# DDES of Wetted and Cavitating Marine Propeller for CHA Underwater Noise Assessment

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Flow Solution

#### 2.1. Governing Equations

#### 2.2. Finite-Volume Form

#### 2.3. Solution Algorithm

#### 2.4. Turbulence Modelling

#### 2.5. Mass and Energy Transfer

## 3. Acoustic Solution

## 4. Computational Case

#### 4.1. CFD: Numerical Setup, Grid, and Boundary Conditions

#### 4.2. CHA: Numerical Setup, Grid, and Boundary Conditions

## 5. Results

#### 5.1. Validation and Cavitation Observations

#### 5.2. Wake Flow Structures

#### 5.3. Acoustic Excitations

## 6. Conclusions

## Author Contributions

## Conflicts of Interest

## Abbreviations

BPF | Blade passing frequency |

CFD | Computational fluid dynamics |

CHA | Computational hydroacoustics |

DES | Detached eddy simulation |

DDES | Delayed detached eddy simulation |

DNS | Direct numerical simulation |

EARSM | Explicit algebraic Reynolds stress model |

EFD | Experimental fluid dynamics |

FEM | Finite element method |

LE | Leading edge |

LES | Large eddy simulation |

MUSCL | Monotonic upstream-centred scheme for conservation laws |

PANS | Partially averaged Navier–Stokes |

PPTC | Potsdam propeller test case |

RANS | Reynolds averaged Navier–Stokes |

SST | Shear stress transport |

TE | Trailing edge |

## References

- Andrew, R.K.; How, B.M.; Mercer, J.A.; Dzieciuch, M.A. Ocean ambient sound: Comparing the 1960s with the 1990s for a receiver off the California coast. Acoust. Res. Lett. Online
**2002**, 3, 65–70. [Google Scholar] [CrossRef] - Payne, R.; Webb, D. Orientation by means of long range acoustic signaling in baleen whales. Ann. N. Y. Acad. Sci.
**1971**, 188, 110–141. [Google Scholar] [CrossRef] [PubMed] - Mitson, R.B. Underwater noise of research vessels. ICES Co-Oper. Res. Rep.
**1995**, 209, 61. [Google Scholar] - Lightelijn, J.T. Advantages of Different Propellers for Minimising Noise Generation. In Proceedings of the 3rd International Ship Noise and Vibration Conference, London, UK, 26 September 2007. [Google Scholar]
- Van Wijngaarden, E.; Bosschers, J.; Kuiper, G. Aspects of the cavitating propeller tip vortex as a source of inboard noise and vibration. In Proceedings of the ASME 2005 Fluids Engineering Division Summer Meeting, Houston, TX, USA, 19–23 June 2005; American Society of Mechanical Engineers: New York, NY, USA, 2005; pp. 539–544. [Google Scholar]
- Bosschers, J. Investigation of Hull Pressure Fluctuations Generated by Cavitating Vortices. In Proceedings of the First International Symposium on Marine Propulsors (smp’09), Trondheim, Norway, 22–24 June 2009. [Google Scholar]
- Pennings, P.; Westerweel, J.; van Terwisga, T. Sound signature of propeller tip vortex cavitation. J. Phys. Conf. Ser.
**2015**, 656, 012186. [Google Scholar] [CrossRef] - Sipilä, T.; Siikonen, T.; Saisto, I.; Martio, J.; Reksoprodjo, H. Cavitating propeller flows predicted by RANS solver with structured grid and small Reynolds number turbulence model approach. In Proceedings of the CAV2009-7th International Symposium on Cavitation, Ann Arbor, MI, USA, 16–20 August 2009; Volume 2, p. 1. [Google Scholar]
- Turunen, T.; Siikonen, T.; Lundberg, J.; Bensow, R. Open-water computations of a marine propeller using OpenFOAM. In Proceedings of the ECFD VI-6th European Congress on Computational Fluid Dynamics, Barcelona, Spain, 20–25 July 2014; pp. 1123–1134. [Google Scholar]
- Lu, N.X.; Bensow, R.E.; Bark, G. Large eddy simulation of cavitation development on highly skewed propellers. J. Mar. Sci. Technol.
**2014**, 19, 197–214. [Google Scholar] [CrossRef] - Muscari, R.; Di Mascio, A.; Verzicco, R. Modeling of vortex dynamics in the wake of a marine propeller. Comp. Fluids
**2013**, 73, 65–79. [Google Scholar] [CrossRef] - Balaras, E.; Schroeder, S.; Posa, A. Large-eddy simulations of submarine propellers. J. Ship Res.
**2015**, 59, 227–237. [Google Scholar] [CrossRef] - Lloyd, T.; Vaz, G.; Rijpkema, D.; Reverberi, A. Computational fluid dynamics prediction of marine propeller cavitation including solution verification. In Proceedings of the Fifth International Symposium on Marine Propulsors, smp’17, Helsinki, Finland, 12–15 June 2017. [Google Scholar]
- Rijpkema, D.; Baltazar, J.; Falcão de Campos, J. Viscous flow simulations of propellers in different Reynolds number regimes. In Proceedings of the Fourth International Symposium on Marine Propulsors (smp’15), Austin, TX, USA, 31 May–4 June 2015. [Google Scholar]
- Baltazar, J.; Rijpkema, D.; Falcão de Campos, J.A.C. On the Use of the γ-${\tilde{Re}}_{\theta}$ Transition Model for the Prediction of the Propeller Performance at Model-Scale. In Proceedings of the Fifth International Symposium on Marine Propulsors (smp’17), Helsinki, Finland, 2–15 June 2017. [Google Scholar]
- Rhee, S.H.; Joshi, S. CFD validation for a marine propeller using an unstructured mesh based RANS method. In Proceedings of the ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference, Honolulu, HI, USA, 6–10 July 2003; American Society of Mechanical Engineers: New York, NY, USA, 2003; pp. 1157–1163. [Google Scholar]
- Morgut, M.; Nobile, E. Numerical predictions of cavitating flow around model scale propellers by CFD and advanced model calibration. Int. J. Rotating Mach.
**2012**, 2012. [Google Scholar] [CrossRef] - Salvatore, F.; Streckwall, H.; van Terwisga, T. Propeller cavitation modelling by CFD-results from the VIRTUE 2008 Rome workshop. In Proceedings of the First International Symposium on Marine Propulsors, Trondheim, Norway, 22–24 June 2009. [Google Scholar]
- Vaz, G.; Hally, D.; Huuva, T.; Bulten, N.; Muller, P.; Becchi, P.; Herrer, J.L.R.; Whitworth, S.; Macé, R.; Korsström, A. Cavitating flow calculations for the E779A propeller in open water and behind conditions: Code comparison and solution validation. In Proceedings of the Fourth International Symposium on Marine Propulsors, smp’15, Austin, TX, USA, 31 May–4 June 2015. [Google Scholar]
- Gaggero, S.; Tani, G.; Viviani, M.; Conti, F. A study on the numerical prediction of propellers cavitating tip vortex. Ocean Eng.
**2014**, 92, 137–161. [Google Scholar] [CrossRef] - Asnaghi, A.; Feymark, A.; Bensow, R. Computational analysis of cavitating marine propeller performance using OpenFOAM. In Proceedings of the Fourth International Symposium on Marine Propulsors (smp’15), Austin, TX, USA, 31 May–4 June 2015. [Google Scholar]
- Lidtke, A.; Turnock, S.; Humphrey, V. Use of acoustic analogy for marine propeller noise characterisation. In Proceedings of the Fourth International Symposium on Marine Propulsors (smp’15), Austin, TX, USA, 31 May–4 June 2015. [Google Scholar]
- Sipilä, T.; Sanchez-Caja, A.; Siikonen, T. Eddy vorticity in cavitating tip vortices modelled by different turbulence models using the RANS approach. In Proceedings of the 11th World Congress on Computational Mechanics (WCCM XI), Barcelona, Spain, 20–25 July 2014; pp. 4741–4752. [Google Scholar]
- Guilmineau, E.; Deng, G.; Leroyer, A.; Queutey, P.; Visonneau, M.; Wackers, J. Influence of the Turbulence Closures for the Wake Prediction of a Marine Propeller. In Proceedings of the Fourth International Symposium on Marine Propulsors, smp’15, Austin, TX, USA, 31 May–4 June 2015. [Google Scholar]
- Viitanen, V.M.; Siikonen, T. Numerical simulation of cavitating marine propeller flows. In Proceedings of the 9th National Conference on Computational Mechanics (MekIT’17), Trondheim, Norway, 11–12 May 2017; International Center for Numerical Methods in Engineering (CIMNE): Trondheim, Norway, 2017; pp. 385–409, ISBN 978-84-947311-1-2. [Google Scholar]
- Liefvendahl, M.; Felli, M.; Troëng, C. Investigation of wake dynamics of a submarine propeller. In Proceedings of the 28th Symposium on Naval Hydrodynamics, Pasadena, CA, USA, 12–17 September 2010. [Google Scholar]
- Ji, B.; Luo, X.; Wu, Y.; Peng, X.; Xu, H. Partially-Averaged Navier–Stokes method with modified k–ε model for cavitating flow around a marine propeller in a non-uniform wake. Int. J. Heat Mass Transf.
**2012**, 55, 6582–6588. [Google Scholar] [CrossRef] - Chase, N.; Carrica, P.M. Submarine propeller computations and application to self-propulsion of DARPA Suboff. Ocean Eng.
**2013**, 60, 68–80. [Google Scholar] [CrossRef] - Ianniello, S.; Muscari, R.; Di Mascio, A. Ship underwater noise assessment by the acoustic analogy. Part I: Nonlinear analysis of a marine propeller in a uniform flow. J. Mar. Sci. Technol.
**2013**, 18, 547–570. [Google Scholar] [CrossRef] - Lloyd, T.; Rijpkema, D.; van Wijngaarden, E. Marine propeller acoustic modelling: Comparing CFD results with an acoustic analogy method. In Proceedings of the Fourth International Symposium on Marine Propulsors (smp’15), Austin, TX, USA, 31 May–4 June 2015. [Google Scholar]
- Budich, B.; Schmidt, S.J.; Adams, N.A. Numerical investigation of a cavitating model propeller including compressible shock wave dynamics. In Proceedings of the Fourth International Symposium on Marine Propulsors (smp’15), Austin, TX, USA, 31 May–4 June 2015. [Google Scholar]
- Uosukainen, S. Foundations of Acoustic Analogies; VTT Publications 757: Espoo, Finland, 2011. [Google Scholar]
- Free Field Technologies SA. Actran 16.1 User’s Guide; MSC Software Belgium: Newport Beach, CA, USA, 2016. [Google Scholar]
- Sánchez-Caja, A.; Rautaheimo, P.; Siikonen, T. Computation of the incompressible viscous flow around a tractor thruster using a sliding-mesh technique. In Proceedings of the 7th International Conference on Numerical Ship Hydrodynamics, Nantes, France, 19–22 July 1999. [Google Scholar]
- Viitanen, V.; Martio, J.; Sipilä, T. FINFLO two-phase URANS predictions of propeller performance in oblique flow. In Proceedings of the Fourth International Symposium on Marine Propulsors (smp’15), Austin, TX, USA, 31 May–4 June 2015. [Google Scholar]
- Hynninen, A.; Tanttari, J.; Viitanen, V.M.; Sipilä, T. On predicting the sound from a cavitating marine propeller in a tunnel. In Proceedings of the Fifth International Symposium on Marine Propulsors (smp’17), Helsinki, Finland, 12–15 June 2017. [Google Scholar]
- Viitanen, V.M.; Hynninen, A.; Lübke, L.; Klose, R.; Tanttari, J.; Sipilä, T.; Siikonen, T. CFD and CHA simulation of underwater noise induced by a marine propeller in two-phase flows. In Proceedings of the Fifth International Symposium on Marine Propulsors (smp’17), Helsinki, Finland, 12–15 June 2017. [Google Scholar]
- Choi, Y.H.; Merkle, C.L. The application of preconditioning in viscous flows. J. Comput. Phys.
**1993**, 105, 207–230. [Google Scholar] [CrossRef] - Miettinen, A. Simple Polynomial Fittings for Steam, CFD/THERMO-55-2007; Report 55; Laboratory of Applied Thermodynamics, Aalto University: Espoo, Finland, 2007. [Google Scholar]
- Miettinen, A.; Siikonen, T. Application of pressure- and density-based methods for different flow speeds. Int. J. Numer. Methods Fluids
**2015**, 79, 243–267. [Google Scholar] [CrossRef] - Van Leer, B. Flux-Vector Splitting for the Euler Equations. In Proceedings of the 8th International Conference on Numerical Methods in Fluid Dynamics, Aachen, Germany, 28 June–2 July 1982. [Google Scholar]
- Roe, P.L. Some contributions to the modelling of discontinuous flows. In Large-Scale Computations in Fluid Mechanics; American Mathematical Society: Providence, RI, USA, 1985; pp. 163–193. [Google Scholar]
- Viitanen, V. Verification of a Homogeneous Mixture Model for the Free Surface Problem. Master’s Thesis, Aalto University, Espoo, Finland, 2015. [Google Scholar]
- Spalart, P.R.; Deck, S.; Shur, M.; Squires, K.; Strelets, M.K.; Travin, A. A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn.
**2006**, 20, 181–195. [Google Scholar] [CrossRef] - Menter, F. Influence of freestream values on k-ω turbulence model predictions. AIAA J.
**1992**, 30, 1657–1659. [Google Scholar] [CrossRef] - Shur, M.; Spalart, P.; Strelets, M.; Travin, A. Detached-Eddy Simulation of an Airfoil at High Angle of Attack. In Engineering Turbulence Modelling and Experiments 4, Proceedings of the 4th International Symposium on Engineering Turbulence Modelling and Measurements, Ajaccio, Corsica, France, 24–26 May 1999; Elsevier: New York, NY, USA, 1999; pp. 669–678. [Google Scholar]
- Strelets, M. Detached eddy simulation of massively separated flows. In Proceedings of the 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8–11 January 2001. [Google Scholar]
- Frikha, S.; Coutier-Delgosha, O.; Astolfi, J.A. Influence of the cavitation model on the simulation of cloud cavitation on 2D foil section. Int. J. Rotating Mach.
**2009**, 2008. [Google Scholar] [CrossRef][Green Version] - Sipilä, T. RANS Analyses of Cavitating Propeller Flows. Licentiate Thesis, Aalto University, Espoo, Finland, 2012. [Google Scholar]
- Lighthill, M.J. On Sound Generated Aerodynamically. I. Gen. Theory Proc. R. Soc. Ser. A
**1952**, 211, 564–587. [Google Scholar] [CrossRef] - Heinke, H.J. Potsdam Propeller Test Case (PPTC). Cavitation Tests with the Model Propeller VP1304. In SVA Potsdam Model Basin Report No.3753; Schiffbau-Versuchsanstalt Potsdam GmbH: Potsdam, Germany, 2011. [Google Scholar]
- Barkmann, U.; Heinke, H.J.; Lübke, L. Potsdam propeller test case (PPTC). In Test case description. In Proceedings of the Second International Symposium on Marine Propulsors (smp’11), Hamburg, Germany, 15–17 June 2011. [Google Scholar]
- Mach, K.P. Potsdam Propeller Test Case (PPTC). LDV velocity measurements with the Model Propeller VP1304. In SVA Potsdam Model Basin Report No.3754; Schiffbau-Versuchsanstalt Potsdam GmbH: Potsdam, Germany, 2011. [Google Scholar]
- Chien, K.Y. Predictions of Channel and Boundary-layer Flows with a Low-Reynolds-Number Turbulence Model. AIAA J.
**1982**, 20, 33–38. [Google Scholar] [CrossRef] - Barkmann, U. Potsdam Propeller Test Case (PPTC). Open water tests with the model propeller VP1304. In SVA Potsdam Model Basin Report No.3752; Schiffbau-Versuchsanstalt Potsdam GmbH: Potsdam, Germany, 2011. [Google Scholar]
- Saarinen, P.; Siikonen, T. Simulation of HVAC flow noise sources with an exit vent as an example. Int. J. Vent.
**2016**, 15, 45–66. [Google Scholar] [CrossRef] - Hsiao, C.T.; Ma, J.; Chahine, G.L. Multiscale tow-phase flow modeling of sheet and cloud cavitation. Int. J. Multiph. Flow
**2017**, 90, 102–117. [Google Scholar] [CrossRef] - Siikonen, T. Numerical method for one-dimensional two-phase flow. Numer. Heat Transf. Part A Appl.
**1987**, 12, 1–18. [Google Scholar]

**Figure 1.**Lighthill surface mesh around the propeller blades and hub, and Lighthill volume mesh around the propeller, and in the wake of the propeller.

**Figure 2.**Photographs of the Potsdam propeller test case (PPTC) propeller [51].

**Figure 7.**Comparison of global propeller performance characteristics. CFD: computational fluid dynamics; EFD: experimental fluid dynamics.

**Figure 12.**Comparison of the cavitation patterns near the blade surfaces with the cavitation sketches according to observations made in the experiments, cf. Ref. [37].

**Figure 14.**Surface restricted streamlines and non-dimensional pressure coefficients on the suction side of the blade surface. In the cavitating case, the iso-surface of void fraction value of 0.1 is shown as transparent grey.

**Figure 15.**Distribution of the pressure coefficient near the propeller on the cut plane y = 0. In the cavitating case, the iso-surface of the void fraction $\alpha =0.1$ is coloured light grey.

**Figure 16.**Distribution of non-dimensional velocity near the propeller on the cut plane y = 0. In the cavitating case, the iso-surface of the void fraction $\alpha $ = 0.1 is coloured by light blue.

**Figure 17.**Vortical flow structures visualized near the propeller by means of the Q criterion. The iso-surface of the Q criterion is coloured by helicity.

**Figure 18.**Distribution of the acoustic source term based on delayed detached eddy simulation (DDES) near the propeller on the cut plane $y=0$. In the cavitating case, the iso-surface of the void fraction $\alpha =0.1$ is coloured by light blue.

**Figure 19.**Vortical flow structures visualized with the Q criterion and acoustic source term distributions in the propeller wake. The Q criterion is coloured by helicity. The boxed figure in the upper right corner shows the acoustic source term distribution on the plane $x/D=0.5$.

Diameter $(\mathsf{m})$ | 0.250 |

Pitch ratio at $r/R=0.7$ | 1.635 |

Chord at $r/R=0.7$ | 0.10417 |

Expanded area ratio | 0.779 |

Skew ${(}^{\circ})$ | 18.837 |

Hub ratio | 0.300 |

Number of blades | 5 |

Rotation | Right-handed |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Viitanen, V.M.; Hynninen, A.; Sipilä, T.; Siikonen, T. DDES of Wetted and Cavitating Marine Propeller for CHA Underwater Noise Assessment. *J. Mar. Sci. Eng.* **2018**, *6*, 56.
https://doi.org/10.3390/jmse6020056

**AMA Style**

Viitanen VM, Hynninen A, Sipilä T, Siikonen T. DDES of Wetted and Cavitating Marine Propeller for CHA Underwater Noise Assessment. *Journal of Marine Science and Engineering*. 2018; 6(2):56.
https://doi.org/10.3390/jmse6020056

**Chicago/Turabian Style**

Viitanen, Ville M., Antti Hynninen, Tuomas Sipilä, and Timo Siikonen. 2018. "DDES of Wetted and Cavitating Marine Propeller for CHA Underwater Noise Assessment" *Journal of Marine Science and Engineering* 6, no. 2: 56.
https://doi.org/10.3390/jmse6020056