# Marine Turbine Hydrodynamics by a Boundary Element Method with Viscous Flow Correction

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Theoretical Model

#### 2.1. Trailing Wake Model

#### 2.2. Viscous-Flow Correction Model

`SE`+,

`SE`-), while stall occurs when lift drops as $\alpha $ increases in absolute value and drag rises abruptly (point

`ST`).

## 3. Case Studies for Validation of Computational Model

#### 3.1. Fixed Pitch Turbine

#### 3.2. Variable Pitch Turbine

## 4. Fixed Pitch Turbine Study

## 5. Variable Pitch Turbine Study

## 6. Discussion

## 7. Conclusions

## Author Contributions

## Acknowledgments

## Conflicts of Interest

## Nomenclature

Symbol | Description | Units |

c | Turbine blade chord | [m] |

${C}_{p}$ | Pressure coefficient | [-] |

${C}_{\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}{\phantom{\rule{3.33333pt}{0ex}}}_{P}}$ | Power coefficient | [-] |

${C}_{\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}{\phantom{\rule{3.33333pt}{0ex}}}_{F}}$ | Friction coefficient | [-] |

${C}_{\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}{\phantom{\rule{3.33333pt}{0ex}}}_{Q}}$ | Torque coefficient | [-] |

${C}_{\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}{\phantom{\rule{3.33333pt}{0ex}}}_{T}}$ | Thrust coefficient | [-] |

D | Turbine diameter, $2R$ | [m] |

D | Drag | [N] |

${\mathcal{K}}_{\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}{\phantom{\rule{3.33333pt}{0ex}}}_{D}}$ | Drag correction factor | [-] |

${\mathcal{K}}_{\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}{\phantom{\rule{3.33333pt}{0ex}}}_{L}}$ | Lift correction factor | [-] |

L | Lift | [N] |

n | Turbine rotational speed | [s${}^{-1}$] |

P | Turbine power | [W] |

${p}_{0}$ | Reference pressure | [Pa] |

Q | Turbine torque | [Nm] |

R | Turbine radius | [m] |

$R{e}_{r}$ | Reynolds number, Equation (6) | [-] |

T | Turbine thrust | [N] |

TSR | Tip Speed Ratio | [-] |

V | Freestream velocity | [ms${}^{-1}$] |

$\alpha $ | angle of attack | [deg] |

$\nu $ | Kynematic viscosity | [m${}^{2}$s${}^{-1}$] |

$\phi $ | Velocity scalar potential | [m${}^{2}$s${}^{-1}$] |

$\mathsf{\Omega}$ | Turbine rotational speed | [rads${}^{-1}$] |

$\varphi $ | Wake (linear) pitch | [m] |

$\mathsf{\Phi}$ | Blade pitch | [deg] |

$\rho $ | Water density | [kgm${}^{-3}$] |

## References

- Hansen, M.O.L. Aerodynamics of Wind Turbines, 2nd ed.; Earthscan: London, UK, 2008. [Google Scholar]
- Buhl, M.L., Jr. A New Empirical Relationship between Thrust Coefficient and Induction Factor for the Turbulent Windmill State; Technical Report NREL/TP-500-36834; National Renewable Energy Laboratory: Golden, CO, USA, 2005.
- Shen, W.Z.; Mikkelsen, R.; Sœrensen, J.N.; Bak, C. Tip Loss Corrections for Wind Turbine Computations. Wind Energy
**2005**, 8, 457–475. [Google Scholar] [CrossRef] - Young, Y.L.; Motley, M.R.; Yeung, R.W. Three-Dimensional Numerical Modeling of the Transient Fluid-Structural Interaction Response of Tidal Turbines. J. Offshore Mech. Arct. Eng.
**2010**, 132, 1–12. [Google Scholar] [CrossRef] - He, L.; Xu, W.; Kinnas, S.A. Numerical Methods for the Prediction of Unsteady Performance of Marine Propellers and Turbines. In Proceedings of the ISOPE 2011 Twenty-First International Offshore and Polar Engineering Conference, Maui, HI, USA, 19–24 June 2011. [Google Scholar]
- Baltazar, J.; Falcão de Campos, J.A.C. Unsteady Analysis of a Horizontal Axis Marine Current Turbine in Yawed Inflow Conditions With a Panel Method. In Proceedings of the SMP’09 First International Symposium on Marine Propulsors, Trondheim, Norway, 22–24 June 2009; Koushan, K., Steen, S., Eds.; MARINTEK (Norwegian Marine Technology Research Institute): Trondheim, Norway, 2009. [Google Scholar]
- Baltazar, M.J.; Falcão de Campos, J.A.C. Hydrodynamic design and analysis of horizontal axis marine current turbines with lifting line and panel methods. In Proceedings of the OMAE2011 ASME 30th International Conference on Ocean, Offshore and Arctic Engineering, Rotterdam, The Netherlands, 19–24 June 2011; The American Society of Mechanical Engineers: Rotterdam, The Netherlands, 2011; Volume 5, pp. 453–465. [Google Scholar]
- Salvatore, F.; Testa, C.; Greco, L. A Viscous/Inviscid Coupled Formulation for Unsteady Sheet Cavitation Modelling of Marine Propellers. In Proceedings of the CAV 2003 Fifth International Symposium on Cavitation, Osaka, Japan, 1–4 November 2003. [Google Scholar]
- Salvatore, F.; Greco, L.; Calcagni, D. Computational analysis of marine propeller performance and cavitation by using an inviscid-flow BEM model. In Proceedings of the SMP’11 Second International Symposium on Marine Propulsion, Hamburg, Germany, 15–17 June 2011. [Google Scholar]
- Pereira, F.; Salvatore, F.; Di Felice, F. Measurement and Modelling of Propeller Cavitation in Uniform Inflow. J. Fluids Eng.
**2004**, 126, 671–679. [Google Scholar] [CrossRef] - Gaurier, B.; Germain, G.; Facq, J.-V.; Johnstone, C.M.; Grant, A.D.; Day, A.H.; Nixon, E.; Di Felice, F.; Costanzo, M. Tidal energy Round Robin tests: Comparisons between towing tank and circulating tank results. Int. J. Mar. Energy
**2015**, 12, 87–109. [Google Scholar] [CrossRef] [Green Version] - EU-FP MaRINET Project. Available online: https://cordis.europa.eu/project/rcn/98372_en.html (accessed on 29 March 2018).
- Bahaj, A.S.; Molland, A.F.; Chaplin, J.R.; Batten, W.M.J. Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renew. Energy
**2007**, 32, 407–426. [Google Scholar] [CrossRef] - Morino, L. Boundary Integral Equations in Aerodynamics. Appl. Mech. Rev.
**1993**, 46, 445–466. [Google Scholar] [CrossRef] - Greco, L.; Salvatore, F.; Di Felice, F. Validation of a Quasi—Potential Flow Model for the Analysis of Marine Propellers Wake. In Proceedings of the ONR-2004 Twenty-fifth ONR Symposium on Naval Hydrodynamics, St. John’s, NL, Canada, 8–13 August 2004; National Academies Press: Washington, DC, USA, 2004. [Google Scholar]
- Carlton, J.S. Marine Propellers and Propulsion, 1st ed.; Butterworth–Heinemann: Oxford, UK, 1994. [Google Scholar]
- Betz, A. The Maximum of the Theoretically Possible Exploitation of Wind by Means of a Wind Motor. Wind Eng.
**2013**, 37, 441–446, (Translation by Hamann et al. of original paper published in 1920 by the author in German). [Google Scholar] [CrossRef] - Okulov, V.L.; Sørensen, J.N. Maximum efficiency of wind turbine rotors using Joukowsky and Betz approaches. J. Fluid Mech.
**2010**, 649, 497–508. [Google Scholar] [CrossRef] - Micek, P.; Gaurier, B.; Germain, G.; Pinon, G.; Rivoalen, E. Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine. Renew. Energy
**2014**, 66, 729–746. [Google Scholar] [CrossRef] - Del Frate, C.; Di Felice, F.; Alves Pereira, F.; Romano, G.P.; Dhomé, D.; Allo, J.-C. Experimental Investigation of the turbulent flow behind a horizontal axis tidal turbine. In Progress in Renewable Energies Offshore, Proceedings of the RENEW 2016 2nd International Conference on Renewable Energies Offshore, Lisbon, Portugal, 24–26 October 2016; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Drela, M. XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils. In Low Reynolds Number Aerodynamics, Proceedings of the Conference Notre Dame, IN, USA, 5–7 June 1989; Lecture Notes in Engineering, Bd. 54; Springer: Berlin/Heidelberg, Germany, 1989; pp. 1–12. ISBN 978-3-540-51884-6. [Google Scholar]
- Sheldahl, R.E.; Klimas, P.C. Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-Deg. Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines; Technical Report SAND80-2114; SANDIA: Albuquerque, NM, USA, 1981. [Google Scholar]
- Abbott, I.R.; von Doenhoff, A.E. Summary of Airfoil Data; NACA Report 824; NACA: Boston, MA, USA, 1945. [Google Scholar]
- Molland, A.F.; Bahaj, A.S.; Chaplin, J.R.; Batten, W.M.J. Measurements and predictions of forces, pressures and cavitation on 2D sections suitable for marine current turbines. J. Eng. Marit. Environ.
**2004**, 218, 127–138. [Google Scholar] - Bahaj, A.; Batten, W.; McCann, G. Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines. Renew. Energy
**2007**, 32, 2479–2490. [Google Scholar] [CrossRef] - Morino, L.; Salvatore, F.; Gennaretti, M. A New Velocity Decomposition for Viscous Flows: Lighthill’s Equivalent-Source Method Revisited. Comput. Methods Appl. Mech. Eng.
**1999**, 173, 317–336. [Google Scholar] [CrossRef] - Salvatore, F.; Calcagni, D.; Sarichloo, Z. Development of a Viscous/Inviscid Hydrodynamics Model for Single Turbines and Arrays. In Proceedings of the EWTEC 2017 Twelfth European Wave and Tidal Energy Conference, Cork, Ireland, 27 August–1 September 2017. [Google Scholar]
- Mycek, P.; Gaurier, B.; Germain, G.; Pinon, G.; Rivolaen, E. Experimental Study of the Turbulence Intensity Effects on Marine Current Turbines Behaviour. Part II: Two Interacting Turbines. Renew. Energy
**2014**, 68, 876–892. [Google Scholar] [CrossRef]

**Figure 1.**Sketch of the frame of reference associated to the solid boundary describing an isolated turbine and the surface of trailing wake shed by one blade.

**Figure 2.**Streamtube radius downstream of rotor plane from Equation (9) and comparative data from experiments.

**Figure 3.**Inflow velocity components and hydrodynamic force components on turbine blade section at radius r.

**Figure 4.**Notional lift and drag curves of a two-dimensional profile: viscous flow and inviscid flow conditions with flat plate drag correction compared.

**Figure 6.**IFREMER-FP turbine. Calculated thrust and torque coefficients as a function of discretization parameter ${M}_{\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}{\phantom{\rule{3.33333pt}{0ex}}}_{B}}$.

**Left**and

**center**: thrust and torque by non-corrected BIEM;

**right**: torque by BIEM-VFC.

**Figure 8.**IFREMER-FP turbine. Trailing wake geometry of BIEM model at different operating conditions: TSR = 2 (

**top left**), TSR = 3 (

**top right**), TSR = 6 (

**bottom**).

**Figure 9.**IFREMER-FP turbine. Reynolds number $R{e}_{r}$ (

**left**) and effective angle of attack ${\alpha}_{e}$ (

**right**) as a function of radius r and of TSR.

**Figure 10.**NACA 63-421 2D foil: lift (

**left**) and drag (

**right**) coefficients calculated by X-Foil and from experiments [23].

**Figure 11.**IFREMER-FP turbine. Correction factors for radial contributions to lift (

**left**) and drag (

**right**) as a function of radius r and of TSR.

**Figure 12.**IFREMER-FP turbine performance predictions by BIEM and BIEM-VFC compared to experimental data in [11]: thrust (

**top left**); torque (

**top right**) and power (

**bottom**) coefficients.

**Figure 13.**IFREMER-FP turbine. Pressure distribution evaluated by inviscid-flow BIEM, TSR = 3.3 (peak power condition).

**Left**: pressure side;

**right**: suction side.

**Figure 14.**IFREMER-FP turbine. Pressure distribution evaluated by inviscid-flow BIEM at radial section at 70% of blade span. From

**top left**to

**bottom right**: TSR = 3.3, 5, 6, 7.4.

**Figure 15.**UoS-VP turbine. Three-dimensional model and computational grid for BIEM analysis.

**Left**: front view;

**right**: details of hub and blade roots.

**Figure 16.**UoS-VP turbine. Axial induced velocity distribution at axial position corresponding to blade trailing edge and 70% of blade span. Different pitch settings $\mathsf{\Phi}$ compared.

**Figure 17.**UoS-VP turbine. Wake geometry of BIEM model at different operating conditions. From

**left**to

**right**, TSR = 3, 6, 9. Design pitch setting, $\mathsf{\Phi}={20}^{\circ}$.

**Figure 18.**UoS-VP turbine. Reynolds number $R{e}_{r}$ as a function of radius r and of turbine operating condition (TSR).

**Figure 19.**UoS-VP turbine. Reynolds number $R{e}_{r}$ at radius $r/R=0.7$ for pitch settings corresponding to the highest inflow speed ($V=1.73$ m/s, $\mathsf{\Phi}={20}^{\circ}$), and for the lowest inflow speed ($V=1.3$ m/s, $\mathsf{\Phi}={27}^{\circ}$).

**Figure 20.**UoS-VP turbine. Effective angle of attack ${\alpha}_{e}$ as a function of radius r and of turbine operating condition (TSR). Design pitch setting $\mathsf{\Phi}={20}^{\circ}$.

**Figure 21.**UoS-VP turbine. Effective angle of attack ${\alpha}_{e}$ at radius $r/R=0.7$ for different pitch settings and TSR.

**Figure 22.**NACA 63-815 2D foil: lift (

**left**) and drag (

**right**) coefficients used for the viscous flow correction of BIEM.

**Figure 23.**UoS-VP turbine. Correction factors for radial contributions to lift (

**left**) and drag (

**right**) as a function of radius r and of operating condition (TSR). Pitch setting $\mathsf{\Phi}={20}^{\circ}$.

**Figure 24.**UoS-VP turbine. Lift correction factor ${\mathcal{K}}_{\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}{\phantom{\rule{3.33333pt}{0ex}}}_{L}}$ (

**top**) and drag correction factor ${\mathcal{K}}_{\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}{\phantom{\rule{3.33333pt}{0ex}}}_{D}}$ (

**bottom**) at radius $r/R=0.7$ for different Pitch settings.

**Figure 25.**UoS-VP turbine performance predictions by BIEM and BIEM-VFC compared to experimental data in [13]. Thrust coefficient at pitch settings $\mathsf{\Phi}={15}^{\circ},{20}^{\circ},{25}^{\circ},{27}^{\circ},{30}^{\circ}$.

**Figure 26.**UoS-VP turbine performance predictions by BIEM and BIEM-VFC compared to experimental data in [13]. Power coefficient at pitch settings $\mathsf{\Phi}={15}^{\circ},{20}^{\circ},{25}^{\circ},{27}^{\circ},{30}^{\circ}$.

**Figure 27.**UoS-VP turbine. Effect of pitch setting $\mathsf{\Phi}$: from

**top**to

**bottom**,

**left**to

**right**, ${C}_{\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}{\phantom{\rule{3.33333pt}{0ex}}}_{{T}_{max}}},{C}_{\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}{\phantom{\rule{3.33333pt}{0ex}}}_{{P}_{max}}}$ and corresponding TSR values TSR@${C}_{\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}{\phantom{\rule{3.33333pt}{0ex}}}_{{T}_{max}}}$, TSR@${C}_{\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}{\phantom{\rule{3.33333pt}{0ex}}}_{{P}_{max}}}$.

**Figure 28.**UoS-VP turbine performance predictions by BIEM-VFC compared to results of BEM models from [25]: thrust coefficient ${C}_{\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}{\phantom{\rule{3.33333pt}{0ex}}}_{T}}$. Pitch settings $\mathsf{\Phi}={15}^{\circ}$ to 27°.

**Figure 29.**UoS-VP turbine performance predictions by BIEM-VFC compared to results of BEM models from [25]: power coefficient ${C}_{\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}{\phantom{\rule{3.33333pt}{0ex}}}_{P}}$. Pitch settings $\mathsf{\Phi}={15}^{\circ}$ to 27${}^{\circ}$.

**Figure 30.**UoS-VP turbine performance predictions by BIEM-VFC compared to results from the BIEM model in [7]: thrust coefficient ${C}_{\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}{\phantom{\rule{3.33333pt}{0ex}}}_{T}}$ (

**left**); and power coefficient ${C}_{\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}{\phantom{\rule{3.33333pt}{0ex}}}_{P}}$ (

**right**). Pitch settings $\mathsf{\Phi}={20}^{\xb0}$ to 27°.

Rotor diameter, D | 700 [mm] |

Blades number, Z | 3 |

Pitch angle at 70% span, $\mathsf{\Phi}$ | 7.3 [deg] |

Thickness ratio, 75% span, $t/c$ | 0.21 |

Hub/rotor diameter ratio | $0.131$ |

Blade section profile | NACA 63-4xx |

Rotor diameter, D | 800 [mm] |

Blades number, Z | 3 |

Pitch angle at 20% span, $\mathsf{\Phi}$ | $15,20,25,27,30$ [deg] |

Thickn. ratio, 75% span, $t/c$ | 0.151 |

Hub/rotor diameter ratio | $0.125$ |

Blade section profile | NACA 63-8xx |

Blade pitch setting, $\mathsf{\Phi}$ [deg] | 15 | 20 | 25 | 27 | 30 |

Inflow speed, V [m/s] | 1.40 | 1.73 | 1.54 | 1.30 | 1.54 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Salvatore, F.; Sarichloo, Z.; Calcagni, D.
Marine Turbine Hydrodynamics by a Boundary Element Method with Viscous Flow Correction. *J. Mar. Sci. Eng.* **2018**, *6*, 53.
https://doi.org/10.3390/jmse6020053

**AMA Style**

Salvatore F, Sarichloo Z, Calcagni D.
Marine Turbine Hydrodynamics by a Boundary Element Method with Viscous Flow Correction. *Journal of Marine Science and Engineering*. 2018; 6(2):53.
https://doi.org/10.3390/jmse6020053

**Chicago/Turabian Style**

Salvatore, Francesco, Zohreh Sarichloo, and Danilo Calcagni.
2018. "Marine Turbine Hydrodynamics by a Boundary Element Method with Viscous Flow Correction" *Journal of Marine Science and Engineering* 6, no. 2: 53.
https://doi.org/10.3390/jmse6020053