Variability of Heat and Water Fluxes in the Red Sea Using ERA5 Data (1981–2020)
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. Data Sets
2.3. Surface Net Heat and Water Fluxes Mean and Trend Estimations
3. Results
3.1. Mean and Trend of the Surface Net Heat Flux Components
3.1.1. Spatial Distribution of the Mean Surface Heat Flux Components
3.1.2. Mean and Trend of the Surface Net Heat Flux
3.1.3. Temporal Evolution of the Surface Net Heat Flux
3.2. Surface Net Water Flux (E-P-R)
3.2.1. Spatial Distribution for the Evaporation, Precipitation and Surface Net Water Flux
3.2.2. Temporal Evolution of the Surface Net Water Flux (E-P-R)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abualnaja, Y.; Papadopoulos, V.P.; Josey, S.A.; Hoteit, I.; Kontoyiannis, H.; Raitsos, D.E. Impacts of Climate Modes on Air–Sea Heat Exchange in the Red Sea. J. Clim. 2015, 28, 2665–2681. [Google Scholar] [CrossRef] [Green Version]
- Alshreem, B.M.; Alsaafani, M.A.; Alraddadi, T.M.; Abdulla, C.P. Heat Balance in the Sharm Obhur and Exchange with the Red Sea. Earth Syst. Environ. 2019, 3, 483–490. [Google Scholar] [CrossRef]
- Khalil, A.S.M. Mangroves of the Red Sea. Red Sea 2015, 585–597. [Google Scholar] [CrossRef]
- Carvalho, S.; Kürten, B.; Krokos, G.; Hoteit, I.; Ellis, J. The red sea. In World Seas: An Environmental Evaluation: Volume II: The Indian Ocean to the Pacific; Elsevier: Amsterdam, The Netherlands, 2018; Volume 2, pp. 49–74. [Google Scholar] [CrossRef]
- Tragou, E.; Garrett, C.; Outerbridge, R.; Gilman, C. The heat and freshwater budgets of the Red Sea. J. Phys. Oceanogr. 1999, 29, 2504–2522. [Google Scholar] [CrossRef]
- Papadopoulos, V.P.; Abualnaja, Y.; Josey, S.A.; Bower, A.; Raitsos, D.E.; Kontoyiannis, H.; Hoteit, I. Atmospheric Forcing of the Winter Air–Sea Heat Fluxes over the Northern Red Sea. J. Clim. 2013, 26, 1685–1701. [Google Scholar] [CrossRef] [Green Version]
- Abdulla, C.P.; Alsaafani, M.A.; Alraddadi, T.M.; Albarakati, A.M. Mixed layer depth variability in the Red Sea. Ocean Sci. 2018, 14, 563–573. [Google Scholar] [CrossRef] [Green Version]
- Patzert, W.C.V. Wind-Induced Reversal in Red Sea Circulation; Pergamon Press: Oxford, UK, 1974; Volume 21. [Google Scholar]
- Ahmad, F.; Sultan, S.A.R. Surface heat fluxes and their comparison with the oceanic heat flow in the Red Sea. Oceanol. Acta 1989, 12, 33–36. [Google Scholar]
- Sofianos, S.S.; Johns, W.E.; Murray, S.P. Heat and freshwater budgets in the Red Sea from direct observations at Bab el Mandeb. Deep. Res. Part II Top. Stud. Oceanogr. 2002, 49, 1323–1340. [Google Scholar] [CrossRef]
- Ahmad, F.; Albarakati, A.M.A. Heat Balance of the Red Sea. In The Red Sea; Rasul, N., Stewart, I., Eds.; Springer Earth System Sciences: Berlin/Heidelberg, Germany, 2015; pp. 355–361. [Google Scholar] [CrossRef]
- Xie, J.; Krokos, G.; Sofianos, S.; Hoteit, I. Interannual Variability of the Exchange Flow Through the Strait of Bab-al-Mandeb. J. Geophys. Res. Oceans 2019, 124, 1988–2009. [Google Scholar] [CrossRef] [Green Version]
- Raitsos, D.E.; Hoteit, I.; Prihartato, P.K.; Chronis, T.; Triantafyllou, G.; Abualnaja, Y. Abrupt warming of the Red Sea. Geophys. Res. Lett. 2011, 38, 14601. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, F.; Sultan, S.A.R.; Moammar, M.O. Monthly variations of net heat flux at the air-sea interface in coastal waters near Jeddah, Red Sea. Atmos. Ocean 2010, 27, 406–413. [Google Scholar] [CrossRef]
- Smeed, D. Seasonal variation of the flow in the strait of Bab al Mandab. Oceanol. Acta 1997, 20, 773–781. [Google Scholar]
- Matsoukas, C.; Banks, A.C.; Pavlakis, K.G.; Hatzianastassiou, N.; Stackhouse, P.W.; Vardavas, I. Seasonal heat budgets of the Red and Black seas. J. Geophys. Res. Oceans 2007, 112, 1–15. [Google Scholar] [CrossRef]
- Abdelrahman, S.; Ahmad, F. Red Sea Surface Heat Fluxes and Advective Heat Transport through Bab EI Mandab. J. King Abdulaziz Univ. Sci. 1995, 6, 3–13. [Google Scholar] [CrossRef]
- Woodruff, S.D.; Slutz, R.J.; Jenne, R.L.; Steurer, P.M. A Comprehensive Ocean-Atmosphere Data Set. Bull. Am. Meteorol. Soc. 1987, 68, 1239–1250. [Google Scholar]
- Viswanadhapalli, Y.; Dasari, H.P.; Langodan, S.; Challa, V.S.; Hoteit, I. Climatic features of the Red Sea from a regional assimilative model. Int. J. Climatol. 2017, 37, 2563–2581. [Google Scholar] [CrossRef]
- Hoteit, I.; Abualnaja, Y.; Afzal, S.; Ait-El-Fquih, B.; Akylas, T.; Antony, C.; Dawson, C.; Asfahani, K.; Brewin, R.J.; Cavaleri, L.; et al. Towards an end-to-end analysis and prediction system for weather, climate, and Marine applications in the Red Sea. Bull. Am. Meteorol. Soc. 2021, 102, E99–E122. [Google Scholar] [CrossRef]
- Mohamed, B.; Nagy, H.; Ibrahim, O. Spatiotemporal Variability and Trends of Marine Heat Waves in the Red Sea over 38 Years. J. Mar. Sci. Eng. 2021, 9, 842. [Google Scholar] [CrossRef]
- Maillard, C.; Soliman, G. Hydrography of the Red Sea and exchanges with the Indian Ocean in summer. Oceanol. Acta 1986, 9, 249–269. [Google Scholar]
- Langodan, S.; Cavaleri, L.; Vishwanadhapalli, Y.; Pomaro, A.; Bertotti, L.; Hoteit, I. The climatology of the Red Sea—Part 1: The wind. Int. J. Climatol. 2017, 37, 4509–4517. [Google Scholar] [CrossRef]
- Mittal, H.V.R.; Langodan, S.; Zhan, P.; Li, S.; Knio, O.; Hoteit, I. Hazard assessment of oil spills along the main shipping lane in the Red Sea. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Langodan, S.; Cavaleri, L.; Viswanadhapalli, Y.; Hoteit, I. Wind-wave source functions in opposing seas. J. Geophys. Res. Oceans 2015, 120, 6751–6768. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Pinardi, N.; Allen, I.; Demirov, E.; De Mey, P.; Korres, G.; Lascaratos, A.; Le Traon, P.-Y.; Maillard, C.; Manzella, G.; Tziavos, C. The Mediterranean ocean forecasting system: First phase of implementation (1998–2001). Ann. Geophys. 2003, 21, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Nagy, H.; Elgindy, A.; Pinardi, N.; Zavatarelli, M.; Oddo, P. A nested pre-operational model for the Egyptian shelf zone: Model configuration and validation/calibration. Dyn. Atmos. Oceans 2017, 80, 75–96. [Google Scholar] [CrossRef]
- Nagy, H.; Lyons, K.; Nolan, G.; Cure, M.; Dabrowski, T. A Regional Operational Model for the North East Atlantic: Model Configuration and Validation. J. Mar. Sci. Eng. 2020, 8, 673. [Google Scholar] [CrossRef]
- Zhang, Y.; Rossow, W.B.; Lacis, A.A.; Oinas, V.; Mishchenko, M.I. Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res. Atmos. 2004, 109, 19105. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Jin, X.; Weller, R.A. Multidecade Global Flux Datasets from the Objectively Analyzed Air-Sea Fluxes (OAFlux) Project: Latent and Sensible Heat Fluxes, Ocean Evaporation, and Related Surface Meteorological Variables; OAFlux Project Technical Report. OA-2008-01; Woods Hole Oceanographic Institution: Falmouth, MA, USA, 2008; p. 64. [Google Scholar] [CrossRef]
- Castellari, S.; Pinardi, N.; Leaman, K. A model study of air-sea interactions in the Mediterranean Sea. J. Mar. Syst. 1998, 18, 89–114. [Google Scholar] [CrossRef]
- Schiano, M.E.; Borghini, M.; Castellari, S.; Luttazzi, C. Climatic features of the Mediterranean Sea detected by the analysis of the longwave radiative bulk formulae. Ann. Geophys. 2000, 18, 1482–1487. [Google Scholar] [CrossRef]
- Josey, S.A.; Pascal, R.W.; Taylor, P.K.; Yelland, M.J. A new formula for determining the atmospheric longwave flux at the ocean surface at mid-high latitudes. J. Geophys. Res 2003, 108, 3108. [Google Scholar] [CrossRef]
- Bignami, F.; Marullo, S.; Santoleri, R.; Schiano, M.E. Longwave radiation budget in the Mediterranean Sea. J. Geophys. Res. 1995, 100, 2501–2514. [Google Scholar] [CrossRef]
- Gilman, C.; Rrett, C.G. Heat flux parameterizations for the Mediterranean Sea: The role of atmospheric aerosols and constraints from the water budget. J. Geophys. Res. 1994, 99, 5119–5134. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, MA, USA, 2011; ISBN 0123850223. [Google Scholar]
- Hamed, K.H.; Ramachandra Rao, A. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Wang, F.; Shao, W.; Yu, H.; Kan, G.; He, X.; Zhang, D.; Ren, M.; Wang, G. Re-evaluation of the Power of the Mann-Kendall Test for Detecting Monotonic Trends in Hydrometeorological Time Series. Front. Earth Sci. 2020, 8, 14. [Google Scholar] [CrossRef]
- Ahmad, F.; Sultan, S.A.R. On the heat balance terms in the central region of the Red Sea. DSRA 1987, 34, 1757–1760. [Google Scholar] [CrossRef]
- Agulles, M.; Jordà, G.; Hoteit, I.; Agustí, S.; Duarte, C.M. Assessment of Red Sea temperatures in CMIP5 models for present and future climate. PLoS ONE 2021, 16, e0255505. [Google Scholar] [CrossRef]
- Agulles, M.; Jordà, G.; Jones, B.; Agustí, S.; Duarte, M.C. Temporal evolution of temperatures in the red sea and the gulf of aden based on in situ observations (1958–2017). Ocean Sci. 2020, 16, 149–166. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.; Subramanian, A.C.; Cornuelle, B.D.; Mazloff, M.R.; Miller, A.J.; Ralph, F.M.; Seo, H.; Hoteit, I. The Role of Air–Sea Interactions in Atmospheric Rivers: Case Studies Using the SKRIPS Regional Coupled Model. J. Geophys. Res. Atmos. 2021, 126. [Google Scholar] [CrossRef]
North Red Sea | South Red Sea | Red Sea | ||||
---|---|---|---|---|---|---|
Mean ± 2σ | Trend | Mean ± 2σ | Trend | Mean ± 2σ | Trend | |
Qb | −104 ± 5.00 | −0.03 ± 0.005 | −76 ± 7.00 | −0.08 ± 0.007 | −92 ± 5.00 | −0.05 ± 0.004 |
Qs | 233 ± 5.00 | 0.05 ± 0.005 | 230 ± 3.00 | 0.12 ± 0.001 | 232 ± 4.00 | 0.08 ± 0.007 |
Qh | −20 ± 0.65 | −0.01 ± 0.001 | −16 ± 0.35 | −0.20 ± 0.002 | −18 ± 0.48 | −0.10 ± 0.005 |
Qe | −131 ± 3.00 | −0.13 ± 0.010 | −111 ± 2.00 | −0.22± 0.020 | −123 ±2.00 | −0.18 ± 0.020 |
T2m | 28.6 ± 0.72 | 0.19 ± 0.06 | 25.5 ± 0.39 | 0.38 ± 0.11 | 27 ± 0.54 | 0.30 ± 0.09 |
QT | −22 ± 0.82 | −0.12 ± 0.052 | 27 ± 0.48 | 0.20 ± 0.021 | −1 ± 0.62 | 0.21 ± 0.020 |
NRS | SRS | Red Sea | |
---|---|---|---|
Evaporation (mean ± 2σ) | 1.68 ± 0.33 | 1.40 ± 0.22 | 1.54 ± 0.26 |
Precipitation (mean ± 2σ) | 0.04 ± 0.01 | 0.12 ± 0.03 | 0.08 ± 0.02 |
Runoff | 0 | 0.01 | 0.001 |
Surface net water flux (mean ± 2σ) | 1.64 ± 0.31 | 1.27 ± 0.18 | 1.46 ± 0.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagy, H.; Mohamed, B.; Ibrahim, O. Variability of Heat and Water Fluxes in the Red Sea Using ERA5 Data (1981–2020). J. Mar. Sci. Eng. 2021, 9, 1276. https://doi.org/10.3390/jmse9111276
Nagy H, Mohamed B, Ibrahim O. Variability of Heat and Water Fluxes in the Red Sea Using ERA5 Data (1981–2020). Journal of Marine Science and Engineering. 2021; 9(11):1276. https://doi.org/10.3390/jmse9111276
Chicago/Turabian StyleNagy, Hazem, Bayoumy Mohamed, and Omneya Ibrahim. 2021. "Variability of Heat and Water Fluxes in the Red Sea Using ERA5 Data (1981–2020)" Journal of Marine Science and Engineering 9, no. 11: 1276. https://doi.org/10.3390/jmse9111276
APA StyleNagy, H., Mohamed, B., & Ibrahim, O. (2021). Variability of Heat and Water Fluxes in the Red Sea Using ERA5 Data (1981–2020). Journal of Marine Science and Engineering, 9(11), 1276. https://doi.org/10.3390/jmse9111276