On the Estimation of the Surface Elevation of Regular and Irregular Waves Using the Velocity Field of Bubbles
Abstract
:1. Introduction
2. Materials and Methods
3. Methodology
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vis, F.C. Orbital velocities in irregular waves. In Proceedings of the 17th Coastal Engineering Conference, Sydney, Australia, 23–28 March 1980; pp. 173–185. [Google Scholar]
- Daemrich, K.-F.; Eggert, W.-D.; Kolhase, S. Investigations on irregular waves in hydraulic models. In Proceedings of the 17th Coastal Engineering Conference, Sidney, Australia, 23–28 March 1980; pp. 186–203. [Google Scholar]
- Daemrich, K.F.; Eggert, W.-D.; Cordes, H. Investigations on orbital velocities and pressures in irregular waves. In Proceedings of the 18th Coastal Engineering Conference, Cape Town, South Africa, 14–19 November 1982; pp. 297–311. [Google Scholar]
- Lee, D.-Y.; Wang, H. Measurement of surface waves from subsurface gauge. In Proceedings of the 19th International Conference on Coastal Engineering, Houston, TX, USA, 3–7 September 1984; pp. 271–286. [Google Scholar]
- Lee, J.-J.; Skjelbreia, J.M.; Raichlen, F. Measurement of velocities in solitary waves. J. Waterw. Port C. Div. 1982, 108, 200–218. [Google Scholar]
- Bullock, G.N. Short I. Water particle velocities in regular waves. J. Waterw. Port C. Ocean Eng. 1985, 111, 89–200. [Google Scholar]
- Battjes, J.A.; Van Heteren, J. Verification of linear theory for particle velocities in wind waves based on field measurements. Appl. Ocean Res. 1984, 6, 187–196. [Google Scholar] [CrossRef]
- Swan, C. Convection within an experimental wave flume. J. Hydraul. Res. 1980, 28, 273–282. [Google Scholar] [CrossRef]
- Hansen, J.B. Periodic waves in the surf zone: Analysis of experimental data. Coast. Eng. 1990, 14, 19–41. [Google Scholar] [CrossRef]
- Kim, C.H.; Randall, R.E.; Krafft, M.J.; Boo, S.Y. Experimental study of kinematics of large transient wave in 2D wave tank. In Proceedings of the 22nd Annual Offshore Technology Conference, Houston, TX, USA, 7–10 May 1990; pp. 195–202. [Google Scholar]
- Zhang, J.; Randall, R.E.; Spell, C.A. On wave kinematics approximate methods. In Proceedings of the 23rd Annual Offshore Technology Conference, Houston, TX, USA, 6–9 May 1991; pp. 231–238. [Google Scholar]
- Nielsen, P. Local approximations: A new way of dealing with irregular waves. In Proceedings of the 20th International Conference on Coastal Engineering, Taipei, Taiwan, 9–14 November 1986; pp. 633–646. [Google Scholar]
- Bergan, P.O.; Torum, A.; Tratteberg, A. Wave measurements by a pressure type wave gauge. In Proceedings of the 11th International Conference on Coastal Engineering, London, UK, September 1968; pp. 19–29. [Google Scholar]
- Jahne, B.; Klinke, J.; Waas, S. Imaging of short ocean wind waves: A critical theoretical review. J. Opt. Soc. Am. 1994, 11, 2197–2209. [Google Scholar] [CrossRef]
- Zhang, X.; Dabiri, D.; Gharib, M. A novel technique for free-surface elevation mapping. Phys. Fluids 1994, 6, S11. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Cox, C.S. Measuring the two-dimensional structure of a wavy water surface optically: A surface gradient detector. Exp. Fluids 1994, 17, 17–225. [Google Scholar] [CrossRef]
- Zhang, X. An algorithm for calculating water surface elevations from surface gradient image data. Exp. Fluids 1996, 21, 43–48. [Google Scholar] [CrossRef]
- Adrian, R.J. Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 1991, 23, 261–304. [Google Scholar] [CrossRef]
- Wright, W.B.; Budakian, R.; Putterman, S.J. Diffusing light photography of fully developed isotropic ripple turbulence. Phys. Rev. Lett. 1996, 76, 4528–4531. [Google Scholar] [CrossRef] [PubMed]
- Vivanco, F.; Melo, F. Experimental study of surface waves scattering by a single vortex and a vortex dipole. Phys. Rev. 2004, 69, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Grant, I.; Stewart, N.; Padilla-Perez, I.A. Topographical measurements of water waves using the projection moire method. Appl. Optics 1990, 29, 3981–3983. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-C.; Su, X.-Y. An optical measurement of vortex shape at a free surface. Opt. Laser Technol. 2002, 34, 107–113. [Google Scholar] [CrossRef]
- Dabiri, D.; Gharib, M. Simultaneous free-surface deformation and near-surface velocity measurements. Exp. Fluids 2001, 30, 381–390. [Google Scholar] [CrossRef]
- Dabiri, D. On the interaction of a vertical shear layer with a free surface. J. Fluid Mech. 2003, 480, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, G.; Okamoto, K.; Madarame, H. Experimental investigation on the interaction between a polymer solution jet and a free surface. Exp. Fluids 2000, 29, 178–183. [Google Scholar] [CrossRef]
- Tsubaki, R.; Fujita, I. Stereoscopic measurement of a fluctuating free surface with discontinuities. Meas. Sci. Tech. 2005, 16, 1894–1902. [Google Scholar] [CrossRef]
- Benetazzo, A. Measurements of short water waves using stereo matched image sequences. Coast. Eng. 2006, 53, 1013–1032. [Google Scholar] [CrossRef]
- Morris, N.J.W.; Kutulakos, K.N. Dynamic refraction stereo. In Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, China, 17–21 October 2005; pp. 1573–1580. [Google Scholar]
- Cochard, S.; Ancey, C. Tracking the free surface of time dependent flows: Image processing for the dam-break problem. Exp. Fluids 2008, 44, 59–71. [Google Scholar] [CrossRef]
- Fouras, A.; Lo Jacono, D.; Sheard, G.J.; Hourigan, K. Measurement of instantaneous velocity and surface topography in the wake of a cylinder at low Reynolds number. J. Fluid. Struct. 2008, 24, 1271–1277. [Google Scholar] [CrossRef]
- Ng, I.; Kumar, V.; Sheard, G.J.; Hourigan, K.; Fouras, A. Experimental study of simultaneous measurement of velocity and surface topography: In the wake of a circular cylinder at low Reynolds number. Exp. Fluids 2011, 50, 587–595. [Google Scholar] [CrossRef]
- Moisy, F.; Rabaud, M.; Salsac, K. A synthetic Schlieren method for the measurement of the topography of a liquid interface. Exp. Fluids 2009, 46, 1021–1036. [Google Scholar] [CrossRef]
- Cobelli, P.J.; Maurel, A.; Pagneux, V.; Petijeans, P. Global measurement of water waves by Fourier transform profilometry. Exp. Fluids 2009, 46, 1037–1047. [Google Scholar] [CrossRef]
- Hering, F.; Leue, C.; Wierzimok, D.; Jähne, B. Particle tracking velocimetry beneath water waves. Part I: Visualization and tracking algorithms. Exp. Fluids 1997, 23, 472–482. [Google Scholar] [CrossRef]
- Hering, F.; Leue, C.; Wierzimok, D.; Jähne, B. Particle tracking velocimetry. Part II: Water waves. Exp. Fluids 1998, 24, 10–16. [Google Scholar] [CrossRef]
- Grue, J.; Kolaas, J. Experimental particle paths and drift velocity in steep waves at finite water depth. J. Fluid Mech. 2017, 810, R1. [Google Scholar] [CrossRef] [Green Version]
- Calvert, R.; Whittaker, C.; Raby, A.; Taylor, P.H.; Borthwick, A.G.L.; van den Bremer, T.S. Laboratory study of the wave-induced mean flow and set-down in unidirectional surface gravity wave packets on finite water depth. Phys. Rev. Fluids 2019, 4, 114801. [Google Scholar] [CrossRef]
- Henry, D.; Thomas, G.P. Prediction of the free-surface elevation for rotational water waves using the recovery of pressure at the bed. Phil. Trans. 2018, 376, 1–21. [Google Scholar] [CrossRef]
- Paprota, M.; Sulisz, W.; Reda, A. Experimental study of wave-induced mass transport. J. Hydraul. Res. 2016, 54, 423–434. [Google Scholar] [CrossRef]
- Brocher, E.; Makhsud, A. New look at the screech tone mechanism of under expanded jets. Eur. J. Mech. B-Fluid. 1997, 16, 877–891. [Google Scholar]
- Ryu, Y.; Chang, K.; Lim, H.J. Use of bubble image velocimetry for measurement of plunging wave impinging on structure and associated green water. Meas. Sci. Tech. 2005, 16, 1945–1953. [Google Scholar] [CrossRef]
- Jayaratne, R.; Hunt-Raby, A.; Bullock, G.; Bredmose, H. Individual violent overtopping events: New insights. In Proceedings of the 31th International Conference on Coastal Engineering, Hamburg, Germany, 31 August–5 September 2008; pp. 2983–2995. [Google Scholar]
- Paprota, M. Experimental study on wave-current structure around a pneumatic breakwater. J. Hydro-Environ. Res. 2017, 17, 8–17. [Google Scholar] [CrossRef]
- Iwagaki, Y.; Sakai, T. Horizontal water particle velocity of finite amplitude waves. In Proceedings of the 12th Conference on Coastal Engineering, Washington, DC, USA, 13–18 September 1970; pp. 309–325. [Google Scholar]
- Pereira, F.; Gharib, M.; Dabiri, D.; Modarress, D. Defocusing digital particle image velocimetry: A 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows. Exp. Fluids 2000, 29, S078–S084. [Google Scholar] [CrossRef]
- Hassan, M.S.; Khan, M.M.K.; Rasul, M.G. A study of bubble trajectory and drag co-efficient in water and non-Newtonian fluids. WSEAS Trans. Fluid Mech. 2008, 3, 261–270. [Google Scholar]
- Smutná, K.; Wichterle, K.; Večeř, M. Oscillation frequency of bubbles moving periodically in various liquids. In Proceedings of the 35th International Conference of Slovak Society of Chemical Engineering, Tatranské Matliare, Slovakia, 26–30 May 2008; p. 196. [Google Scholar]
- Ramírez de la Torre, R.; Vargas, C.; Centeno, M.; Mendez, R.; Stern, C. Characterization of a bubble curtain for PIV measurements. In Selected Topics of Computational and Experimental Fluid Mechanics, 1st ed.; Springer: Cham, Switzerland, 2015; pp. 261–269. [Google Scholar]
- Murgana, I.; Buneab, F.; Dan, G. Experimental PIV and LIF characterization of a bubble column flow. Flow Meas. Instrum. 2017, 54, 224–235. [Google Scholar] [CrossRef]
- Thielicke, W.; Stamhuis, E.J. PIVlab towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Softw. 2014, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
Case No | Peak Period Tp (s) | Significant Wave Height Hs (m) |
---|---|---|
R1/I1 | 0.8 | 0.01 |
R2/I2 | 0.8 | 0.03 |
R3/I3 | 0.8 | 0.05 |
R4/I4 | 0.8 | 0.10 |
R5/I5 | 1.2 | 0.01 |
R6/I6 | 1.2 | 0.03 |
R7/I7 | 1.2 | 0.05 |
R8/I8 | 1.2 | 0.10 |
Case No | Peak Period Tp (s) | Significant Wave Height Hs (m) | Ursell Number | H/gT2 | h/gT2 | Wave Theory |
---|---|---|---|---|---|---|
R3/I3 | 0.8 | 0.05 | 0.145 | 0.008 | 0.111 | Stokes 2nd |
R4/I4 | 0.8 | 0.10 | 0.290 | 0.016 | 0.111 | Stokes 3rd |
R7/I7 | 1.2 | 0.05 | 0.687 | 0.003 | 0.050 | Stokes 2nd |
R8/I8 | 1.2 | 0.10 | 1.374 | 0.007 | 0.050 | Stokes 3rd |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas, D.; Jayaratne, R.; Mendoza, E.; Silva, R. On the Estimation of the Surface Elevation of Regular and Irregular Waves Using the Velocity Field of Bubbles. J. Mar. Sci. Eng. 2020, 8, 88. https://doi.org/10.3390/jmse8020088
Vargas D, Jayaratne R, Mendoza E, Silva R. On the Estimation of the Surface Elevation of Regular and Irregular Waves Using the Velocity Field of Bubbles. Journal of Marine Science and Engineering. 2020; 8(2):88. https://doi.org/10.3390/jmse8020088
Chicago/Turabian StyleVargas, Diana, Ravindra Jayaratne, Edgar Mendoza, and Rodolfo Silva. 2020. "On the Estimation of the Surface Elevation of Regular and Irregular Waves Using the Velocity Field of Bubbles" Journal of Marine Science and Engineering 8, no. 2: 88. https://doi.org/10.3390/jmse8020088
APA StyleVargas, D., Jayaratne, R., Mendoza, E., & Silva, R. (2020). On the Estimation of the Surface Elevation of Regular and Irregular Waves Using the Velocity Field of Bubbles. Journal of Marine Science and Engineering, 8(2), 88. https://doi.org/10.3390/jmse8020088