Observed Sea-Level Changes along the Norwegian Coast
Abstract
:1. Introduction
2. Data and Methods
2.1. Analysis of the Norwegian Tide Gauges
2.2. Analysis of Altimetry Data from the Norwegian Coast
3. Sea-Level Rates along the Norwegian Coast
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ACF | Autocorrelation Function |
AIC | Akaike’s Information Criterion |
AR | Autoregressive |
BIC | Bayesian Information Criterion |
GIA | Glacial Isostatic Adjustment |
GDR | Geophysical Data Records |
GMSL | Global Mean Sea Level |
GNSS | Global Navigation Satellite System |
IB | Inverse Barometer |
InSAR | Interferometric Synthetic Aperture Radar |
ITRF | International Terrestrial Reference Frame |
NMA | The Norwegian Mapping Authority |
PACF | Partial Autocorrelation Function |
PSMSL | Permanent Service for Mean Sea Level |
RSL | Relative Sea Level |
SAR | Synthetic Aperture Radar |
SIRAL | Synthetic Aperture Interferometric Radar Altimeter |
SSH | Sea Surface Height |
VLM | Vertical Land Motion |
References
- Simpson, M.J.R.; Ravndal, O.R.; Sande, H.; Nilsen, J.E.Ø.; Kierulf, H.P.; Vestøl, O.; Steffen, H. Projected 21st century sea-level changes, extreme sea levels, and sea level allowances for Norway. J. Mar. Sci. Eng. 2017. submitted. [Google Scholar]
- Dangendorf, S.; Marcos, M.; Wöppelmann, G.; Conrad, C.P.; Frederikse, T.; Riva, R. Reassessment of 20th century global mean sea level rise. Proc. Natl. Acad. Sci. USA 2017, 114, 5946–5951. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M.; Horsburgh, K.; Bates, P.; Smith, R. Quantifying the uncertainty in future coastal flood risk estimates for the UK. J. Coast. Res. 2011, 27, 870–881. [Google Scholar] [CrossRef]
- Lewis, M.; Schumann, G.; Bates, P.; Horsburgh, K. Understanding the variability of an extreme storm tide along a coastline. Estuar. Coast. Shelf Sci. 2013, 123, 19–25. [Google Scholar] [CrossRef]
- Hunter, J. A simple technique for estimating an allowance for uncertain sea-level rise. Clim. Chang. 2012, 113, 239–252. [Google Scholar] [CrossRef]
- Frederikse, T.; Riva, R.; Kleinherenbrink, M.; Wada, Y.; van den Broeke, M.; Marzeion, B. Closing the sea level budget on a regional scale: Trends and variability on the Northwestern European continental shelf. Geophys. Res. Lett. 2016, 43, 10864–10872. [Google Scholar] [CrossRef] [PubMed]
- Richter, K.; Nilsen, J.E.O.; Drange, H. Contributions to sea level variability along the Norwegian coast for 1960–2010. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Douglas, B.C. Global Sea Level Rise. J. Geophys. Res. 1991, 96, 6981–6992. [Google Scholar] [CrossRef]
- Vestøl, O. Determination of postglacial land uplift in Fennoscandia from leveling, tide-gauges and continuous GPS stations using least squares collocation. J. Geod. 2006, 80, 248–258. [Google Scholar] [CrossRef]
- Marcos, M.; Tsimplis, M.N. Forcing of coastal sea level rise patterns in the North Atlantic and the Mediterranean Sea. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Henry, O.; Prandi, P.; Llovel, W.; Cazenave, A.; Jevrejeva, S.; Stammer, D.; Meyssignac, B.; Koldunov, N. Tide gauge-based sea level variations since 1950 along the Norwegian and Russian coasts of the Arctic Ocean: Contribution of the steric and mass components. J. Geophys. Res. Oceans 2012, 117. [Google Scholar] [CrossRef]
- Wahl, T.; Haigh, I.D.; Dangendorf, S.; Jensen, J. Inter-annual and long-term mean sea level changes along the North Sea coastline. J. Coast. Res. 2013, 65, 1987–1992. [Google Scholar] [CrossRef]
- Calafat, F.M.; Chambers, D.P.; Tsimplis, M.N. Inter-annual to decadal sea-level variability in the coastal zones of the Norwegian and Siberian Seas: The role of atmospheric forcing. J. Geophys. Res. Oceans 2013, 118, 1287–1301. [Google Scholar] [CrossRef]
- Dangendorf, S.; Calafat, F.M.; Arns, A.; Wahl, T.; Haigh, I.D.; Jensen, J. Mean sea level variability in the North Sea: processes and implications. J. Geophys. Res. Oceans 2014, 119, 6820–6841. [Google Scholar] [CrossRef]
- Ghil, M.; Allen, M.R.; Dettinger, M.D.; Ide, K.; Kondrashov, D.; Mann, M.E.; Robertson, A.W.; Saunders, A.; Tian, Y.; Varadi, F.; et al. Advanced spectral methods for climatic time series. Rev. Geophys. 2002, 40. [Google Scholar] [CrossRef]
- Volkov, D.L.; Pujol, M.I. Quality assessment of a satellite altimetry product in the Nordic, Barents, and Kara seas. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Prandi, P.; Ablain, M.; Cazenave, A.; Picot, N. A New Estimation of Mean Sea Level in the Arctic Ocean from Satellite Altimetry. Mar. Geod. 2012, 35, 61–81. [Google Scholar] [CrossRef]
- Holgate, S.J.; Matthews, A.; Woodworth, P.L.; Rickards, L.J.; Tamisiea, M.E.; Bradshaw, E.; Foden, P.R.; Gordon, K.M.; Jevrejeva, S.; Pugh, J. New Data Systems and Products at the Permanent Service for Mean Sea Level. J. Coast. Res. 2013, 29, 493–504. [Google Scholar] [CrossRef]
- Woodworth, P.L. A Note on the Nodal Tide in Sea Level Records. J. Coast. Res. 2012, 28, 316–323. [Google Scholar] [CrossRef]
- Baart, F.; van Gelder, P.H.A.J.M.; de Ronde, J.; van Koningsveld, M.; Wouters, B. The effect of the 18.6-Year Lunar Nodal Cycle on Regional Sea-Level Rise Estimates. J. Coast. Res. 2012, 28, 511–516. [Google Scholar] [CrossRef]
- Scargle, D.J. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 1982, 263, 835–853. [Google Scholar] [CrossRef]
- Bos, M.S.; Williams, S.D.P.; Araújo, I.B.; Bastos, L. The effect of temporal correlated noise on the sea level rate and acceleration uncertainty. Geophys. J. Int. 2014, 196, 1423–1430. [Google Scholar] [CrossRef]
- Burgette, R.J.; Watson, C.S.; Church, J.A.; White, N.J.; Tregoning, P.; Coleman, R. Characterizing and minimizing the effects of noise in tide gauge time series: Relative and geocentric sea level rise around Australia. Geophys. J. Int. 2013, 194, 719–736. [Google Scholar] [CrossRef]
- Hünicke, B.; Zorita, E. Statistical Analysis of the Acceleration of Baltic Mean Sea-Level Rise, 1900–2012. Front. Mar. Sci. 2016, 3, 125. [Google Scholar] [CrossRef]
- Tamisiea, M.E.; Mitrovica, J.X. The moving boundaries of sea level change: Understanding the origins of geographic variability. Oceanography 2011, 24, 24–39. [Google Scholar] [CrossRef]
- Andersen, O.B.; Scharroo, R. Range and Geophysical Corrections in Coastal Regions: And Implications for Mean Sea Surface Determination. In Coastal Altimetry; Springer: Berlin, Germany, 2011; pp. 103–146. [Google Scholar]
- Collilieux, X.; Altamimi, Z.; Argus, D.F.; Boucher, C.; Dermanis, A.; Haines, B.J.; Herring, T.A.; Kreemer, C.W.; Lemoine, F.G.; Ma, C.; et al. External evaluation of the Terrestrial Reference Frame: Report of the task force of the IAG sub-commission 1.2. In Earth on the Edge: Science for a Sustainable Planet; Rizos, C., Willis, P., Eds.; Springer: Berlin, Germany, 2014; pp. 197–202. [Google Scholar] [CrossRef]
- Beckley, B.D.; Lemoine, F.G.; Luthcke, S.B.; Ray, R.D.; Zelensky, N.P. A reassessment of global and regional mean sea level trends from TOPEX and Jason-1 altimetry based on revised reference frame and orbits. Geophys. Res. Lett. 2007, 34, L14608. [Google Scholar] [CrossRef]
- Cipollini, P.; Calafat, F.M.; Jevrejeva, S.; Melet, A.; Prandi, P. Monitoring Sea Level in the Coastal Zone with Satellite Altimetry and Tide Gauges. Surv. Geophys. 2016, 1–25. [Google Scholar] [CrossRef]
- The Archive, Validation, and Interpretation of Satellite Oceanographic Data (AVISO) Portal. Available online: ftp://avisoftp.cnes.fr/AVISO/pub/ (accessed on 15 July 2017).
- ESA Earth Online. Available online: http://earth.esa.int (accessed on 15 July 2017).
- Ablain, M.; Phillips, S.; Picot, N.; Bronner, E. Jason-2 Global Statistical Assessment and Cross-Calibration with Jason-1. Mar. Geod. 2010, 33, 162–185. [Google Scholar] [CrossRef]
- Rhein, M.; Rintoul, S.R.; Aoki, S.; Campos, E.; Chambers, D.; Feely, R.; Gulev, S.; Johnson, G.C.; Josey, S.A.; Kostianoy, A.; et al. Observations: Ocean. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; ISBN 978-1-107-05799-1. [Google Scholar]
- Hay, C.C.; Morrow, E.; Kopp, R.E.; Mitrovica, J.X. Probabilistic reanalysis of twentieth-century sea-level rise. Nature 2015, 517, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Welch, B.L. The Generalization of ’Student’s’ Problem when Several Different Population Variances are Involved. Biometrika 1947, 34, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Lyu, K.; Zhang, X.; Church, J.A.; Slangen, A.B.A.; Hu, J. Time of emergence for regional sea-level change. Nat. Clim. Chang. 2014, 4, 1006–1010. [Google Scholar] [CrossRef]
- Haigh, I.D.; Wahl, T.; Rohling, E.J.; Price, R.M.; Pattiaratchi, C.B.; Calafat, F.M.; Dangendorf, S. Timescales for detecting a significant acceleration in sea level rise. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordá, G. Detection time for global and regional sea level trends and accelerations. J. Geophys. Res. Oceans 2014, 119, 7164–7174. [Google Scholar] [CrossRef] [Green Version]
- Dangendorf, S.; Rybski, D.; Mudersbach, C.; Müller, A.; Kaufmann, E.; Zorita, E.; Jensen, J. Evidence for long-term memory in sea level. Geophys. Res. Lett. 2014, 41, 5530–5537. [Google Scholar] [CrossRef]
- Minster, J.B.; Altamimi, Z.; Blewitt, G.; Carter, W.E.; Cazenave, A.; Dragert, H.; Herring, T.A.; Larson, K.M.; Ries, J.C.; Sandwell, D.T.; et al. Precise Geodetic Infrastructure: National Requirements for a Shared Resource; The National Academies Press: Washington, DC, USA, 2010; ISBN 978-0-309-15811-4. [Google Scholar]
- Vignudelli, S.; Cipollini, P.; Gommenginger, C.; Gleason, S.; Snaith, H.M.; Coelho, H.; Fernandes, M.J.; Lazaro, C.; Nunes, A.L.; Gomez-Enri, J.; et al. Satellite altimetry: Sailing closer to the coast. In Remote Sensing of the Changing Oceans; Springer: Berlin, Germany, 2011; pp. 217–238. [Google Scholar] [CrossRef]
- Vignudelli, S.; Kostianoy, A.G.; Cipollini, P.; Benveniste, J.E. Coastal Altimetry, 1st ed.; Springer: Berlin, Germany, 2011; ISBN 978-3-642-12795-3. [Google Scholar]
- Mercier, F.; Rosmorduc, V.; Carrere, L.; Thibaut, P. Coastal and Hydrology Altimetry Product (PISTACH) Handbook; Centre National D’études Spatiales: Paris, France, 2010; p. 64. [Google Scholar]
- Roblou, L.; Lyard, F.; Le Henaff, M.; Maraldi, C. X-TRACK, a new processing tool for altimetry in coastal oceans. In Proceedings of the Envisat Symposium 2007, Montreux, Switzerland, 23–27 April 2007; pp. 23–27. [Google Scholar] [CrossRef]
- Roblou, L.; Lamouroux, J.; Bouffard, J.; Lyard, F.; Le Hénaff, M.; Lombard, A.; Marsaleix, P.; De Mey, P.; Birol, F. Post-processing altimeter data towards coastal applications and integration into coastal models. In Coastal Altimetry; Springer: Berlin, Germany, 2011; pp. 217–246. ISBN 978-3-642-12795-3. [Google Scholar]
- Valladeau, G.; Thibaut, P.; Picard, B.; Poisson, J.C.; Tran, N.; Picot, N.; Guillot, A. Using SARAL/AltiKa to improve Ka-band altimeter measurements for coastal zones, hydrology and ice: The PEACHI prototype. Mar. Geod. 2015, 38, 124–142. [Google Scholar] [CrossRef]
- Ophaug, V.; Breili, K.; Gerlach, C. A comparative assessment of coastal mean dynamic topography in Norway by geodetic and ocean approaches. J. Geophys. Res. Oceans 2015, 120, 7807–7826. [Google Scholar] [CrossRef] [Green Version]
- Raney, R.K.; Phalippou, L. The Future of Coastal Altimetry. In Coastal Altimetry; Springer: Berlin, Germany, 2011; pp. 535–560. ISBN 978-3-642-12795-3. [Google Scholar]
- Idžanović, M.; Ophaug, V.; Andersen, O.B. Coastal Sea Level from CryoSat-2 SARIn Altimetry in Norway. Adv. Space Res. 2016. Submitted. [Google Scholar]
- Brooks, B.A.; Merrifield, M.A.; Foster, J.; Werner, C.L.; Gomez, F.; Bevis, M.; Gill, S. Space geodetic determination of spatial variability in relative sea level change, Los Angeles basin. Geophys. Res. Lett. 2007, 34, 1. [Google Scholar] [CrossRef]
Tide Gauge Name | Longitude ( E) Latitude ( N) | PSMSL-ID | Start yyyy.m | 1960–2010 (%) | 1984–2014 (%) | 1993–2016 (%) | Gap |
---|---|---|---|---|---|---|---|
Vardø | 31.104015 | 524 | 1947.7 | 60 | 95 | 95 | 1966.2–1984.0 |
70.374978 | |||||||
Honningsvåg | 25.972697 | 1267 | 1970.5 | 75 | 94 | 100 | |
70.980318 | |||||||
Hammerfest | 23.683227 | 758 | 1957.0 | 88 | 99 | 99 | 1970.0–1971.0 |
70.664641 | 1982.0–1983.0 | ||||||
Tromsø | 18.961323 | 680 | 1952.4 | 98 | 98 | 100 | |
69.647424 | |||||||
Andenes | 16.134848 | 425 | 1938.0 | 52 | 78 | 100 | 1955.8–1974.0 |
69.326067 | 1978.9–1982.0 | ||||||
Harstad | 16.548236 | 681 | 1952.2 | 94 | 97 | 100 | |
68.801261 | |||||||
Narvik | 17.425759 | 312 | 1928.1 | 98 | 97 | 100 | 1940.3–1947.3 |
68.428286 | |||||||
Kabelvåg | 14.482149 | 45 | 1948.0 | 97 | 97 | 100 | |
68.212639 | |||||||
Bodø | 14.390813 | 562 | 1949.7 | 89 | 95 | 99 | 1953.5–1954.5 |
67.288290 | 1971.0–1972.0 | ||||||
1972.5–1973.6 | |||||||
Rørvik | 11.230107 | 1241 | 1969.7 | 80 | 99 | 100 | |
64.859456 | |||||||
Mausund | 8.665230 | 1988.0 | 39 | 78 | 89 | 2005.9–2008.0 | |
63.869330 | |||||||
Trondheim-1 * | 10.391669 | 34 | 1945.5 | 60 | 20 | - | 1946.5–1949.0 |
63.436484 | |||||||
Trondheim-2 | 10.391669 | 1748 | 1990.0 | 40 | 80 | 100 | |
63.436484 | |||||||
Heimsjø | 9.101504 | 313 | 1928.0 | 99 | 99 | 100 | |
63.425224 | |||||||
Kristiansund | 7.734352 | 682 | 1952.4 | 99 | 98 | 100 | |
63.113859 | |||||||
Ålesund | 6.151946 | 509 | 1945.1 | 98 | 99 | 100 | 1946.1–1951.0 |
62.469414 | |||||||
Måløy | 5.113310 | 486 | 1943.5 | 95 | 99 | 100 | 1959.0–1961.0 |
61.933776 | |||||||
Bergen | 5.320487 | 58 | 1915.0 | 98 | 99 | 100 | 1941.9–1944.0 |
60.398046 | |||||||
Stavanger | 5.730121 | 47 | 1919.0 | 96 | 100 | 100 | 1940.0–1946.0 |
58.974339 | 1970.0–1971.3 | ||||||
Tregde | 7.554759 | 302 | 1927.8 | 99 | 99 | 99 | |
58.006377 | |||||||
Helgeroa | 9.856379 | 1113 | 1965.4 | 64 | 99 | 100 | 1970.0–1981.0 |
58.995212 | |||||||
Oscarsborg | 10.604861 | 33 | 1872.1 | 90 | 99 | 100 | 1883.0–1953.5 |
59.678073 | |||||||
Oslo | 10.734510 | 62 | 1885.5 | 96 | 97 | 100 | 1891.0–1914.0 |
59.908559 | |||||||
Viker | 10.949769 | 1759 | 1990.9 | 38 | 76 | 100 | |
59.036046 |
Tide Gauge | Relative Rate | GIA-Corrected | Relative Rate | GIA-Corrected |
---|---|---|---|---|
(mm/Year) | (mm/Year) | (mm/Year) | (mm/Year) | |
1960–2010 | 1960–2010 | 1984–2014 | 1984–2014 | |
Honningsvåg | 0.4 ± 0.8 | 1.9 ± 1.1 | ||
Hammerfest | 1.2 ± 0.4 | 3.0 ± 0.8 | 0.8 ± 0.8 | 2.7 ± 1.0 |
Tromsø | 0.5 ± 0.4 | 2.6 ± 0.7 | 0.3 ± 0.9 | 2.5 ± 1.1 |
Harstad | −0.5 ± 0.4 | 1.5 ± 0.7 | 0.1 ± 0.8 | 2.1 ± 1.0 |
Narvik | −1.8 ± 0.4 | 1.5 ± 0.8 | −1.2 ± 1.0 | 2.1 ± 1.1 |
Kabelvåg | −0.4± 0.4 | 1.3 ± 0.8 | −1.3 ± 0.9 | 0.4 ± 1.1 |
Bodø | −0.2 ± 0.4 | 2.6 ± 0.8 | −0.3 ± 1.0 | 2.5 ± 1.2 |
Rørvik | −1.2 ± 0.8 | 1.9 ± 1.0 | ||
Heimsjø | −1.0 ± 0.3 | 1.4 ± 0.7 | −0.4 ± 0.7 | 2.0 ± 0.9 |
Kristiansund | −0.6 ± 0.4 | 0.9 ± 0.7 | 0.0 ± 0.8 | 1.5 ± 1.0 |
Ålesund | 1.2 ± 0.4 | 2.4 ± 0.7 | 0.4 ± 0.8 | 1.7 ± 1.0 |
Måløy | 1.1 ± 0.3 | 2.3 ± 0.7 | 1.4 ± 0.7 | 2.6 ± 0.9 |
Bergen | 0.9 ± 0.3 | 2.2 ± 0.7 | 1.0 ± 0.6 | 2.2 ± 0.9 |
Stavanger | 0.9 ± 0.3 | 2.0 ± 0.7 | 0.9 ± 0.5 | 2.0 ± 0.8 |
Tregde | 0.4 ± 0.2 | 1.7 ± 0.7 | 1.4 ± 0.5 | 2.6 ± 0.8 |
Helgeroa | −0.8 ± 0.7 | 2.3 ± 0.9 | ||
Oscarsborg | −2.2 ± 0.5 | 2.0 ± 0.8 | −1.8 ± 1.0 | 2.4 ± 1.2 |
Oslo | −2.3 ± 0.5 | 2.3 ± 0.8 | −1.5 ± 1.0 | 3.2 ± 1.2 |
Weighted average sea-level rise | 2.0 ± 0.6 | 2.2 ± 0.6 |
Tide Gauge | GIA-Corrected Rate | Altimetry | Altimetry |
---|---|---|---|
from Tide Gauge | TP, J1, J2 | E1, E2, EN, SARAL | |
(mm/Year) | (mm/Year) | (mm/Year) | |
1993–2016 | 1993–2016 | 1993–2016 | |
Vardø | 3.0 ± 0.9 | 2.4 ± 0.9 | |
Honningsvåg | 2.8 ± 0.9 | 3.1 ± 0.9 | |
Hammerfest | 3.5 ± 0.9 | 3.2 ± 0.9 | |
Tromsø | 3.1 ± 0.9 | 4.1 ± 0.9 | |
Andenes | 3.1 ± 0.9 | 4.0 ± 0.8 | |
Harstad | 2.9 ± 0.9 | 4.8 ± 0.9 | |
Kabelvåg | 3.0 ± 0.9 | 5.3 ± 0.9 | |
Bodø | 2.2 ± 1.0 | 5.2 ± 1.0 | |
Rørvik | 3.1 ± 1.0 | 3.7 ± 0.8 | 3.5 ± 0.9 |
Mausund | 3.1 ± 1.4 | 3.8 ± 0.8 | 4.1 ± 0.8 |
Heimsjø | 3.3 ± 0.9 | 4.2 ± 0.8 | 4.8 ± 0.9 |
Kristiansund | 3.4 ± 0.9 | 4.2 ± 0.8 | 4.6 ± 0.8 |
Ålesund | 2.3 ± 0.9 | 3.4 ± 0.8 | 4.5 ± 0.8 |
Måløy | 3.8 ± 0.9 | 3.5 ± 0.8 | 4.1 ± 0.8 |
Bergen | 2.9 ± 0.8 | 4.3 ± 0.8 | 3.5 ± 0.8 |
Stavanger | 3.3 ± 0.8 | 3.9 ± 0.8 | 4.1 ± 0.9 |
Tregde | 2.3 ± 0.8 | 4.2 ± 0.8 | 4.1 ± 0.9 |
Helgeroa | 3.4 ± 1.0 | 3.8 ± 0.8 | 3.6 ± 0.9 |
Viker | 3.9 ± 1.1 | 3.9 ± 0.8 | 3.5 ± 0.9 |
Weighted average sea | |||
level rise | 3.2 ± 0.6 | 4.0 ± 0.7 | |
Weighted average sea | |||
level rise south of 66 N | 3.1 ± 0.6 | 3.9 ± 0.7 | 4.0 ± 0.7 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breili, K.; Simpson, M.J.R.; Nilsen, J.E.Ø. Observed Sea-Level Changes along the Norwegian Coast. J. Mar. Sci. Eng. 2017, 5, 29. https://doi.org/10.3390/jmse5030029
Breili K, Simpson MJR, Nilsen JEØ. Observed Sea-Level Changes along the Norwegian Coast. Journal of Marine Science and Engineering. 2017; 5(3):29. https://doi.org/10.3390/jmse5030029
Chicago/Turabian StyleBreili, Kristian, Matthew J. R. Simpson, and Jan Even Øie Nilsen. 2017. "Observed Sea-Level Changes along the Norwegian Coast" Journal of Marine Science and Engineering 5, no. 3: 29. https://doi.org/10.3390/jmse5030029