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Featured Application: The right selection of plant species, mostly in the Mediterranean area, and
their test on a simulated green roof is the way to improve the efficiency of green roofs. This study
and the preliminary results derived will be a useful tool to improve the design of green roofs
increasing the sustainability of this green infrastructure and its mitigation ability for pollution
and water retention. Moreover, our preliminary data can be applied to the study of urban climate.

Abstract: Green roofs provide a number of environmental advantages like increasing urban
biodiversity, reducing pollution, easing burdens on drainage systems, and lowering energy costs
thanks to thermal insulation. Frankenia laevis, Dymondia margaretae and Iris lutescens were tested
in a green roof installation. For all three species, we assessed two minimal irrigation treatments
and one rain-fed treatment to resemble Mediterranean climate conditions analyzing the thermal
and hydrological performance of all three species and their substrates through an evaluation of
green cover, mortality, and biomass. The most influential factors registered for all three species are
the relationship between air and water in the substrate and the interaction between green cover
and substrate, respectively, for summer and winter seasons. In particular, D. margaretae preserved
more water in its substrate than the other species both in summer and winter and after each rainfall
event. F. laevis registered the highest level of variation in terms of substrate water content and of
rainwater retention. I. lutescens achieved low hydrological performance, a limited amount of green
cover, and slow growth. Our results suggest the absolute need of additional irrigation, managed in
accordance with specific functional objectives, for all three species analyzed under Mediterranean
conditions and different water regime.
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1. Introduction

In recent years, there has been a remarkable increase in green roof use, and knowledge of the
benefits that they can provide is now far more widespread. As known, green roofs can play a central
role in ecological integration projects and in the spread of urban biodiversity [1–6]. Moreover, they help
to regulate building temperatures, and their insulating properties help to save on energy costs. Energy
savings and the positive effect on urban climate are not the only benefits provided, they have also
absorbed rainwater, regulating the drainage process and its natural retention/recharge of water [7–9].
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The amount of water that a green roof can absorb and recycle depends on a number of factors including
climate, type of installation, and the composition of species present [9–11].

The plants, therefore, can protect the surface of buildings by absorbing a significant amount of
solar radiation through photosynthesis, respiration and transpiration [12–18]. However, the plant
structure and composition influence the performance of the green roof as heat insulation, protection
by ultraviolet (UV) component, reduction of the heat island effect, and water retention [12,18–20].
It is important consider that a combination of different species is more effective than monocultures in
favouring the thermal and hydrological properties of a green roof [20,21]. For this reason, many studies
have attempted to understand how certain species influence the specific aims of a green roof, selecting
and testing several species, different respect to Sedum genus, and in certain environments [4,22–26].
Several studies, instead, have focused the attention on the evaporation and photosynthesis activity of
the species in order to define the thermal properties and energy performance of the green roof [27–29].
Moreover, a number of studies examined the relationship between different types of vegetation and
rainwater retention in green roofs suggesting that the plants’ structural characteristics are influential in
the interception and storage of rainwater [21,22]. These studies involved artificial rainfall and different
types of vegetation, observing significant differences between amounts of rainwater runoff according
to the type of vegetation. Species native to meadow habitats showed greater efficiency in reducing the
flow of rainwater: Silene uniflora Roth and Anthoxanthum odoratum L. displayed the highest levels of
rainwater runoff reduction with respect to the Sedum genus. Other studies investigated the relationship
between roots and the water quantity in substrate [21,30–35] and not all of them agree. Scott MacIvor
and Lundholm [33] observed that some species can hold large quantities of water in relation to the
density of their fibrous roots, reducing the soil’s average porosity and its water retention capacity.
Dunnet et al. [21], on the other hand, in their study on the retention of water after rainfall, observed
that plant height and root biomass are important factors in enabling a higher degree of rainwater
retention. On the other hand, Schroll et al. [32] concluded that rainwater retention in winter was not
affected by vegetation, and recommended planting a higher percentage of mosses and plants from
humid climates, which remain active for most of the autumn, winter, and spring, even if it is very
difficult to establish mosses that generally come naturally with time.

Recently, some studies carried out in the Mediterranean area—characterized by sharp seasonal
and daily temperature variations—have evaluated the benefits of green roofs [4,19,23,30,35–39]. These
studies considered the thermal and hydrological effects related to prolonged drought and irregular
rainfall as well as looking at the capacity for survival of different species. Indeed, the selection of
wild species typical of the Mediterranean area is a focal point of these studies. The wildflowers are
adapted to natural thermal and hydrological stress due the climate of this area so their application in a
green roof favors the ecological sustainability of this green infrastructure but also the conservation of
urban biodiversity.

Any attempt to predict the seasonal water retention capacity of a green roof is further complicated
by the effects of climate change in the Mediterranean area, with more irregular rainfall and the
increased intensity of single meteorological events [40]. In this context, it would also be worthwhile to
understand how green roofs can reduce the effects of the extreme meteorological events which are
becoming more and more common in this area.

Our study aims to evaluate the way that three plant species: Frankenia laevis L., Dymondia
margaretae Compton and Iris lutescens Lam., with different structures and growth forms influence the
thermal and hydrological properties of the substrate in a Mediterranean green roof applying two
minimal irrigation treatments and one treatment without artificial irrigation.
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2. Materials and Methods

2.1. Climatic Characterization

We carried out the study between June 2009 and May 2010 in Caldes de Montbui (41◦63′ N
2◦16′ E), 205 meters above sea level and 30 Km (18.6 miles) north of Barcelona (Spain), along the
Catalonian coastal mountain range. We used climatic data furnished by Caldes de Montbui weather
station [41], placed 150 m from the green roof simulation.

This area present typical Mediterranean climate. The annual mean of temperature and
rainfall, during 1991–2010, are 14.43 ◦C and 599.3 mm with January as the coldest month with 6.7.
The maximum rainfall means results for September (89.1 mm), whereas the minimum mean value of
evapotranspiration (ET0) correspond to December (16.5 mm). July was the hottest month with 23.5◦C,
and the driest month with 24.7 mm of rainfall, and with the maximum mean ET0 values (130.5 mm).

In particular, over the trial period, the mean rainfall and ET0 correspond respectively to 640 mm
and 925 mm. Temperature monthly average varied between 6.1 ◦C and 25.1 ◦C, and rainfall monthly
average varied between 5.2 mm and 125.2 mm, with ET0 levels between 20.4 mm and 131.0 mm.
January and March presented minimum temperatures to −8 ◦C. During the summer months, ET0

values were high and precipitations low, with 135 mm of Et0 and 10.7 mm of precipitation in June.
By contrast, August presented similar ET0 value (135.5 mm) but 27.4 mm rainfall value, concentrated
in one single downpour.

2.2. Green Roof System

We created the green roof simulation using the Zinco® standardized system reproducing
characteristic conditions found in a typical green roof. We structured a container of one square
meter with substrate depth of 11 ± 1 cm, and the whole height of structure approximately 15 cm.
We lined this with an SSM45 polypropylene synthetic fibre protective water retention membrane
with a water retention capacity of approximately 5 L/m2. We covered the container with ZinCo
Products [42]. The substrate had an apparent density of 0.85 (g/cm3), and a total porosity of 66%. PH
values varied between 7.95 and 8.08, and electrical conductivity was between 158.4 and 194.2 µS/cm
(microSiemens/cm).

2.3. Plant Material

Taking into account our previous study [43], we selected three different species: Dymondia
margaretae Compton, Frankenia laevis L., and Iris lutescens Lam. (Table 1). We planted three species in
different containers with a density of nine plants per square meter. We replicated each plot three times,
once for every irrigation treatment, obtaining nine plots (Figure 1).

Table 1. The selected species, their common English names, native habitats, and growth forms.

Species Common Name Habitat Growth Form

Dymondia margaretae L. Silver carpet
Southern African endemic.

Evergreen prostrate-rhizomatous.
Sandy coastal soils

Groundcover

Frankenia laevis Compton Sea heath Sandy coastal soils and marshland Sub-shrub

Iris lutescens Lam. Crimean iris Western, central Mediterranean.
Dry and rocky fields Rhizomatous-herbaceous
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Figure 1. The experimental design: 9 plots of 1 m2, each one with 9 plant of each species and for each
irrigation treatment.

2.4. Irrigation System

In order to simulate the Mediterranean conditions, it has been applied two minimal irrigation
treatments replacing 20%, and 40% of potential ET0, and one treatment receiving only natural rainwater
(0% ET0). The ET0 levels used to calculate irrigation were obtained from the Caldes de Montbui
meteorological station. Irrigation doses were recalculated each week by subtracting total rainfall from
the average ET0 of the previous seven days (ET0–rainfall), of which 20% and 40% was used for the two
treatments. The doses were distributed at regular intervals throughout the week.

Before laying the plants, we calibrated the entire structure over a period of several days measuring
the distribution capacity of randomly chosen drips, obtaining an irrigation uniformity coefficient of
0.9. The 40% and 20% ET0 plots received, respectively, a total of 216 mm and 108 mm of water over the
study period, 73% of which was distributed during the summer. Total rainfall throughout the summer
was 281 mm, with an accumulated ET0 value of 332 mm. Irrigation was not provided during the
winter months due to frequent rainfall. Moreover, we placed and calibrated a capacitive sensor (ECO 5
Decagon, Pullman, WA, USA) and a temperature sensor (EC-T5, Decagon, Pullman, WA, USA) in the
substrate of each plot. We located all sensors horizontally at a depth of 7/8 cm, and we connected
them to a central apparatus (Campbell CR1000, Campbell Sci, Shepshed, Leicestershire, UK) which
recorded incoming data every 20 min. Finally, we calculated the water holding capacity according
to standardized methodology: The substrate was water saturated by immersion and after drainage,
water holding capacity was obtained measuring the water in tank, the difference between original
value and this remaining water; it can be assumed as maximum water capacity storage in the substrate.
In parallel water capacity was measured by means of soil water content sensors.

2.5. Measurements’ Design

For each species we recorded the following parameters: volumetric water content (VWC;
θ m3/m−3), as the maximum amount of water absorbable by the substrate; relative extractable
water (REW), as the amount of substrate water available to the plants; rainwater retention capacity;
maximum–minimum average substrate temperatures; green cover; final root and aerial biomasses.

To evaluate the maximum water holding capacity of the substrate we subtract the field capacity
(VWC field capacity) by the lowest water content registered during the whole trial period (minimum
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VWC). Later, we used this result to obtain the amount of REW according to the equation defined by
Granier [44] and Fernández et al. [45]:

REW = (actual VWC −minimum VWC)/(maximum VWC −minimum VWC) × 100

In calculating the rainwater holding capacity of the substrate we looked at five different types
of rainfall as classified by AEMET. We selected as ‘very heavy’ the rainfall event of 14 September
2009; as ‘heavy’ the rainfall events of 9 August 2009 and 20 September 2009; as ‘moderate’ the rainfall
events of 8 February 2010 and 7 March 2010. For each of these rainfall types we looked at the VWC
variation over a period of 24 h before the rainfall and immediately afterwards, when the substrate was
saturated. We also calculated water content variation in the saturated substrate over a period of 60 h
following rainfall. Holding capacity values were expressed as L/m2 by multiplying the water volume
(cm3/cm−3) by the substrate depth of 110 mm.

EcH2O probes estimate the substrate water content by indirectly measuring the dielectric substrate
permittivity. A relationship between substrate water content and dielectric permittivity was estimated
in the laboratory following Nemali et al. [46]. To obtain a range of water contents from dry to near
saturation, different volumes of deionized water were added to the substrate and mixed thoroughly to
obtain uniformity. The weight of the container with substrate and different water contents was taken
and a sensor was inserted, and dielectric permittivity was measured according to Topp [47]. Finally,
the daily changes of substrate water content were calculated from data recorded each 10 min.

To calculate the insulation capacity of the substrate and plants in high temperature conditions,
we looked at the experimental hottest period, since July to September, and compared average maximum
substrate temperatures for each species and each irrigation treatment plot (0%, 20%, 40%) with average
maximum air temperatures. Later, to evaluate insulation capacity in conditions of low temperatures we
compared daily minimum substrate and air temperatures during the coldest period, from November
to March. Finally, we compared the average minimum temperature values for each species in all
irrigation treatment plots with air temperatures to evaluate the differences.

We measured the plant cover photographically with a Nikon EOS 500 also. Later, we processed
the images with Greenpix digital analysis software according to Casadesús et al. [48,49]. Finally,
to calculate final biomass, we removed all plants from the soil and we separated the upper sections
(leaves and stems) from the roots, before washing them carefully. In this way, we located all resulting
material in an oven at 65 ◦C until it was at a constant weight.

2.6. Statistical Analysis

We based our experiment on a factorial design with following factors: irrigation, species, block
and data collection times only in the vegetation cover analysis. Irrigation factor had 3 levels (40%, 20%
and 0%), species factor had 3 levels (Dimondia, Frankenia and Iris) and block factor (3). We analysed the
data by analysis of variance (ANOVA) and mean separation using the Proc Mixed procedures in SAS
version 9.2 (SAS Institute Inc. Cary, NC, USA) with irrigation and species as a fixed factor and block
and collection time as a random factor. We performed a post hoc test, by the Tukey Kramer method, to
determine significant differences between irrigation treatments and collection dates. We carried out
all analyses with the SAS 9.2 software. Finally, we compared the average values of VWC, REW, and
temperature, using the Tukey–Kramer HSD test and JMP 10 software.

3. Results

3.1. Volumetric Water Content (VWC), Relative Extractable Water (REW) and Rainwater Holding Capacity

The differences of the water content in three treatments (VWC) and for the three species resulted
statistically siginificant with (p < 0.05). The water content (VWC) values of D. margaretae substrate
(15.5%) was significantly higher than F. laevis (12.5%) and I. lutescens (7.8%) substrates. In this way, the
seasonal evaluation confirms these results indeed the summer VWC values were 13.5% for D. margaretae,
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10.1% for F. laevis and 4.6% for Iris lutescens; from November to March they were 17%, 14.5% and 10.3%
(Figure 2).
Appl. Sci. 2018, 8, x FOR PEER REVIEW  6 of 14 

 

Figure 2. Relative extractable water (REW) of the substrate from July to March for all irrigation 

treatments in each species. 

Our data shows (Table 2) variations in substrate volumetric water content for each species 

before and after rainfall events, when gravitational water (as water contained in the macropores) 

had drained away, 60 h after the rain had ended. These results indicate a greater degree of variation 

after the August and September rains than after rainfall in winter. F. laevis was the species with the 

widest variations. 

Table 2. Variation of substrate water content after different rainfall events (volumetric water content 

(VWC) before–VWC after) and between field capacity and 60 h after the rainfall events in each 

species. 

Rainfall Variation after Each Rain (L/m2) Variation after 60 h of Rain (L/m2) 

Events Amount D. margaretae F. laevis I. lutescens D. margaretae F. laevis I. lutescens 

10 August 2009 27.3 mm +7.03 +10.56 +4.04 −2.93 −4.81 −1.97 

15 September 2009 48.3 mm +5.94 +9.96 +5.33 −2.70 −4.20 −2.21 

20 September 2009 23.3 mm +2.39 +2.58 +2.50 −2.56 −2.89 −1.92 

09 February 2010 33 mm +1.57 +2.18 +1.42 −2.75 −3.66 −2.12 

08 March 2010 30.4 mm +0.85 +1.63 +1.38 −1.63 −2.53 −1.45 

3.2. Soil Temperature 

The average hourly air and substrate temperature variations in the three irrigation treatments 

of each of the three species during a typical day (17 August 2009; Figure 3a). Air temperatures 

underwent an oscillation of 18.7 °C over the course of one day; in the irrigated substrates 

temperatures oscillated between 6.8 and 9 °C, and in the non-irrigated substrate oscillation was 

between 8.6 and 11.7 °C. Maximum substrate temperature usually occurred 4/5 h after maximum air 

temperature. The hourly minimum temperatures throughout a typical winter’s day (17 December 

2009, Figure 3b), in the 40% ET0 treatment varied between 5 and 10 °C, in the 20% ET0 treatment they 

varied between 2.5 and 9 °C, and in the non-irrigated treatment they were between 4.2 and 10.8 °C. 

On the same day, air temperatures varied between 1.7 and 13 °C. 

 

 

 

 

Figure 2. Relative extractable water (REW) of the substrate from July to March for all irrigation
treatments in each species.

Overall average values for relative extractable water (REW) highlighted in Figure 1 showed that
D. margareta’s substrate contained more water, 38% in summer and 63% in winter. The REW value of
F. laevis were 26% in summer and 52% in winter. Finally, those of I. lutescens’s substrate varied between
10% in summer and 28% in winter.

Our data shows (Table 2) variations in substrate volumetric water content for each species before
and after rainfall events, when gravitational water (as water contained in the macropores) had drained
away, 60 h after the rain had ended. These results indicate a greater degree of variation after the August
and September rains than after rainfall in winter. F. laevis was the species with the widest variations.

Table 2. Variation of substrate water content after different rainfall events (volumetric water content
(VWC) before–VWC after) and between field capacity and 60 h after the rainfall events in each species.

Rainfall Variation after Each Rain (L/m2) Variation after 60 h of Rain (L/m2)

Events Amount D. margaretae F. laevis I. lutescens D. margaretae F. laevis I. lutescens

10 August 2009 27.3 mm +7.03 +10.56 +4.04 −2.93 −4.81 −1.97
15 September 2009 48.3 mm +5.94 +9.96 +5.33 −2.70 −4.20 −2.21
20 September 2009 23.3 mm +2.39 +2.58 +2.50 −2.56 −2.89 −1.92
09 February 2010 33 mm +1.57 +2.18 +1.42 −2.75 −3.66 −2.12

08 March 2010 30.4 mm +0.85 +1.63 +1.38 −1.63 −2.53 −1.45

3.2. Soil Temperature

The average hourly air and substrate temperature variations in the three irrigation treatments of
each of the three species during a typical day (17 August 2009; Figure 3a). Air temperatures underwent
an oscillation of 18.7 ◦C over the course of one day; in the irrigated substrates temperatures oscillated
between 6.8 and 9 ◦C, and in the non-irrigated substrate oscillation was between 8.6 and 11.7 ◦C.
Maximum substrate temperature usually occurred 4/5 h after maximum air temperature. The hourly
minimum temperatures throughout a typical winter’s day (17 December 2009, Figure 3b), in the
40% ET0 treatment varied between 5 and 10 ◦C, in the 20% ET0 treatment they varied between 2.5
and 9 ◦C, and in the non-irrigated treatment they were between 4.2 and 10.8 ◦C. On the same day,
air temperatures varied between 1.7 and 13 ◦C.
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Figure 3. Hourly air and substrate temperatures for all three irrigation treatments of D. margaretae,
F. laevis, and I. lutescens: (a) on a typical summer’s day (17 August 2009); (b) on a typical winter’s day
(17 December 2009).

The average daily maximum temperature during the summer season resulted not significantly
different from average air temperature for all species and irrigation treatments. In particular,
the maximum substrate temperature, in the summer season (Figure 4a, Table A1), of the non-irrigated
plot of D. margaretae and F. laevis resulted significantly higher than irrigated substrates, and they
were also higher than the air temperature respectively of 2.8 ◦C and 1.1 ◦C. By contrast, the substrate
temperature of 20% ET0 plots for both species were significantly lower than air temperature respectively
of 1.9 ◦C and 1.2 ◦C. The two species displayed similar behaviour in the 40% ET0 plot didn’t
presenting significant differences between air and substrate temperatures. The average maximum daily
substrates’ temperature of Iris lutescens plots for all irrigation treatments was significantly lower than
air temperature of 3.8 ◦C in 20% ET0 plot; 1.7 ◦C in the 40% ET0 plot, and 1.2 ◦C in the non-irrigated
plot. The relationship between maximum air temperatures and substrate temperatures for all three
species and each irrigation treatment resulted statistically significant (r > 0.2540 por n > 100 α = 0.01).

The average daily minimum temperature during the winter season for all three species and all
irrigation treatments (Figure 4b) resulted significantly different from average air temperature. For D.
margaretae, the substrate’s temperature resulted higher than air temperature for all plots: 4.8 ◦C for
40% ET0; 4.2 ◦C for 20% ET0 plot, and 3.6 ◦C in the non-irrigated substrate. Moreover, there were
significant differences between the 40% ET0 treatment and the non-irrigated treatment. In this way,
also F. laevis the substrate in 40% ET0 plot was warmer of 5 ◦C, in the 20% ET0 plot of 4 ◦C, and the
non-irrigated substrate of 3.7 ◦C. There were no significant differences between the 20% ET0 substrate
and the non-irrigated substrate, but they both showed significant differences with respect to the 40%
ET0 substrate. At last, temperatures in substrates planted with I. lutescens that were irrigated with 40%
ET0 and with 0% ET0 were significantly higher than air temperatures, by 3.2 ◦C and 2.2 ◦C respectively.
The temperature of the substrate irrigated with 20% ET0 was 0.8 ◦C higher than air temperature,
constituting a not significant difference. In the same way, the comparison between minimum air
temperatures and minimum substrate temperatures during the same period. In all cases the difference
was significant (r > 0.2540 por n > 100 α = 0.01).
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3.3. Plant Development: Vegetation Cover and Biomass

Total biomass was greater for the irrigated than for the not-irrigated plots. Upper biomass
measurements for two species displayed significant differences between the two irrigation treatment,
while only one species showed significant differences between irrigation treatments for total (aerial +
root) biomass (Table 3).

The irrigated plots containing D. margaretae and F. laevis reached their highest level of cover in
November and the lowest in March, due to the late arrival of cold snaps in the same month (Figure 5).
Both species saw a rise in cover as the irrigation result. The plants that were not irrigated showed the
lowest levels of surface cover (>10%). I. lutescens tended to develop slowly and constantly without
the seasonal variations that characterised the other two species (Figure 3), and without significant
differences between treatments and between different time periods.
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Table 3. Means of dry weight (g) ×m2 of the tested species in the three irrigation protocols.

Plants Species Irrigation Above Ground (g) Roots (g) Total (g)

D. margaretae

0% ET0 / / /
20% ET0 17.1 53.63 70.63
40% ET0 2.83 13.13 15.96

Mean 19.52 77.13 96.64

F. laevis

0% ET0 30.15 3.15 33.30
20% ET0 415.73 44.21 459.94
40% ET0 558.93 40.50 599.43

Mean 334.94 29.29 364.22

I. lutescens

0% ET0 78.91 56.27 135.18
20% ET0 136.83 105.38 242.21
40% ET0 193.22 103.24 296.46

Mean 136.32 88.30 224.62
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Figure 5. Annual vegetation cover for each species and irrigation treatments (0–20–40% ET0). Capital
letters indicate significant differences throughout the trial period for the same treatment. Lowercase
letters indicate significant differences between irrigation treatments in the same month.

4. Discussion

Our results demonstrate that the substrate contained different levels of volumetric water content
(VCW) according to species, suggesting that the plants’ seasonal development and biomass structures
were the primary cause of these differences [21,33]. We also found that biomass alone is not sufficient to
explain the behavior of various species, although it is important to understand the biomass distribution.
The water content in substrate of D. margaretae was higher than other species in both season due to
the compact nature of its roots and leaves, limiting also the evaporation process of the substrate. This
species has a compact low-growing structure, developing leaves and roots on the substrate, and it is
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the only species whose root biomass was greater than its upper parts. F. laevis, a semi-shrub species,
has very thin roots occupying all available substrate. Its more complex rooting stem structure allowed
the substrate to store less water than D. margaretae, suggesting that it consumed a larger amount of
water. Therefore, the biomass of I. lutescens was mainly concentrated in its large rhizomes, developing
principally in the spring and summer. The substrate of this species stored the least water amount. We
suggest that root biomass, improving the soil structure, helps in the rainwater conservation and using
different plant combinations makes it possible to achieve specific results according to the context in
which a green roof is built. In a Mediterranean climate, D. margaretae’s ability to keep humidity in the
substrate above minimum levels could be a positive sign with regard to the survival of vegetation on
green roofs.

Substrate water content variations before and immediately after rainfall, could also be described
as the soil’s recharge capacity. Our study confirms that, this recharge capacity varied seasonally
between summer and winter rainfall events, and in relation to the species. Moreover, in our work,
two rainfall events occurring in the hottest period, although different in intensity, resulted in similar
substrate humidity variations, confirming that the soil’s storage capacity changed according to the
season [50]. In accordance with Spolek [7], our study found that average water content was higher
in the winter, leaving the substrate with a reduced capacity for storage during the rainiest period of
the year.

Humidity variations in the substrate 60 h after a rainfall event can supply us with information
about what happens to the water stored in the soil. Comparing the data, F. laevis (semi-shrub) >
D. margaretae (groundcover) > I. lutescens (Rhizomatous-herbaceous). The highest variations occurred
in F. laevis, suggesting that water consumption is linked to vegetation cover and structural complexity
and that this species can be a good performing species in a well irrigated green roof having a high
level of water consumption [51].

In all treatments, mainly in irrigated ones, interaction between air and water in the substrate
seems to be the factor that most affected thermal isolation in our green roof simulations during summer.
Our experiment confirmed the findings of Del Barrio [52] and Kannelloupoulou [53], in that we noted
a significant relationship between maximum air temperature and maximum substrate temperature,
with the lowest line equation slope values in the irrigated plots. The importance of water content is
further demonstrated by the fact that temperatures in a non-irrigated plot were higher than the air
temperatures of two irrigated plots. Although many studies have suggested that vegetation cover and
leaf structure are important factors in reducing the temperatures of a green roof [39,52–54], our study
highlighted that the behaviour of the species was not sufficiently linear. We did, however, observe
that daily substrate temperature fluctuations were different for irrigated plants and not irrigated
(which showed higher temperatures). Generally, the non-irrigated plant substrates displayed higher
temperatures and lower insulation values. In a Mediterranean climate, the energy consumption of
air-conditioning units in summer can be higher than the winter heating systems [7]. However, our
study showed that the green roof offered more insulation from low temperatures than it did protection
from heat according to the findings of Ekşi and Uzun [19] in Istanbul. All plots highlighted a reduction
in temperature range, especially towards the lower end of the scale. An analysis of the number of
days on which substrate temperature was lower than air temperature for all three species, taking into
account the non-irrigation in winter, suggested that the plant structure and biomass influence thermal
insulation. Indeed, the most efficient insulation was observed in the plants treated with 40% ET0,
which had the greatest biomass. I. lutescens, in all three treatments, was the species which offered the
least insulation from cold temperatures and was also the species with the most compact structure
and which offered the least cover. In this way, D. margaretae, in the 0% ET0 treatment, displayed no
measurable biomass and, therefore, achieved the worst results in terms of insulation.
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5. Conclusions

D. margaretae achieved a higher water content level in the substrate than other species both in
summer and winter and after all rainfall events. F. laevis displayed high water consumption and its
ability to reduce water runoff in Mediterranean green roofs. Of the three species, I. lutescens came last
with regard to hydrological performance, so it is recommendable to use it only in combination with
other species.

A balanced interaction among substrate, water, and species is important in order to soften the
effects of temperature extremes in the environment. The relationship between air and water in a
substrate was a more influential factor during warmer periods. During the coldest period, on the other
hand, the most influential factor was the interaction vegetation cover-substrate: the best results were
achieved by the species with the highest biomass and cover values.

The results of our study suggest that finding one single species that offers an all-round optimal
performance is not simple, and it is important, therefore, to use a flexible approach when planning a
green roof, and combine species whose properties complement each other. In a Mediterranean climate,
it may be necessary to choose between limiting the extreme effects of storm water and reducing energy
consumption. Our findings suggest that the species in our study should only be used in a green roof
when supplementary irrigation is available.
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Appendix A

Table A1. The daily data of Maximum (From July to September) and the Minimum (From November
to March) values of substrate’s Temperatures in relation to the air temperature.

Days

D. margaretae F. laevis I. lutescens
Air40%

ET0

20%
ET0

0%
ET0

40%
ET0

20%
ET0

0%
ET0

40%
ET0

20%
ET0

0%
ET0

Maximum temperatures since July to September

06/07/09 30 27 31 30 27 30 28 26 28 30,6
13/07/09 33 30 38 33 31 36 34 29 33 33,5
20/07/09 32 29 35 32 31 33 29 28 29 32,9
27/07/09 32 30 36 32 32 34 31 29 30 31,8
03/08/09 30 28 32 29 28 32 28 26 28 27,9
10/08/09 29 27 31 28 27 29 27 25 27 29,3
11/08/09 31 29 34 29 29 31 28 26 29 31
17/08/09 33 30 37 33 32 35 31 29 32 38,1
24/08/09 33 31 35 32 31 34 31 29 30 33,7
31/08/09 30 28 32 29 29 31 28 26 27 28,9
07/09/09 30 29 32 30 29 31 28 26 28 28,7
14/09/09 26 24 26 25 24 26 24 21 23 24,1
21/09/09 25 23 26 24 22 25 23 20 21 26,1
28/09/09 24 22 26 23 23 26 22 20 22 26,8

Minimum temperatures since November to March

01/11/09 16 15 16 16 15 15 14 12 13 11
16/11/09 11 10 10 10 9 10 9 6 8 6
01/12/09 7 7 5 7 6 6 5 3 4 1
16/12/09 5 4 2 4 3 3 3 1 2 −5
31/12/09 9 9 9 10 9 9 8 6 7 8
15/01/10 7 6 6 7 6 6 5 2 4 2
30/01/10 6 5 4 6 5 5 4 2 3 2
31/01/10 5 4 3 5 4 4 3 1 2 0
14/02/10 5 4 3 5 4 4 3 1 2 −2
01/03/10 8 7 7 9 7 7 6 4 5 3
16/03/10 6 5 4 7 5 5 4 2 3 −1

References

1. Brenneisen, S. Space for urban wildlife: Designing green roofs as habitats in Switzerland. Urban Habitats
2006, 4, 27–36.

2. Carter, T.; Butler, C. Ecological impacts of replacing traditional roofs with green roofs in two urban areas.
Cities Environ. 2008, 1, 1–17. [CrossRef]

3. Lundholm, J.; Peck, S.W. Introduction: Frontiers of green roof ecology. Urban Ecosyst. 2008, 11, 335–337.
[CrossRef]

4. Benvenuti, S. Wildflower green roofs for urban landscaping, ecological sustainability and biodiversity.
Landsc. Urban Plan. 2014, 124, 151–161. [CrossRef]

5. Berardi, U.; GhaffarianHoseini, A.; GhaffarianHoseini, A. State-of-the-art analysis of the environmental
benefits of green roofs. Appl. Energy 2014, 115, 411–428. [CrossRef]

6. Vijayaraghavan, K. Green roofs: A critical review on the role of components, benefits, limitations and trends.
Renew. Sustain. Energy Rev. 2016, 57, 740–752. [CrossRef]

7. Spolek, G. Performance monitoring of three eco-roofs in Portland, Oregon. Urban Ecosyst. 2008, 11, 349–359.
[CrossRef]

8. Stovin, V. The potential of green roofs to manage. Urban Stormwater. Water Environ. J. 2010, 24, 192–199.
[CrossRef]

9. Berndtsson, J.C. Green roof performance towards management of runoff water quantity and quality: A review.
Ecol. Eng. 2010, 36, 351–360. [CrossRef]

http://dx.doi.org/10.15365/cate.1292008
http://dx.doi.org/10.1007/s11252-008-0070-y
http://dx.doi.org/10.1016/j.landurbplan.2014.01.004
http://dx.doi.org/10.1016/j.apenergy.2013.10.047
http://dx.doi.org/10.1016/j.rser.2015.12.119
http://dx.doi.org/10.1007/s11252-008-0061-z
http://dx.doi.org/10.1111/j.1747-6593.2009.00174.x
http://dx.doi.org/10.1016/j.ecoleng.2009.12.014


Appl. Sci. 2018, 8, 2497 13 of 14

10. Mentens, J.; Raes, D.; Hermy, M. Green roofs as a tool for solving the rainwater runoff problem in the
urbanized 21st century? Landsc. Urban Plan. 2005, 77, 217–226. [CrossRef]

11. Uhl, M.; Schiedt, L. Green roof storm water retention–monitoring results. In Proceedings of the 11th
International Conference on Urban Drainage, Edinburgh, UK, 31 August–5 September 2008.

12. Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight
heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [CrossRef]

13. Liu, K.; Baskaran, B. Thermal Performance of Extensive Green Roofs in Cold Climates. In Proceedings of
the 2005 World Sustainable Building Conference, Tokyo, Japan, 27–29 September 2005; Available online:
http://www.nrc-cnrc.gc.ca/obj/irc/doc/pubs/nrcc48202/nrcc48202.pdf (accessed on 15 March 2010).

14. Spala, A.; Bagiorgas, H.S.; Assimakopoulos, M.N.; Kalavrouziotis, J.; Matthopoulos, D.; Mihalakakou, G.
On the green roof system. Selection, state of the art and energy potential investigation of a system installed
in an office building in Athens, Greece. Renew. Energy 2008, 33, 173–177. [CrossRef]

15. Desjarlais, A.O.; Zaltash, A.; Atchley, J.A. Thermal Performance of Vegetative Roofing Systems. In Proceedings
of the 25th RCI International Convention, Orlando, FL, USA, 25–30 March 2010.

16. Niachou, A.; Papakonstantinou, K.; Santamouris, M.; Tsangrassoulis, A.; Mihalakakou, G. Analysis of the
green roof thermal properties and investigation of its energy performance. Energy Build. 2001, 33, 719–729.
[CrossRef]

17. Susca, T.; Gaffin, S.R.; Dell’Osso, G.R. Positive effects of vegetation: Urban heat island and green roofs.
Environ. Pollut. 2011, 159, 2119–2126. [CrossRef] [PubMed]

18. Blanusa, T.; Vaz Monteiro, M.M.; Fantozzi, F.; Vysini, E.; Li, Y.; Cameron, R.W.F. Alternatives to Sedum on
greenroofs: Can broad leaf perennial plants offer better ‘cooling service’? Build. Environ. 2013, 59, 99–106.
[CrossRef]
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