Simulation of Non-Stationary Mobile Underwater Acoustic Communication Channels Based on a Multi-Scale Time-Varying Multipath Model
Abstract
1. Introduction
2. Time-Varying Underwater Acoustic Channel Model
2.1. Multi-Scale Time-Varying Path Amplitude Model
2.2. Amplitude Decomposition Based on Singular Spectrum Analysis
3. Multi-Scale Time-Varying Multipath Amplitude Model
3.1. Large-Scale Propagation Loss Model
3.2. Medium-Scale Shadow Fading Model
3.2.1. Discretization Modeling
- (1)
- The homogeneous Markov chain assumption:
- (2)
- The observation independence assumption:
3.2.2. Model Parameter Estimation
3.2.3. Stochastic Process Reconstruction
3.3. Small-Scale Scattering Fading Model
3.4. Multi-Scale Time-Varying Channel Simulation
Algorithm 1 Measurement-driven time-varying channel simulation |
Input: moving trajectory , spread factor K, measured TVIR Initialization: Multipath number L, zero matrix , sampling rate For 1 ← to L do 1. Path amplitude: decompose using SSA to obtain , , and 2. Large-scale model: calculate ← Equation (8), convert . 3. Medium-scale model: perform state partitioning on to obtain O and S. Generate according to Equation (25). 4. Small-scale model: estimate the Gaussian fitting variance of . build a Gaussian random number generator , sample to generate . 5. Path amplitude: calculate ← Equation (3). 6. Random phase: build a uniform random number generator , sample to generate . end 7. Reorganization TVIR: obtain the path delay from measuring TVIR insert amplitudes and phases into the zero matrix corresponding delay index . Generate according to Equation (2). Output: |
4. Measured Channel Analysis
4.1. Channel Sounding and Parameter Estimation
4.2. Multi-Scale Model Validation
4.2.1. Large-Scale Model Validation
4.2.2. Medium-Scale Model Validation
4.2.3. Small-Scale Model Validation
4.2.4. Phase Model Validation
5. Simulation Testing and Model Comparison
5.1. Statistical Distribution Function
5.2. Temporal Dynamic Behavior
5.3. Communication Performance Prediction
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stojanovic, M.; Preisig, J. Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE Commun. Mag. 2009, 47, 84–89. [Google Scholar] [CrossRef]
- Adil, M.; Liu, S.; Mazhar, S.; Alharbi, A.; Yan, H.; Muzzammil, M. A novel transfer learning-based OFDM receiver design for enhanced underwater acoustic communication. J. Mar. Sci. Eng. 2025, 13, 1284. [Google Scholar] [CrossRef]
- Liu, H.; Ma, L.; Wang, Z.; Qiao, G. Channel prediction for underwater acoustic communication: A review and performance evaluation of algorithms. Remote Sens. 2024, 16, 1546. [Google Scholar] [CrossRef]
- Liu, S.; Yan, H.; Ma, L.; Liu, Y.; Han, X. UACC-GAN: A stochastic channel simulator for underwater acoustic communication. IEEE J. Ocean. Eng. 2024, 49, 17. [Google Scholar] [CrossRef]
- Liao, Y.H.; Shih, C.F.; Wu, J.J.; Wu, Y.X.; Yang, C.H.; Chang, C.C. ROVs utilized in communication and remote control integration technologies for smart ocean aquaculture monitoring systems. J. Mar. Sci. Eng. 2025, 13, 1225. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, H.; Pan, C.; Liu, S. Measurement-based analysis of characteristics of fast moving underwater acoustic communication channel. In Proceedings of the 2022 International Conference on Frontiers of Information Technology (FIT), Islamabad, Pakistan, 12–13 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 47–52. [Google Scholar]
- Lv, Z.; Bai, Y.; Jin, J.; Wang, H.; Ren, C. Analysis of wave fluctuation on underwater acoustic communication based USV. Appl. Acoust. 2021, 175, 107820. [Google Scholar] [CrossRef]
- Miron-Morin, M.; Barclay, D.R.; Bousquet, J.F. The oceanographic sensitivity of the acoustic channel in shallow water. IEEE J. Ocean. Eng. 2021, 46, 675–686. [Google Scholar] [CrossRef]
- Chitre, M. A high-frequency warm shallow water acoustic communications channel model and measurements. J. Acoust. Soc. Am. 2007, 122, 2580–2586. [Google Scholar] [CrossRef]
- Radosevic, A.; Proakis, J.G.; Stojanovic, M. Statistical characterization and capacity of shallow water acoustic channels. In Proceedings of the OCEANS 2009-EUROPE, Bremen, Germany, 11–14 May 2009; pp. 1–8. [Google Scholar]
- Kim, S.M.; Byun, S.H.; Kim, S.G.; Kim, D.J.; Kim, S.; Lim, Y.K. Underwater acoustic channel characterization at 6khz and 12khz in a shallow water near jeju island. In Proceedings of the 2013 OCEANS, San Diego, CA, USA, 23–27 September 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–4. [Google Scholar]
- Borowski, B. Characterization of a very shallow water acoustic communication channel. In Proceedings of the OCEANS 2009, Biloxi, MS, USA, 26–29 October 2009; pp. 1–10. [Google Scholar]
- Li, Y.; Jia, N.; Han, R.; Qu, S.; Liu, Y.; Guo, Z.; Guo, S. Statistical analysis of intermediate frequency underwater acoustic communication channel characteristics in deep-sea sound channel axis. Electronics 2024, 13, 4948. [Google Scholar] [CrossRef]
- Porter, M.B. The Bellhop Manual and User’s Guide: Preliminary Draft; Technical Report; Heat, Light, and Sound Research, Inc.: La Jolla, CA, USA, 2011; Volume 260. [Google Scholar]
- Siderius, M.; Porter, M.B. Modeling broadband ocean acoustic transmissions with time-varying sea surfaces. J. Acoust. Soc. Am. 2008, 124, 137–150. [Google Scholar] [CrossRef]
- Silva, A.; Rodriguez, O.C.; Zabel, F.; Huillery, J.; Jesus, S.M. Underwater acoustic simulations with a time variable acoustic propagation model. In Proceedings of the 10th European Conference on Underwater Acoustics, Istanbul, Turkey, 5–9 July 2010; pp. 1–7. [Google Scholar]
- Liu, C.; Zakharov, Y.V.; Chen, T. Doubly selective underwater acoustic channel model for a moving transmitter/receiver. IEEE Trans. Veh. Technol. 2012, 61, 938–950. [Google Scholar] [CrossRef]
- Jiang, W.; Tong, F.; Zheng, S.; Cao, X. Estimation of underwater acoustic channel with hybrid sparsity via static-dynamic discriminative compressed sensing. IEEE Sens. J. 2020, 20, 14548–14558. [Google Scholar] [CrossRef]
- Socheleau, F.X.; Laot, C.; Passerieux, J.M. Stochastic replay of non-wssus underwater acoustic communication channels recorded at sea. IEEE Trans. Signal Process. 2011, 59, 4838–4849. [Google Scholar] [CrossRef]
- Qarabaqi, P.; Stojanovic, M. Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels. IEEE J. Ocean. Eng. 2013, 38, 701–717. [Google Scholar] [CrossRef]
- Tu, X.; Xu, X.; Song, A. Statistical analysis and hybrid modeling of high-frequency underwater acoustic channels affected by wind-driven surface waves. J. Acoust. Soc. Am. 2022, 151, 3266–3279. [Google Scholar] [CrossRef]
- Socheleau, F.X. Cyclostationarity of communication signals in underwater acoustic channels. IEEE J. Ocean. Eng. 2022, 50, 425–447. [Google Scholar] [CrossRef]
- Baktash, E.; Dehghani, M.J.; Nasab, M.R.F.; Karimi, M. Shallow water acoustic channel modeling based on analytical second order statistics for moving transmitter/receiver. IEEE Trans. Signal Process. 2015, 63, 2533–2545. [Google Scholar] [CrossRef]
- Roudsari, H.M.; Bousquet, J.F.; McIntyre, G. Channel model for wideband time-varying underwater acoustic systems. In Proceedings of the OCEANS 2017, Aberdeen, UK, 19–22 June 2017; pp. 1–7. [Google Scholar]
- Zajic, A.G. Statistical modeling of MIMO Mobile-to-Mobile underwater channels. IEEE Trans. Veh. Technol. 2011, 60, 1337–1351. [Google Scholar] [CrossRef]
- Wadekar, S.; Mahalkari, A.; Ali, A.; Gupta, A. A review on singular spectrum analysis. In Proceedings of the 2022 IEEE International Conference on Current Development in Engineering and Technology (CCET), Bhopal, India, 23–24 December 2022; pp. 1–6. [Google Scholar]
- Liu, B.; Lei, J. Principles of Underwater Acoustics, 2nd ed.; Harbin Engineering University Press: Harbin, China, 2010. [Google Scholar]
- Thorp, W.H. Analytic description of the low-frequency attenuation coefficient. J. Acoust. Soc. Am. 1967, 42, 270. [Google Scholar] [CrossRef]
- Al-Dharrab, S.; Uysal, M.; Duman, T.M. Cooperative underwater acoustic communications [accepted from open call]. IEEE Commun. Mag. 2013, 51, 146–153. [Google Scholar] [CrossRef]
- van Walree, P. Channel Sounding for Acoustic Communications: Techniques and Shallow-Water Examples; Technical Report; Norwegian Defence Research Establishment (FFI): Kjeller, Norway, 2011. [Google Scholar]
- Jing, L.; Dong, C.; He, C.; Shi, W.; Yin, H. Adaptive modulation and coding for underwater acoustic communications based on data-driven learning algorithm. Remote Sens. 2022, 14, 5959. [Google Scholar] [CrossRef]
- Busacca, F.; Galluccio, L.; Palazzo, S.; Panebianco, A. A comparative analysis of predictive channel models for real shallow water environments. Comput. Netw. 2024, 250, 110557. [Google Scholar] [CrossRef]
Constant Term | Spreading Factor | Absorption Factor | ||
---|---|---|---|---|
FX1 | 0.78 | 2.55 | 2.17 dB/km | 9.8 × 10−3 |
FX2 | 0.75 | 3.02 | 2.32 dB/km | 1.5 × 10−2 |
Path | AIC | BIC | ||||
---|---|---|---|---|---|---|
FX1 | P1 | (6, 13) | 5.2 | 1.1 | 1328.7 | 1748.6 |
P2 | (8, 15) | 1.5 | 2.9 | 1375.2 | 2066.6 | |
P3 | (9, 14) | 1.4 | 2.1 | 1457.6 | 2235.5 | |
P4 | (7, 14) | 5.3 | 1.1 | 819.8 | 1367.2 | |
FX2 | P1 | (7, 12) | 5.9 | 1.0 | 919.1 | 1408.4 |
P2 | (6, 14) | 6.7 | 1.5 | 1141.8 | 1585.8 | |
P3 | (7, 15) | 8.5 | 1.8 | 1127.7 | 1703.3 | |
P4 | (6, 14) | 6.7 | 1.5 | 1185.1 | 1629.1 |
Markov Chain | Kalman Filter | HMM | |
---|---|---|---|
FX1, P1 | 1.5 | 3.4 | 1.1 |
FX2, P1 | 1.6 | 3.0 | 1.1 |
Project | P1 | P2 | P3 | P4 | |
---|---|---|---|---|---|
FX1 | 2.7 | 3.9 | 4.1 | 7.5 | |
1.5 | 1.5 | 1.4 | 2.6 | ||
3.5 | 9.3 | 6.7 | 6.3 | ||
4.2 | 9.2 | 9.2 | 6.0 | ||
FX2 | 2.8 | 3.2 | 5.0 | 7.7 | |
1.8 | 2.1 | 1.7 | 3.6 | ||
8.6 | 7.9 | 7.3 | 8.7 | ||
1.2 | 1.4 | 1.9 | 1.5 |
P1 | P2 | P3 | P4 | ||
---|---|---|---|---|---|
FX1 | Nakagami-m model | 0.18 | 0.28 | 0.20 | 0.15 |
AR-1 model | 0.17 | 0.27 | 0.20 | 0.14 | |
MSTV model | 0.04 | 0.06 | 0.06 | 0.10 | |
FX2 | Nakagami-m model | 0.19 | 0.12 | 0.16 | 0.24 |
AR-1 model | 0.19 | 0.11 | 0.15 | 0.22 | |
MSTV model | 0.05 | 0.05 | 0.07 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, H.; Liu, S.; Pan, C.; Kuang, B.; Wang, S.; Qiao, G. Simulation of Non-Stationary Mobile Underwater Acoustic Communication Channels Based on a Multi-Scale Time-Varying Multipath Model. J. Mar. Sci. Eng. 2025, 13, 1765. https://doi.org/10.3390/jmse13091765
Yan H, Liu S, Pan C, Kuang B, Wang S, Qiao G. Simulation of Non-Stationary Mobile Underwater Acoustic Communication Channels Based on a Multi-Scale Time-Varying Multipath Model. Journal of Marine Science and Engineering. 2025; 13(9):1765. https://doi.org/10.3390/jmse13091765
Chicago/Turabian StyleYan, Honglu, Songzuo Liu, Chenyu Pan, Biao Kuang, Siyu Wang, and Gang Qiao. 2025. "Simulation of Non-Stationary Mobile Underwater Acoustic Communication Channels Based on a Multi-Scale Time-Varying Multipath Model" Journal of Marine Science and Engineering 13, no. 9: 1765. https://doi.org/10.3390/jmse13091765
APA StyleYan, H., Liu, S., Pan, C., Kuang, B., Wang, S., & Qiao, G. (2025). Simulation of Non-Stationary Mobile Underwater Acoustic Communication Channels Based on a Multi-Scale Time-Varying Multipath Model. Journal of Marine Science and Engineering, 13(9), 1765. https://doi.org/10.3390/jmse13091765