.2.8. Electrical Infrastructure
3.2.9. Lighting Appliances
3.2.10. Temperature Measurements
3.2.11. Energy Consumption
4. Results and Discussion
4.1. The ΤΕΕ ΚΕΝAΚ Software at the Green House
4.2. Energy Consumption of the Green House
4.3. ΤΕΕ ΚΕΝAΚ Software at the Conventionally-Constructed House A2
4.4. Critique Upon Buildings Adaptation to European and Temperate Microclimatic Conditions
5. Proposed Improvements
5.1. Interventions at the Green House and Conventional House
5.1.1. Interventions in the Conventionally-Constructed House
5.1.2. Interventions at the Indoors–Outdoors Environment
5.2. Proposals to Microclimatic Monitoring
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scharf, B.; Zluwa, I. Case study investigation of the building physical properties of seven different green roof systems. Energy Build. 2017, 151, 564–573. [Google Scholar] [CrossRef]
- Kyriakopoulos, G.; Arabatzis, G.; Tsialis, P.; Ioannou, K. Electricity consumption and RES plants in Greece: Typologies of regional units. Renew. Energy 2018, 127, 134–144. [Google Scholar] [CrossRef]
- Kolovos, K.; Kyriakopoulos, G.; Chalikias, M. Co-evaluation of basic woodfuel types used as alternative heating sources to existing energy network. J. Environ. Prot. Ecol. JEPE 2012, 12, 733–742. [Google Scholar]
- Ntanos, S.; Kyriakopoulos, G.; Arabatzis, G.; Palios, V.; Chalikias, M. Environmental Behavior of Secondary Education Students: A Case Study at Central Greece. Sustainability 2018, 10, 1663. [Google Scholar] [CrossRef] [Green Version]
- Ntanos, S.; Kyriakopoulos, G.; Chalikias, M.; Arabatzis, G.; Skordoulis, M.; Galatsidas, S.; Drosos, D. A Social Assessment of the Usage of Renewable Energy Sources and Its Contribution to Life Quality: The Case of an Attica Urban Area in Greece. Sustainability 2018, 10, 1414. [Google Scholar] [CrossRef] [Green Version]
- Ntanos, S.; Kyriakopoulos, G.; Chalikias, M.; Arabatzis, G.; Skordoulis, M. Public perceptions and willingness to pay for renewable energy: A case study from Greece. Sustainability 2018, 10, 687. [Google Scholar] [CrossRef] [Green Version]
- Marcal, N.A.; da Silva, R.M.; Santos, C.A.G.; Santos, J.S.D. Analysis of the environmental thermal comfort conditions in public squares in the semiarid region of northeastern Brazil. Build. Environ. 2019, 152, 145–159. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, D.; Yue, S.; Qu, J. Trends in summer air temperature and vapor pressure and their impacts on thermal comfort in China. Theor. Appl. Climatol. 2019, 138, 1445–1456. [Google Scholar] [CrossRef]
- Ulpiani, G.; Di Giuseppe, E.; Di Perna, C.; D’Orazio, M.; Zinzi, M. Thermal comfort improvement in urban spaces with water spray systems: Field measurements and survey. Build. Environ. 2019, 156, 46–61. [Google Scholar] [CrossRef]
- Ongoma, V.; Muange, P.K.; Shilenje, Z.W. Potential effects of urbanization on urban thermal comfort, a case study of Nairobi city, Kenya: A review. Geographica Pannonica 2016, 20, 19–31. [Google Scholar] [CrossRef]
- Balslev, Y.J.; Potchter, O.; Matzarakis, A. Climatic and thermal comfort analysis of the Tel-Aviv Geddes Plan: A historical perspective. Build. Environ. 2015, 93, 302–318. [Google Scholar] [CrossRef]
- Gajjar, H.; Jai Devi, J. Assessment of Role of Water Body on Thermal Comfort in Ahmedabad, India. IOP Conf. Ser. Earth Environ. Sci. 2019, 281, 012023. [Google Scholar] [CrossRef]
- Fu, Y.; Ren, Z.; Yu, Q.; He, X.; Xiao, L.; Wang, Q.; Liu, C. Long-term dynamics of urban thermal comfort in China’s four major capital cities across different climate zones. Peer J. 2019, 11, 8026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fokaides, P.A.; Polycarpou, K.; Kalogirou, S. The impact of the implementation of the European Energy Performance of Buildings Directive on the European building stock: The case of the Cyprus. Land Development Corporation. Energy Policy 2017, 111, 1–8. [Google Scholar] [CrossRef]
- PBD. Energy Performance of Buildings Directive. Available online: https://ec.europa.eu/energy/en/topics/energy-efficiency/energy-performance-of-buildings/energy-performance-buildings-directive (accessed on 22 October 2019).
- Pantavou, K.; Santamouris, M.; Asimakopoulos, D.; Theoharatos, G. Evaluating the performance of bioclimatic indices on quantifying thermal sensation for pedestrians. Adv. Build. Energy Res. 2013, 7, 170–185. [Google Scholar] [CrossRef]
- Khan, H.S.; Asif, M. Impact of Green Roof and Orientation on the Energy Performance of Buildings: A Case Study from Saudi Arabia. Sustainability 2017, 9, 640. [Google Scholar] [CrossRef] [Green Version]
- Center of Renewable Energy. Bioclimatic Design. Available online: http://www.cres.gr/energy-saving/enimerosi_bioclimatikos.htm (accessed on 20 October 2019). (In Greek).
- Geletic, J.; Lehnert, M.; Savic, S.; Milosevic, D. Modelled spatiotemporal variability of outdoor thermal comfort in local climate zones of the city of Brno, Czech Republic. Sci. Total Environ. 2018, 624, 385–395. [Google Scholar] [CrossRef]
- Theeuwes, N.E.; Solcerova, A.; Steeneveld, G.J. Modeling the influence of open water surfaces on the summertime temperature and thermal comfort in the city. J. Geophys. Res. Atmos. 2013, 118, 8881–8896. [Google Scholar] [CrossRef] [Green Version]
- Karimi Afshar, N.; Karimian, Z.; Doostan, R.; Habibi Nokhandan, M. Influence of planting designs on winter thermal comfort in an urban park. J. Environ. Eng. Landsc. Manag. 2018, 26, 232–240. [Google Scholar] [CrossRef]
- Sala, M. Advanced bioclimatic architecture for buildings. Renew. Energy. 1998, 15, 271–276. [Google Scholar] [CrossRef]
- Escandon, R.; Suarez, R.; Sendra, J.J. Field assessment of thermal comfort conditions and energy performance of social housing: The case of hot summers in the Mediterranean climate. Energy Policy 2019, 128, 377–392. [Google Scholar] [CrossRef]
- Perez Tellez, J.D.; Suarez Medina, R.; Leon Rodriguez, A.L. Methodology for the optimisation of thermal performance and daylight access to the retrofit of hospital rooms in Mediterranean climate. Sustain. Dev. Renov. Archit. Urban. Eng. 2017, 78, 403–413. [Google Scholar] [CrossRef]
- De Santoli, L.; Garcia, D.A.; Groppi, D.; Bellia, L.; Palella, B.-I.; Riccio, G.; Cuccurullo, G.; d’ Ambrosio, F.-R.; Stabile, L.; Dell’Isola, M.; et al. A General Approach for Retrofit of Existing Buildings Towards NZEB: The Windows Retrofit Effects on Indoor Air Quality and the Use of Low Temperature District Heating. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2018, Palermo, Italy, 16 October 2018. [Google Scholar]
- Brunsgaard, C.; Dvorakova, P.; Wyckmans, A.; Stutterecker, W.; Laskari, M.; Almeida, M.; Kabele, K.; Magyar, Z.; Bartkiewicz, P.; Veld, O.-P. Integrated energy design e Education and training in crossdisciplinary teams implementing energy performance of buildings directive (EPBD). Build. Environ. 2014, 72, 1–14. [Google Scholar] [CrossRef]
- Abela, A.; Hoxley, M.; McGrath, P.; Goodhew, S. A comparative analysis of implementation of the Energy Performance of Buildings. Directive in the Mediterranean. Int. J. Law Built Environ. 2013, 5, 222–240. [Google Scholar] [CrossRef]
- Burman, E.; Mumovic, D.; Kimpian, J. Towards measurement and verification of energy performance underthe framework of the European directive for energy performance of buildings. Energy 2014, 77, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Kuckelkorn, J.; Zhao, F.-Y.; Spliethoff, H.; Lang, W. A state of art of review on interactions between energy performance and indoor environment quality in Passive House buildings. Renew. Sustain. Energy Rev. 2017, 72, 1303–1319. [Google Scholar] [CrossRef]
- D’Agostino, D.; Mazzarella, L. What is a Nearly zero energy building? Overview, implementation and comparison of definitions. J. Build. Eng. 2019, 21, 200–212. [Google Scholar] [CrossRef]
- Eleftheriou, A.-P.; Xeni, F.; Morlot, R.; Menezo, C.; Kostopoulos, V.; Betsi, M.; Kalaitzoglou, I.; Pagliano, L.; Cellura, M.; Almeida, M.; et al. Overview and future challenges of nearly zero energy buildings (nZEB) design in Southern Europe. Energy Build. 2017, 155, 439–458. [Google Scholar]
- Lopez-Ochoa, L.M.; Las-Heras-Casas, J.; Lopez-Gonzalez, L.M.; Olasolo-Alonso, P. Towards nearly zero-energy buildings in Mediterranean countries: Energy Performance of Buildings Directive evolution and the energy rehabilitation challenge in the Spanish residential sector. Energy 2019, 176, 335–352. [Google Scholar] [CrossRef]
- D’Ambrosio Alfano, F.R.; Olesen, B.W.; Palella, B.I.; Riccio, G. Thermal Comfort: Design and Assessment for Energy Saving. Energy Build. 2014, 81, 326–336. [Google Scholar] [CrossRef]
- Caro, R.; Sendra, J.J. Evaluation of indoor environment and energy performance of dwellings in heritage buildings. The case of hot summers in historic cities in Mediterranean Europe. Sustain. Cities Soc. 2020, 52, 101798. [Google Scholar] [CrossRef]
- Mohammadi, A.; Saghafi, M.R.; Tahbaz, M.; Nasrollahi, F. Effects of Vernacular Climatic Strategies (VCS) on Energy Consumption in Common Residential Buildings in Southern Iran: The Case Study of Bushehr City. Sustainability 2017, 9, 1950. [Google Scholar] [CrossRef] [Green Version]
- Martinopoulos, G.; Serasidou, A.; Antoniadou, P.; Papadopoulos, A.M. Building Integrated Shading and Building Applied Photovoltaic System Assessment in the Energy Performance and Thermal Comfort of Office Buildings. Sustainability 2018, 10, 4670. [Google Scholar] [CrossRef] [Green Version]
- Koller, C.; Talmon-Gros, M.J.; Junge, R.; Schuetze, T. Energy Toolbox—Framework for the Development of a Tool for the Primary Design of Zero Emission Buildings in European and Asian Cities. Sustainability 2017, 9, 2244. [Google Scholar] [CrossRef] [Green Version]
- Sakiyama, N.R.M.; Hejazi, S.B.M.; De Oliveira, C.C.; Frick, J.; Garrecht, H. Effect of Traditional Persian Materials and Parametric Design on the Thermal Performance of a Generic Building in Mediterranean Climate. IOP Conf. Ser. Earth Environ. Sci. 2019, 290, 012106. [Google Scholar] [CrossRef]
- Serrano, S.; De Gracia, A.; Perez, G.; Cabeza, L.F. Sustainable earth-based vs. conventional construction systems in the Mediterranean climate: Experimental analysis of thermal performance. IOP Conf. Ser. Mater. Sci. Eng. 2017, 251, 012007. [Google Scholar] [CrossRef]
- ISO 15927-4:2005(en). Hygrothermal Performance of Buildings—Calculation and Presentation of Climatic Data—Part 4: Hourly Data for Assessing the Annual Energy Use for Heating and Cooling. Available online: https://www.iso.org/obp/ui/#iso:std:iso:15927:-4:ed-1:v1:en (accessed on 20 October 2019).
- ISO 52016-1:2017(en). Energy Performance of Buildings—Energy Needs for Heating and Cooling, Internal Temperatures and Sensible and Latent Heat Loads—Part 1: Calculation Procedures. Available online: https://www.iso.org/obp/ui/#iso:std:iso:52016:-1:ed-1:v1:en (accessed on 20 October 2019).
- ISO 13790:2008(en). Energy Performance of Buildings—Calculation of Energy Use for Space Heating and Cooling. Available online: https://www.iso.org/obp/ui/#iso:std:iso:13790:ed-2:v1:en (accessed on 20 October 2019).
- Entradas, S.-H.; Henriques, F. Microclimatic analysis of historic buildings: A new methodology for temperate climates. Build. Environ. 2014, 82, 381–387. [Google Scholar] [CrossRef]
- Cyclovac. Central Vacuum System of Greece. Available online: https://www.cyclovac.gr/ (accessed on 20 October 2019). (In Greek).
- Rodrigues, A.M.; Santos, M.; Gomes, M.G.; Duarte, R. Impact of natural ventilation on the thermal and energy performance of buildings in a Mediterranean climate. Buildings 2019, 9, 123. [Google Scholar] [CrossRef] [Green Version]
- Desogus, G.; Di Benedetto, S.; Ricciu, R. The use of adaptive thermal comfort models to evaluate the summer performance of a Mediterranean earth building. Energy Build. 2015, 104, 350–359. [Google Scholar] [CrossRef]
- Vestrella, A.; Biel, C.; Savè, R.; Bartoli, F. Mediterranean Green Roof simulation in Caldes de Montbui (Barcelona): Thermal and hydrological performance test of Frankenia laevis L.; Dymondia margaretae Compton and Iris lutescens Lam. Appl. Sci. 2018, 8, 2497. [Google Scholar] [CrossRef] [Green Version]
- Laborda, M.A.C.; Garcia, I.A.; Escudero, J.F.-A.; Sendra, J.J. Towards finding the optimal location of a ventilation inlet in a roof monitor skylight, using visual and thermal performance criteria, for dwellings in a Mediterranean climate. J. Build. Perform. Simul. 2015, 8, 226–238. [Google Scholar] [CrossRef]
- European Committee for Standardization. European Norm 12464–Light and Lighting-Lighting of Work Places-Part 2: Outdoor Work Places European Committee for Standardization; European Committee for Standardization: Brussels, Belgium, 2014. [Google Scholar]
- European Committee for Standardization. European Norm 12464-1: Light and Lighting—Lighting of Work Places Part 1: Indoor Work Places, European Committee for Standardization; European Committee for Standardization: Brussels, Belgium, 2011. [Google Scholar]
- European Committee for Standardization. European Norm 13201 Part 5: Energy Performance Indicators. EN 13201-5 European Committee for Standardization; European Committee for Standardization: Brussels, Belgium, 2015. [Google Scholar]
- Doulos, L.T.; Sioutis, I.; Kontaxis, P.A.; Zissis, G.; Faidas, K. A decision support system for assessment of street lighting tenders based on energy performance indicators and environmental criteria: Overview, methodology and case study. Sustain. Cities Soc. 2019, 51, 101759. [Google Scholar] [CrossRef]
- Doulos, L.T.; Kontadakis, A.; Madias, E.N.; Sinou, M.; Tsangrassoulis, A. Minimizing energy consumption for artificial lighting in a typical classroom of a Hellenic public school aiming for near Zero Energy Building using LED DC luminaires and daylight harvesting systems. Energy Build. 2019, 194, 201–217. [Google Scholar] [CrossRef]
- Ardavani, O.; Zerefos, S.; Doulos, L.T. Redesigning the exterior lighting as part of the urban landscape: The role of transgenic bioluminescent plants in mediterranean urban and suburban lighting environments. J. Clean. Prod. 2020, 242, 118477. [Google Scholar] [CrossRef]
- Grigoropoulos, C.J.; Doulos, L.T.; Zerefos, S.; Tsangrassoulis, A.; Bhusal, P. Estimating the benefits of increasing the recycling rate of lamps from the domestic sector: Methodology, opportunities and case study. Waste Manag. 2020, 101, 188–199. [Google Scholar] [CrossRef]
- Mavridou, T.; Doulos, L. Evaluation of Different Roof Types Concerning Daylight in Industrial Buildings during the Initial Design Phase: Methodology and Case Study. Buildings 2019, 9, 170. [Google Scholar] [CrossRef] [Green Version]
- Porcaro, M.; Ruiz de Adana, M.; Comino, F.; Pena, A.; Martin-Consuegra, E.; Vanwalleghem, T. Long term experimental analysis of thermal performance of extensive green roofs with different substrates in Mediterranean climate. Energy Build. 2019, 197, 18–33. [Google Scholar] [CrossRef]
- Lehtihet, M.C.; Bouchair, A. The impact of extensive green roofs on the improvement of thermal performance for urban areas in Mediterranean climate with reference to the city of Jijel in Algeria. AIP Conf. Proc. 2018, 1968, 030063. [Google Scholar] [CrossRef]
- Olivieri, F.; Olivieri, L.; Neila, J. Experimental study of the thermal-energy performance of an insulated vegetal façade under summer conditions in a continental mediterranean climate. Build. Environ. 2014, 77, 61–76. [Google Scholar] [CrossRef]
- Pianella, A.; Aye, L.; Chen, Z.; Williams, N.S. Substrate depth, vegetation and irrigation affect green roof thermal performance in a mediterranean type climate. Sustainability 2017, 9, 1451. [Google Scholar] [CrossRef] [Green Version]
- Bevilacqua, P.; Mazzeo, D.; Bruno, R.; Arcuri, N. Experimental investigation of the thermal performances of an extensive green roof in the Mediterranean area. Energy Build. 2016, 122, 63–79. [Google Scholar] [CrossRef]
- Thravalou, S.; Philokyprou, M.; Michael, A. The impact of window control on thermal performance. investigating adaptable interventions in vernacular Mediterranean heritage. J. Arch. Conserv. 2018, 24, 41–59. [Google Scholar] [CrossRef]
- Lazarou, S.; Makridis, S. Hydrogen Storage Technologies for Smart Grid Applications. Challenges 2017, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Santamouris, M.; Paraponiaris, K.; Mihalakakou, M. Εstimating the ecological footprint of the heat island effect over Athens, Greece. Clim. Chang. 2007, 80, 265–276. [Google Scholar] [CrossRef]
- Assimakopoulos, M.N.; Mihalakakou, G.; Flocas, H.A. Simulating the thermal behaviour of a building during summer period in the urban environment. Renew. Energy 2007, 32, 1805–1816. [Google Scholar] [CrossRef]
- Bagiorgas, H.S.; Mihalakakou, G. Experimental and theoretical investigation of a nocturnal radiator for space cooling. Renew. Energy 2008, 33, 1220–1227. [Google Scholar] [CrossRef]
- Mihalakakou, G.; Santamouris, M.; Asimakopoulos, D.N. “On the energy consumption in residential buildings”. Energy Build. 2002, 34, 727–736. [Google Scholar] [CrossRef]
- Gkanas, E.I.; Khzouz, M.; Panagakos, G.; Statheros, T.; Mihalakakou, G.; Siasios, G.; Skodras, G.; Makridis, S.S. “Hydrogenation behavior in rectangular metal hydride tanks under effective heat management processes for green building applications”. Energy 2018, 142, 518–530. [Google Scholar] [CrossRef]
- Kucukvar, M.; Egilmez, G.; Tatari, O. Life Cycle Assessment and Optimization-Based Decision Analysis of Construction Waste Recycling for a LEED-Certified University Building. Sustainability 2016, 8, 89. [Google Scholar] [CrossRef] [Green Version]
Parameter | Explanation (Descriptive or Numerical) [43] |
---|---|
Climate | Mild Mediterranean, with mild winters and hot summers |
Average annual rainfall | 750 mm |
Rainy season | Between November and March |
Average annual temperature | 17.5 °C |
Average winter temperature | 12.0 °C |
Average summer temperature | 26.5 °C |
Variable ------------- Reference | [43] | [own Study, Greece] |
---|---|---|
Seasonal minimum temperature (°C/month) | 13.2/February | 7.4/January |
Seasonal maximum temperature (°C/month) | 24.9/September | 30/July |
Average annual temperature (οC) | 19.1 | 17.5 |
Average relative humidity (%) | 63.6 | 66.6 |
Ground Floor | °C | Basement | °C |
---|---|---|---|
Floor | 20 | Floor | 19 |
Ceiling | 20 | Ceiling | 20 |
Interior walls | 22 | Interior walls | 21 |
Exterior walls | 17 | Exterior walls | 16 |
Glazing panels | 19 | Glazing panels | 19 |
Final Use | Reference Building B (in kWh/(m2 Year)) | Green and Smart Building/Conventional (A1/A2) (in kWh/(m2 Year) |
---|---|---|
Heating | 42.50 | 29.20/48.20 |
Cooling | 24.50 | 19.80/27.60 |
Hot water for domestic use | 15.20 | 7.70/21.90 |
Total | 82.30 | 56.70/97.70 |
Parameters of Cost Reduction | Reference Building | A2 Building | A2 Building (Retrofit) |
---|---|---|---|
Operational cost (in euro) | 1691.8 | 2605.0 | 1203.1 |
Initial cost of investment (euro) | 6000.0 | ||
Primary energy savings (kWh/m2) | 3.8 | ||
Primary energy savings (%) | 3.6 | ||
Cost of energy savings | 4.9 | ||
Reduction of CO2 emissions (kg/m2) | 10.0 | ||
Payback period (yrs). | 7.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanteraki, A.E.; Kyriakopoulos, G.L.; Zamparas, M.; Kapsalis, V.C.; Makridis, S.S.; Mihalakakou, G. Investigating Thermal Performance of Residential Buildings in Marmari Region, South Evia, Greece. Challenges 2020, 11, 5. https://doi.org/10.3390/challe11010005
Kanteraki AE, Kyriakopoulos GL, Zamparas M, Kapsalis VC, Makridis SS, Mihalakakou G. Investigating Thermal Performance of Residential Buildings in Marmari Region, South Evia, Greece. Challenges. 2020; 11(1):5. https://doi.org/10.3390/challe11010005
Chicago/Turabian StyleKanteraki, Alkistis E., Grigorios L. Kyriakopoulos, Miltiadis Zamparas, Vasilis C. Kapsalis, Sofoklis S. Makridis, and Giouli Mihalakakou. 2020. "Investigating Thermal Performance of Residential Buildings in Marmari Region, South Evia, Greece" Challenges 11, no. 1: 5. https://doi.org/10.3390/challe11010005
APA StyleKanteraki, A. E., Kyriakopoulos, G. L., Zamparas, M., Kapsalis, V. C., Makridis, S. S., & Mihalakakou, G. (2020). Investigating Thermal Performance of Residential Buildings in Marmari Region, South Evia, Greece. Challenges, 11(1), 5. https://doi.org/10.3390/challe11010005