Observed Sea-Level Changes along the Norwegian Coast
Abstract
1. Introduction
2. Data and Methods
2.1. Analysis of the Norwegian Tide Gauges
2.2. Analysis of Altimetry Data from the Norwegian Coast
3. Sea-Level Rates along the Norwegian Coast
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ACF | Autocorrelation Function |
AIC | Akaike’s Information Criterion |
AR | Autoregressive |
BIC | Bayesian Information Criterion |
GIA | Glacial Isostatic Adjustment |
GDR | Geophysical Data Records |
GMSL | Global Mean Sea Level |
GNSS | Global Navigation Satellite System |
IB | Inverse Barometer |
InSAR | Interferometric Synthetic Aperture Radar |
ITRF | International Terrestrial Reference Frame |
NMA | The Norwegian Mapping Authority |
PACF | Partial Autocorrelation Function |
PSMSL | Permanent Service for Mean Sea Level |
RSL | Relative Sea Level |
SAR | Synthetic Aperture Radar |
SIRAL | Synthetic Aperture Interferometric Radar Altimeter |
SSH | Sea Surface Height |
VLM | Vertical Land Motion |
References
- Simpson, M.J.R.; Ravndal, O.R.; Sande, H.; Nilsen, J.E.Ø.; Kierulf, H.P.; Vestøl, O.; Steffen, H. Projected 21st century sea-level changes, extreme sea levels, and sea level allowances for Norway. J. Mar. Sci. Eng. 2017. submitted. [Google Scholar]
- Dangendorf, S.; Marcos, M.; Wöppelmann, G.; Conrad, C.P.; Frederikse, T.; Riva, R. Reassessment of 20th century global mean sea level rise. Proc. Natl. Acad. Sci. USA 2017, 114, 5946–5951. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M.; Horsburgh, K.; Bates, P.; Smith, R. Quantifying the uncertainty in future coastal flood risk estimates for the UK. J. Coast. Res. 2011, 27, 870–881. [Google Scholar] [CrossRef]
- Lewis, M.; Schumann, G.; Bates, P.; Horsburgh, K. Understanding the variability of an extreme storm tide along a coastline. Estuar. Coast. Shelf Sci. 2013, 123, 19–25. [Google Scholar] [CrossRef]
- Hunter, J. A simple technique for estimating an allowance for uncertain sea-level rise. Clim. Chang. 2012, 113, 239–252. [Google Scholar] [CrossRef]
- Frederikse, T.; Riva, R.; Kleinherenbrink, M.; Wada, Y.; van den Broeke, M.; Marzeion, B. Closing the sea level budget on a regional scale: Trends and variability on the Northwestern European continental shelf. Geophys. Res. Lett. 2016, 43, 10864–10872. [Google Scholar] [CrossRef] [PubMed]
- Richter, K.; Nilsen, J.E.O.; Drange, H. Contributions to sea level variability along the Norwegian coast for 1960–2010. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Douglas, B.C. Global Sea Level Rise. J. Geophys. Res. 1991, 96, 6981–6992. [Google Scholar] [CrossRef]
- Vestøl, O. Determination of postglacial land uplift in Fennoscandia from leveling, tide-gauges and continuous GPS stations using least squares collocation. J. Geod. 2006, 80, 248–258. [Google Scholar] [CrossRef]
- Marcos, M.; Tsimplis, M.N. Forcing of coastal sea level rise patterns in the North Atlantic and the Mediterranean Sea. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Henry, O.; Prandi, P.; Llovel, W.; Cazenave, A.; Jevrejeva, S.; Stammer, D.; Meyssignac, B.; Koldunov, N. Tide gauge-based sea level variations since 1950 along the Norwegian and Russian coasts of the Arctic Ocean: Contribution of the steric and mass components. J. Geophys. Res. Oceans 2012, 117. [Google Scholar] [CrossRef]
- Wahl, T.; Haigh, I.D.; Dangendorf, S.; Jensen, J. Inter-annual and long-term mean sea level changes along the North Sea coastline. J. Coast. Res. 2013, 65, 1987–1992. [Google Scholar] [CrossRef]
- Calafat, F.M.; Chambers, D.P.; Tsimplis, M.N. Inter-annual to decadal sea-level variability in the coastal zones of the Norwegian and Siberian Seas: The role of atmospheric forcing. J. Geophys. Res. Oceans 2013, 118, 1287–1301. [Google Scholar] [CrossRef]
- Dangendorf, S.; Calafat, F.M.; Arns, A.; Wahl, T.; Haigh, I.D.; Jensen, J. Mean sea level variability in the North Sea: processes and implications. J. Geophys. Res. Oceans 2014, 119, 6820–6841. [Google Scholar] [CrossRef]
- Ghil, M.; Allen, M.R.; Dettinger, M.D.; Ide, K.; Kondrashov, D.; Mann, M.E.; Robertson, A.W.; Saunders, A.; Tian, Y.; Varadi, F.; et al. Advanced spectral methods for climatic time series. Rev. Geophys. 2002, 40. [Google Scholar] [CrossRef]
- Volkov, D.L.; Pujol, M.I. Quality assessment of a satellite altimetry product in the Nordic, Barents, and Kara seas. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Prandi, P.; Ablain, M.; Cazenave, A.; Picot, N. A New Estimation of Mean Sea Level in the Arctic Ocean from Satellite Altimetry. Mar. Geod. 2012, 35, 61–81. [Google Scholar] [CrossRef]
- Holgate, S.J.; Matthews, A.; Woodworth, P.L.; Rickards, L.J.; Tamisiea, M.E.; Bradshaw, E.; Foden, P.R.; Gordon, K.M.; Jevrejeva, S.; Pugh, J. New Data Systems and Products at the Permanent Service for Mean Sea Level. J. Coast. Res. 2013, 29, 493–504. [Google Scholar] [CrossRef]
- Woodworth, P.L. A Note on the Nodal Tide in Sea Level Records. J. Coast. Res. 2012, 28, 316–323. [Google Scholar] [CrossRef]
- Baart, F.; van Gelder, P.H.A.J.M.; de Ronde, J.; van Koningsveld, M.; Wouters, B. The effect of the 18.6-Year Lunar Nodal Cycle on Regional Sea-Level Rise Estimates. J. Coast. Res. 2012, 28, 511–516. [Google Scholar] [CrossRef]
- Scargle, D.J. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 1982, 263, 835–853. [Google Scholar] [CrossRef]
- Bos, M.S.; Williams, S.D.P.; Araújo, I.B.; Bastos, L. The effect of temporal correlated noise on the sea level rate and acceleration uncertainty. Geophys. J. Int. 2014, 196, 1423–1430. [Google Scholar] [CrossRef]
- Burgette, R.J.; Watson, C.S.; Church, J.A.; White, N.J.; Tregoning, P.; Coleman, R. Characterizing and minimizing the effects of noise in tide gauge time series: Relative and geocentric sea level rise around Australia. Geophys. J. Int. 2013, 194, 719–736. [Google Scholar] [CrossRef]
- Hünicke, B.; Zorita, E. Statistical Analysis of the Acceleration of Baltic Mean Sea-Level Rise, 1900–2012. Front. Mar. Sci. 2016, 3, 125. [Google Scholar] [CrossRef]
- Tamisiea, M.E.; Mitrovica, J.X. The moving boundaries of sea level change: Understanding the origins of geographic variability. Oceanography 2011, 24, 24–39. [Google Scholar] [CrossRef]
- Andersen, O.B.; Scharroo, R. Range and Geophysical Corrections in Coastal Regions: And Implications for Mean Sea Surface Determination. In Coastal Altimetry; Springer: Berlin, Germany, 2011; pp. 103–146. [Google Scholar]
- Collilieux, X.; Altamimi, Z.; Argus, D.F.; Boucher, C.; Dermanis, A.; Haines, B.J.; Herring, T.A.; Kreemer, C.W.; Lemoine, F.G.; Ma, C.; et al. External evaluation of the Terrestrial Reference Frame: Report of the task force of the IAG sub-commission 1.2. In Earth on the Edge: Science for a Sustainable Planet; Rizos, C., Willis, P., Eds.; Springer: Berlin, Germany, 2014; pp. 197–202. [Google Scholar] [CrossRef]
- Beckley, B.D.; Lemoine, F.G.; Luthcke, S.B.; Ray, R.D.; Zelensky, N.P. A reassessment of global and regional mean sea level trends from TOPEX and Jason-1 altimetry based on revised reference frame and orbits. Geophys. Res. Lett. 2007, 34, L14608. [Google Scholar] [CrossRef]
- Cipollini, P.; Calafat, F.M.; Jevrejeva, S.; Melet, A.; Prandi, P. Monitoring Sea Level in the Coastal Zone with Satellite Altimetry and Tide Gauges. Surv. Geophys. 2016, 1–25. [Google Scholar] [CrossRef]
- The Archive, Validation, and Interpretation of Satellite Oceanographic Data (AVISO) Portal. Available online: ftp://avisoftp.cnes.fr/AVISO/pub/ (accessed on 15 July 2017).
- ESA Earth Online. Available online: http://earth.esa.int (accessed on 15 July 2017).
- Ablain, M.; Phillips, S.; Picot, N.; Bronner, E. Jason-2 Global Statistical Assessment and Cross-Calibration with Jason-1. Mar. Geod. 2010, 33, 162–185. [Google Scholar] [CrossRef]
- Rhein, M.; Rintoul, S.R.; Aoki, S.; Campos, E.; Chambers, D.; Feely, R.; Gulev, S.; Johnson, G.C.; Josey, S.A.; Kostianoy, A.; et al. Observations: Ocean. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; ISBN 978-1-107-05799-1. [Google Scholar]
- Hay, C.C.; Morrow, E.; Kopp, R.E.; Mitrovica, J.X. Probabilistic reanalysis of twentieth-century sea-level rise. Nature 2015, 517, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Welch, B.L. The Generalization of ’Student’s’ Problem when Several Different Population Variances are Involved. Biometrika 1947, 34, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Lyu, K.; Zhang, X.; Church, J.A.; Slangen, A.B.A.; Hu, J. Time of emergence for regional sea-level change. Nat. Clim. Chang. 2014, 4, 1006–1010. [Google Scholar] [CrossRef]
- Haigh, I.D.; Wahl, T.; Rohling, E.J.; Price, R.M.; Pattiaratchi, C.B.; Calafat, F.M.; Dangendorf, S. Timescales for detecting a significant acceleration in sea level rise. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Jordá, G. Detection time for global and regional sea level trends and accelerations. J. Geophys. Res. Oceans 2014, 119, 7164–7174. [Google Scholar] [CrossRef]
- Dangendorf, S.; Rybski, D.; Mudersbach, C.; Müller, A.; Kaufmann, E.; Zorita, E.; Jensen, J. Evidence for long-term memory in sea level. Geophys. Res. Lett. 2014, 41, 5530–5537. [Google Scholar] [CrossRef]
- Minster, J.B.; Altamimi, Z.; Blewitt, G.; Carter, W.E.; Cazenave, A.; Dragert, H.; Herring, T.A.; Larson, K.M.; Ries, J.C.; Sandwell, D.T.; et al. Precise Geodetic Infrastructure: National Requirements for a Shared Resource; The National Academies Press: Washington, DC, USA, 2010; ISBN 978-0-309-15811-4. [Google Scholar]
- Vignudelli, S.; Cipollini, P.; Gommenginger, C.; Gleason, S.; Snaith, H.M.; Coelho, H.; Fernandes, M.J.; Lazaro, C.; Nunes, A.L.; Gomez-Enri, J.; et al. Satellite altimetry: Sailing closer to the coast. In Remote Sensing of the Changing Oceans; Springer: Berlin, Germany, 2011; pp. 217–238. [Google Scholar] [CrossRef]
- Vignudelli, S.; Kostianoy, A.G.; Cipollini, P.; Benveniste, J.E. Coastal Altimetry, 1st ed.; Springer: Berlin, Germany, 2011; ISBN 978-3-642-12795-3. [Google Scholar]
- Mercier, F.; Rosmorduc, V.; Carrere, L.; Thibaut, P. Coastal and Hydrology Altimetry Product (PISTACH) Handbook; Centre National D’études Spatiales: Paris, France, 2010; p. 64. [Google Scholar]
- Roblou, L.; Lyard, F.; Le Henaff, M.; Maraldi, C. X-TRACK, a new processing tool for altimetry in coastal oceans. In Proceedings of the Envisat Symposium 2007, Montreux, Switzerland, 23–27 April 2007; pp. 23–27. [Google Scholar] [CrossRef]
- Roblou, L.; Lamouroux, J.; Bouffard, J.; Lyard, F.; Le Hénaff, M.; Lombard, A.; Marsaleix, P.; De Mey, P.; Birol, F. Post-processing altimeter data towards coastal applications and integration into coastal models. In Coastal Altimetry; Springer: Berlin, Germany, 2011; pp. 217–246. ISBN 978-3-642-12795-3. [Google Scholar]
- Valladeau, G.; Thibaut, P.; Picard, B.; Poisson, J.C.; Tran, N.; Picot, N.; Guillot, A. Using SARAL/AltiKa to improve Ka-band altimeter measurements for coastal zones, hydrology and ice: The PEACHI prototype. Mar. Geod. 2015, 38, 124–142. [Google Scholar] [CrossRef]
- Ophaug, V.; Breili, K.; Gerlach, C. A comparative assessment of coastal mean dynamic topography in Norway by geodetic and ocean approaches. J. Geophys. Res. Oceans 2015, 120, 7807–7826. [Google Scholar] [CrossRef]
- Raney, R.K.; Phalippou, L. The Future of Coastal Altimetry. In Coastal Altimetry; Springer: Berlin, Germany, 2011; pp. 535–560. ISBN 978-3-642-12795-3. [Google Scholar]
- Idžanović, M.; Ophaug, V.; Andersen, O.B. Coastal Sea Level from CryoSat-2 SARIn Altimetry in Norway. Adv. Space Res. 2016. Submitted. [Google Scholar]
- Brooks, B.A.; Merrifield, M.A.; Foster, J.; Werner, C.L.; Gomez, F.; Bevis, M.; Gill, S. Space geodetic determination of spatial variability in relative sea level change, Los Angeles basin. Geophys. Res. Lett. 2007, 34, 1. [Google Scholar] [CrossRef]
Tide Gauge Name | Longitude ( E) Latitude ( N) | PSMSL-ID | Start yyyy.m | 1960–2010 (%) | 1984–2014 (%) | 1993–2016 (%) | Gap |
---|---|---|---|---|---|---|---|
Vardø | 31.104015 | 524 | 1947.7 | 60 | 95 | 95 | 1966.2–1984.0 |
70.374978 | |||||||
Honningsvåg | 25.972697 | 1267 | 1970.5 | 75 | 94 | 100 | |
70.980318 | |||||||
Hammerfest | 23.683227 | 758 | 1957.0 | 88 | 99 | 99 | 1970.0–1971.0 |
70.664641 | 1982.0–1983.0 | ||||||
Tromsø | 18.961323 | 680 | 1952.4 | 98 | 98 | 100 | |
69.647424 | |||||||
Andenes | 16.134848 | 425 | 1938.0 | 52 | 78 | 100 | 1955.8–1974.0 |
69.326067 | 1978.9–1982.0 | ||||||
Harstad | 16.548236 | 681 | 1952.2 | 94 | 97 | 100 | |
68.801261 | |||||||
Narvik | 17.425759 | 312 | 1928.1 | 98 | 97 | 100 | 1940.3–1947.3 |
68.428286 | |||||||
Kabelvåg | 14.482149 | 45 | 1948.0 | 97 | 97 | 100 | |
68.212639 | |||||||
Bodø | 14.390813 | 562 | 1949.7 | 89 | 95 | 99 | 1953.5–1954.5 |
67.288290 | 1971.0–1972.0 | ||||||
1972.5–1973.6 | |||||||
Rørvik | 11.230107 | 1241 | 1969.7 | 80 | 99 | 100 | |
64.859456 | |||||||
Mausund | 8.665230 | 1988.0 | 39 | 78 | 89 | 2005.9–2008.0 | |
63.869330 | |||||||
Trondheim-1 * | 10.391669 | 34 | 1945.5 | 60 | 20 | - | 1946.5–1949.0 |
63.436484 | |||||||
Trondheim-2 | 10.391669 | 1748 | 1990.0 | 40 | 80 | 100 | |
63.436484 | |||||||
Heimsjø | 9.101504 | 313 | 1928.0 | 99 | 99 | 100 | |
63.425224 | |||||||
Kristiansund | 7.734352 | 682 | 1952.4 | 99 | 98 | 100 | |
63.113859 | |||||||
Ålesund | 6.151946 | 509 | 1945.1 | 98 | 99 | 100 | 1946.1–1951.0 |
62.469414 | |||||||
Måløy | 5.113310 | 486 | 1943.5 | 95 | 99 | 100 | 1959.0–1961.0 |
61.933776 | |||||||
Bergen | 5.320487 | 58 | 1915.0 | 98 | 99 | 100 | 1941.9–1944.0 |
60.398046 | |||||||
Stavanger | 5.730121 | 47 | 1919.0 | 96 | 100 | 100 | 1940.0–1946.0 |
58.974339 | 1970.0–1971.3 | ||||||
Tregde | 7.554759 | 302 | 1927.8 | 99 | 99 | 99 | |
58.006377 | |||||||
Helgeroa | 9.856379 | 1113 | 1965.4 | 64 | 99 | 100 | 1970.0–1981.0 |
58.995212 | |||||||
Oscarsborg | 10.604861 | 33 | 1872.1 | 90 | 99 | 100 | 1883.0–1953.5 |
59.678073 | |||||||
Oslo | 10.734510 | 62 | 1885.5 | 96 | 97 | 100 | 1891.0–1914.0 |
59.908559 | |||||||
Viker | 10.949769 | 1759 | 1990.9 | 38 | 76 | 100 | |
59.036046 |
Tide Gauge | Relative Rate | GIA-Corrected | Relative Rate | GIA-Corrected |
---|---|---|---|---|
(mm/Year) | (mm/Year) | (mm/Year) | (mm/Year) | |
1960–2010 | 1960–2010 | 1984–2014 | 1984–2014 | |
Honningsvåg | 0.4 ± 0.8 | 1.9 ± 1.1 | ||
Hammerfest | 1.2 ± 0.4 | 3.0 ± 0.8 | 0.8 ± 0.8 | 2.7 ± 1.0 |
Tromsø | 0.5 ± 0.4 | 2.6 ± 0.7 | 0.3 ± 0.9 | 2.5 ± 1.1 |
Harstad | −0.5 ± 0.4 | 1.5 ± 0.7 | 0.1 ± 0.8 | 2.1 ± 1.0 |
Narvik | −1.8 ± 0.4 | 1.5 ± 0.8 | −1.2 ± 1.0 | 2.1 ± 1.1 |
Kabelvåg | −0.4± 0.4 | 1.3 ± 0.8 | −1.3 ± 0.9 | 0.4 ± 1.1 |
Bodø | −0.2 ± 0.4 | 2.6 ± 0.8 | −0.3 ± 1.0 | 2.5 ± 1.2 |
Rørvik | −1.2 ± 0.8 | 1.9 ± 1.0 | ||
Heimsjø | −1.0 ± 0.3 | 1.4 ± 0.7 | −0.4 ± 0.7 | 2.0 ± 0.9 |
Kristiansund | −0.6 ± 0.4 | 0.9 ± 0.7 | 0.0 ± 0.8 | 1.5 ± 1.0 |
Ålesund | 1.2 ± 0.4 | 2.4 ± 0.7 | 0.4 ± 0.8 | 1.7 ± 1.0 |
Måløy | 1.1 ± 0.3 | 2.3 ± 0.7 | 1.4 ± 0.7 | 2.6 ± 0.9 |
Bergen | 0.9 ± 0.3 | 2.2 ± 0.7 | 1.0 ± 0.6 | 2.2 ± 0.9 |
Stavanger | 0.9 ± 0.3 | 2.0 ± 0.7 | 0.9 ± 0.5 | 2.0 ± 0.8 |
Tregde | 0.4 ± 0.2 | 1.7 ± 0.7 | 1.4 ± 0.5 | 2.6 ± 0.8 |
Helgeroa | −0.8 ± 0.7 | 2.3 ± 0.9 | ||
Oscarsborg | −2.2 ± 0.5 | 2.0 ± 0.8 | −1.8 ± 1.0 | 2.4 ± 1.2 |
Oslo | −2.3 ± 0.5 | 2.3 ± 0.8 | −1.5 ± 1.0 | 3.2 ± 1.2 |
Weighted average sea-level rise | 2.0 ± 0.6 | 2.2 ± 0.6 |
Tide Gauge | GIA-Corrected Rate | Altimetry | Altimetry |
---|---|---|---|
from Tide Gauge | TP, J1, J2 | E1, E2, EN, SARAL | |
(mm/Year) | (mm/Year) | (mm/Year) | |
1993–2016 | 1993–2016 | 1993–2016 | |
Vardø | 3.0 ± 0.9 | 2.4 ± 0.9 | |
Honningsvåg | 2.8 ± 0.9 | 3.1 ± 0.9 | |
Hammerfest | 3.5 ± 0.9 | 3.2 ± 0.9 | |
Tromsø | 3.1 ± 0.9 | 4.1 ± 0.9 | |
Andenes | 3.1 ± 0.9 | 4.0 ± 0.8 | |
Harstad | 2.9 ± 0.9 | 4.8 ± 0.9 | |
Kabelvåg | 3.0 ± 0.9 | 5.3 ± 0.9 | |
Bodø | 2.2 ± 1.0 | 5.2 ± 1.0 | |
Rørvik | 3.1 ± 1.0 | 3.7 ± 0.8 | 3.5 ± 0.9 |
Mausund | 3.1 ± 1.4 | 3.8 ± 0.8 | 4.1 ± 0.8 |
Heimsjø | 3.3 ± 0.9 | 4.2 ± 0.8 | 4.8 ± 0.9 |
Kristiansund | 3.4 ± 0.9 | 4.2 ± 0.8 | 4.6 ± 0.8 |
Ålesund | 2.3 ± 0.9 | 3.4 ± 0.8 | 4.5 ± 0.8 |
Måløy | 3.8 ± 0.9 | 3.5 ± 0.8 | 4.1 ± 0.8 |
Bergen | 2.9 ± 0.8 | 4.3 ± 0.8 | 3.5 ± 0.8 |
Stavanger | 3.3 ± 0.8 | 3.9 ± 0.8 | 4.1 ± 0.9 |
Tregde | 2.3 ± 0.8 | 4.2 ± 0.8 | 4.1 ± 0.9 |
Helgeroa | 3.4 ± 1.0 | 3.8 ± 0.8 | 3.6 ± 0.9 |
Viker | 3.9 ± 1.1 | 3.9 ± 0.8 | 3.5 ± 0.9 |
Weighted average sea | |||
level rise | 3.2 ± 0.6 | 4.0 ± 0.7 | |
Weighted average sea | |||
level rise south of 66 N | 3.1 ± 0.6 | 3.9 ± 0.7 | 4.0 ± 0.7 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breili, K.; Simpson, M.J.R.; Nilsen, J.E.Ø. Observed Sea-Level Changes along the Norwegian Coast. J. Mar. Sci. Eng. 2017, 5, 29. https://doi.org/10.3390/jmse5030029
Breili K, Simpson MJR, Nilsen JEØ. Observed Sea-Level Changes along the Norwegian Coast. Journal of Marine Science and Engineering. 2017; 5(3):29. https://doi.org/10.3390/jmse5030029
Chicago/Turabian StyleBreili, Kristian, Matthew J. R. Simpson, and Jan Even Øie Nilsen. 2017. "Observed Sea-Level Changes along the Norwegian Coast" Journal of Marine Science and Engineering 5, no. 3: 29. https://doi.org/10.3390/jmse5030029
APA StyleBreili, K., Simpson, M. J. R., & Nilsen, J. E. Ø. (2017). Observed Sea-Level Changes along the Norwegian Coast. Journal of Marine Science and Engineering, 5(3), 29. https://doi.org/10.3390/jmse5030029