A Novel COLREGs-Based Automatic Berthing Scheme for Autonomous Surface Vessels
Abstract
:1. Introduction
1.1. Background
1.2. A Literature Review
1.3. Contributions
- (1)
- A comprehensive framework for ASV automatic berthing in harbor environments, encompassing trajectory planning, tracking, and obstacle avoidance to address complex low-speed maneuvers.
- (2)
- The A*QB method, which enhances trajectory smoothness and kinematic feasibility for ASVs by combining A* global planning with quasi-uniform B-spline and quadratic interpolation. Compared to conventional A*, the proposed method generates trajectories better suited for low-speed, near-shore berthing.
- (3)
- A novel TTCCA scheme incorporating obstacle avoidance functions for static and dynamic obstacles compliant with COLREGs, ensuring safe and regulation-adherent navigation.
- (4)
- Extensive numerical simulations across four scenarios demonstrating the scheme’s superiority over existing methods (e.g., [19]) in tracking accuracy, obstacle avoidance efficiency, and berthing success rates.
1.4. Article Overview
2. Automatic Berthing System Overview
2.1. Notations
2.2. Mathematical Model
2.3. Synthetic Scheme
3. Trajectory Planning Subsystem
3.1. Grid Map Generation
3.2. Global Path-Planning Algorithm
3.3. Path Smoothing Method
3.4. Quadratic Interpolation Method
4. Navigation Control Subsystem
4.1. Cost Function
4.2. Static Obstacle Avoidance Function
4.3. Dynamic Obstacle Avoidance Function
- (1)
- Actions should be taken promptly as soon as collision risks are identified.
- (2)
- Actions must be clear enough for other vessels to readily perceive.
4.4. Optimal Problem
5. Simulation Results
5.1. Control Parameters
- (1)
- The ±10% parametric variations in , , and emulate unmodeled hydrodynamic effects and low-frequency current disturbances.
- (2)
- The first-order Markov process approximates wind/wave disturbances as bounded time-varying forces.
5.2. Experimental Results
5.2.1. Scenario 1 (Heading On)
5.2.2. Scenario 2 (Crossing)
5.2.3. Scenario 3 (Overtaking)
5.2.4. Scenario 4 (Complex Cases)
5.3. Analysis
- (1)
- Dynamic Obstacle Prediction: Unlike [19], which assumes static obstacle positions during the control horizon, TTCCA integrates the target vessel’s kinematic model into the NMPC optimization. This enables proactive trajectory adjustments based on predicted future obstacle positions, preventing last-minute maneuvers that breach safety margins.
- (2)
- COLREGs-Compliant Cost Shaping: While [19] employs a unified obstacle penalty function, TTCCA utilizes scenario-specific weighting strategies. For instance, in overtaking scenarios, the longitudinal separation weight prioritizes longitudinal separation, forcing the ASV to decelerate early and maintain a safe following distance.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Li, Z.; Wang, J. Impact of COVID-19 pandemic on energy consumption and carbon dioxide emissions in China’s transportation sector. Case Stud. Therm. Eng. 2021, 26, 101091. [Google Scholar] [CrossRef]
- Gu, Y.; Chen, Y.; Wang, X.; Chen, Z. Impact of COVID-19 epidemic on port operations: Evidence from Asian ports. Case Stud. Transp. Policy 2023, 12, 101014. [Google Scholar] [CrossRef] [PubMed]
- Talley, W.K.; Ng, M. Port multi-service congestion. Transp. Res. Part E: Logist. Transp. Rev. 2016, 94, 66–70. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Zhu, S.; Wang, C. Vessel intelligent transportation maritime service portfolios in port areas under e-navigation framework. J. Mar. Sci. Technol. 2020, 25, 1296–1307. [Google Scholar] [CrossRef]
- Im, N. A study on ship automatic berthing with assistance of auxiliary devices. Int. J. Nav. Archit. Ocean Eng. 2012, 4, 199–210. [Google Scholar]
- Liu, Q.; Li, T.; Shan, Q.; Yu, R.; Gao, X. Virtual guide automatic berthing control of marine ships based on heuristic dynamic programming iteration method. Neurocomputing 2021, 437, 289–299. [Google Scholar] [CrossRef]
- Maki, A.; Sakamoto, N.; Akimoto, Y.; Nishikawa, H.; Umeda, N. Application of optimal control theory based on the evolution strategy (CMA-ES) to automatic berthing. J. Mar. Sci. Technol. 2020, 25, 221–233. [Google Scholar] [CrossRef]
- Shuai, Y.; Li, G.; Cheng, X.; Skulstad, R.; Xu, J.; Liu, H.; Zhang, H. An efficient neural-network based approach to automatic ship docking. Ocean Eng. 2019, 191, 106514. [Google Scholar] [CrossRef]
- Skulstad, R.; Li, G.; Fossen, T.I.; Vik, B.; Zhang, H. A hybrid approach to motion prediction for ship docking—integration of a neural network model into the ship dynamic model. IEEE Trans. Instrum. Meas. 2020, 70, 2501311. [Google Scholar] [CrossRef]
- Johansen, T.A.; Perez, T.; Cristofaro, A. Ship collision avoidance and COLREGS compliance using simulation-based control behavior selection with predictive hazard assessment. IEEE Trans. Intell. Transp. Syst. 2016, 17, 3407–3422. [Google Scholar] [CrossRef]
- Yamato, H. Automatic berthing by the neural controller. In Proc. of Ninth Ship Control Systems Symposium; Department of the Navy: Washington, DC, USA, 1990; Volume 3, pp. 3183–3201. [Google Scholar]
- Im, N.; Hasegawa, K. Automatic ship berthing using parallel neural controller. IFAC Proc. Vol. 2001, 34, 51–57. [Google Scholar] [CrossRef]
- Ahmed, Y.A.; Hasegawa, K. Automatic ship berthing using artificial neural network trained by consistent teaching data using nonlinear programming method. Eng. Appl. Artif. Intell. 2013, 26, 2287–2304. [Google Scholar] [CrossRef]
- Qiang, Z.; Guibing, Z.; Xin, H.; Renming, Y. Adaptive neural network auto-berthing control of marine ships. Ocean Eng. 2019, 177, 40–48. [Google Scholar] [CrossRef]
- Xiong, Y.; Yu, J.; Tu, Y.; Pan, L.; Zhu, Q.; Mou, J. Research on data driven adaptive berthing method and technology. Ocean Eng. 2021, 222, 108620. [Google Scholar] [CrossRef]
- Self-tuning iterative learning control for an USV: Application to an autonomous berthing operation with an avoidance obstacle mechanism. Ocean Eng. 2024, 301, 117548. [CrossRef]
- Zhang, Y.; Zhao, H.; Zhang, Z.; Wang, H. Research on Ship Automatic Berthing Algorithm Based on Flow Matching and Velocity Matching. J. Mar. Sci. Eng. 2024, 12, 511. [Google Scholar] [CrossRef]
- Liao, Y.; Jia, Z.; Zhang, W.; Jia, Q.; Li, Y. Layered berthing method and experiment of unmanned surface vehicle based on multiple constraints analysis. Appl. Ocean Res. 2019, 86, 47–60. [Google Scholar] [CrossRef]
- Han, S.; Wang, Y.; Wang, L.; He, H. Automatic berthing for an underactuated unmanned surface vehicle: A real-time motion planning approach. Ocean Eng. 2021, 235, 109352. [Google Scholar] [CrossRef]
- Woo, J.; Kim, N. Vision-based target motion analysis and collision avoidance of unmanned surface vehicles. Proc. Inst. Mech. Eng. Part M: J. Eng. Marit. Environ. 2016, 230, 566–578. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Negenborn, R.R.; Wu, Q. Automatic docking for underactuated ships based on multi-objective nonlinear model predictive control. IEEE Access 2020, 8, 70044–70057. [Google Scholar] [CrossRef]
- Yuan, S.; Liu, Z.; Zheng, L.; Sun, Y.; Wang, Z. Event-based adaptive horizon nonlinear model predictive control for trajectory tracking of marine surface vessel. Ocean Eng. 2022, 258, 111082. [Google Scholar] [CrossRef]
- Zaccone, R. Colreg-compliant optimal path planning for real-time guidance and control of autonomous ships. J. Mar. Sci. Eng. 2021, 9, 405. [Google Scholar] [CrossRef]
- Eriksen, B.O.H.; Breivik, M.; Wilthil, E.F.; Flåten, A.L.; Brekke, E.F. The branching-course model predictive control algorithm for maritime collision avoidance. J. Field Robot. 2019, 36, 1222–1249. [Google Scholar] [CrossRef]
- Yuan, S.; Liu, Z.; Sun, Y.; Song, S.; Wang, Z.; Zheng, L. EMPMR berthing scheme: A novel event-triggered motion planning and motion replanning scheme for unmanned surface vessels. Ocean Eng. 2023, 286, 115666. [Google Scholar] [CrossRef]
- Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Mizuno, N.; Uchida, Y.; Okazaki, T. Quasi real-time optimal control scheme for automatic berthing. IFAC-PapersOnLine 2015, 48, 305–312. [Google Scholar] [CrossRef]
- Bitar, G.; Martinsen, A.B.; Lekkas, A.M.; Breivik, M. Two-stage optimized trajectory planning for asvs under polygonal obstacle constraints: Theory and experiments. IEEE Access 2020, 8, 199953–199969. [Google Scholar] [CrossRef]
- Sawada, R.; Hirata, K.; Kitagawa, Y.; Saito, E.; Ueno, M.; Tanizawa, K.; Fukuto, J. Path following algorithm application to automatic berthing control. J. Mar. Sci. Technol. 2021, 26, 541–554. [Google Scholar] [CrossRef]
- Hu, L.; Naeem, W.; Rajabally, E.; Watson, G.; Mills, T.; Bhuiyan, Z.; Salter, I. Colregs-compliant path planning for autonomous surface vehicles: A multiobjective optimization approach. IFAC-PapersOnLine 2017, 50, 13662–13667. [Google Scholar] [CrossRef]
- Yang, J.M.; Tseng, C.M.; Tseng, P. Path planning on satellite images for unmanned surface vehicles. Int. J. Nav. Archit. Ocean Eng. 2015, 7, 87–99. [Google Scholar] [CrossRef]
- Singh, Y.; Sharma, S.; Sutton, R.; Hatton, D.; Khan, A. A constrained A* approach towards optimal path planning for an unmanned surface vehicle in a maritime environment containing dynamic obstacles and ocean currents. Ocean Eng. 2018, 169, 187–201. [Google Scholar] [CrossRef]
- Chen, X.; Hu, R.; Luo, K.; Wu, H.; Biancardo, S.A.; Zheng, Y.; Xian, J. Intelligent ship route planning via an A* search model enhanced double-deep Q-network. Ocean Eng. 2025, 327, 120956. [Google Scholar] [CrossRef]
- Chen, X.; Riesenfeld, R.F.; Cohen, E. An algorithm for direct multiplication of B-splines. IEEE Trans. Autom. Sci. Eng. 2009, 6, 433–442. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, D.; Hwang, S.; Kim, H.; Kim, N.; Han, C. Dual-arm robot motion planning for collision avoidance using B-spline curve. Int. J. Precis. Eng. Manuf. 2017, 18, 835–843. [Google Scholar] [CrossRef]
- Yuan, S.; Liu, Z.; Sun, Y.; Wang, Z.; Zheng, L. An event-triggered trajectory planning and tracking scheme for automatic berthing of unmanned surface vessel. Ocean Eng. 2023, 273, 113964. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Q.; Wang, Y.; Hu, Y.; Guo, S. Event-triggered adaptive finite time trajectory tracking control for an underactuated vessel considering unknown time-varying disturbances. Transp. Saf. Environ. 2023, 5, tdac078. [Google Scholar] [CrossRef]
- Bakdi, A.; Vanem, E. Fullest COLREGs Evaluation Using Fuzzy Logic for Collaborative Decision-Making Analysis of Autonomous Ships in Complex Situations. IEEE Trans. Intell. Transp. Syst. 2022, 23, 18433–18445. [Google Scholar] [CrossRef]
- Namgung, H.; Kim, J.S. Collision Risk Inference System for Maritime Autonomous Surface Ships Using COLREGs Rules Compliant Collision Avoidance. IEEE Access 2021, 9, 7823–7835. [Google Scholar] [CrossRef]
- Namgung, H. Local Route Planning for Collision Avoidance of Maritime Autonomous Surface Ships in Compliance with COLREGs Rules. Sustainability 2022, 14, 198. [Google Scholar] [CrossRef]
- Vagale, A.; Bye, R.T.; Oucheikh, R.; Osen, O.L.; Fossen, T.I. Path Planning and Collision Avoidance for Autonomous Surface Vehicles II: A Comparative Study of Algorithms. J. Mar. Sci. Technol. 2021, 26, 1307–1323. [Google Scholar] [CrossRef]
- Gil, M. A concept of critical safety area applicable for an obstacle-avoidance process for manned and autonomous ships. Reliab. Eng. Syst. Saf. 2021, 214, 107806. [Google Scholar] [CrossRef]
Time interval | 0.1 |
Predictive horizon | 30 |
Static predictive horizon | 10 |
Control horizon | 3 |
State error weight matrix | |
Control input weight matrix | |
Terminal weight matrix | |
Maximum input | |
Minimum input | [−−− |
Scenario | Static Distance | Dynamic Distance | ||
---|---|---|---|---|
Han et al. [19] (m) | Proposed Scheme (m) | Han et al. [19] (m) | Proposed Scheme (m) | |
1 | 0.22 | 0.24 | 0.24 | 0.35 |
2 | 0.22 | 0.22 | 0.23 | 0.26 |
3 | 0.23 | 0.24 | 0.28 | 0.37 |
4.1 | 0.18 | 0.24 | 0.25 | 0.38 |
4.2 | 0.18 | 0.24 | 0.23 | 0.25 |
4.3 | 0.19 | 0.24 | 0.27 | 0.37 |
4.4 | 0.18 | 0.16 | 0.24 | 0.23 |
4.5 | 0.32 | 0.28 | 0.33 | 0.40 |
4.6 | 0.24 | 0.25 | 0.23 | 0.26 |
4.7 | 0.26 | 0.20 | 0.38 | 0.42 |
4.8 | 0.27 | 0.22 | 0.23 | 0.25 |
Scenario | Han et al. [19] (s) | Proposed Scheme (s) |
---|---|---|
1 | 0.048 | 0.039 |
2 | 0.047 | 0.039 |
3 | 0.048 | 0.039 |
4.1 | 0.046 | 0.039 |
4.2 | 0.045 | 0.039 |
4.3 | 0.046 | 0.039 |
4.4 | 0.045 | 0.039 |
4.5 | 0.043 | 0.038 |
4.6 | 0.043 | 0.038 |
4.7 | 0.045 | 0.039 |
4.8 | 0.044 | 0.038 |
Time (s) | Scenario 1 | Scenario 2 | Scenario 3 | |||
---|---|---|---|---|---|---|
CR11 | CR12 | CR11 | CR12 | CR11 | CR12 | |
10 | 0.40 | 0.40 | 0.40 | 0.40 | 0.41 | 0.40 |
20 | 0.40 | 0.40 | 0.38 | 0.40 | 0.40 | 0.40 |
30 | 0.41 | 0.41 | 0.41 | 0.41 | 0.40 | 0.69 |
40 | 0.36 | 0.39 | 0.45 | 0.41 | 0.40 | 0.39 |
50 | 0.29 | 0.43 | 0.37 | 0.43 | 0.40 | 0.39 |
60 | 0.39 | 0.37 | 0.39 | 0.41 | 0.44 | 0.44 |
70 | 0.37 | 0.38 | 0.39 | 0.40 | 0.43 | 0.62 |
80 | 0.17 | 0.26 | 0.40 | 0.40 | 0.46 | 0.33 |
90 | 0.40 | 0.40 | 0.40 | 0.40 | 0.41 | 0.41 |
100 | 0.41 | 0.41 | 0.40 | 0.40 | 0.40 | 0.41 |
Time (s) | Scenario 4.1 | Scenario 4.2 | Scenario 4.3 | Scenario 4.4 | ||||
---|---|---|---|---|---|---|---|---|
CR11 | CR12 | CR11 | CR12 | CR11 | CR12 | CR11 | CR12 | |
10 | 0.41 | 0.40 | 0.40 | 0.40 | 0.41 | 0.40 | 0.41 | 0.41 |
20 | 0.40 | 0.40 | 0.40 | 0.41 | 0.39 | 0.40 | 0.40 | 0.40 |
30 | 0.40 | 0.41 | 0.41 | 0.41 | 0.42 | 0.39 | 0.40 | 0.41 |
40 | 0.42 | 0.41 | 0.39 | 0.41 | 0.41 | 0.40 | 0.39 | 0.42 |
50 | 0.45 | 0.42 | 0.40 | 0.72 | 0.40 | 0.40 | 0.41 | 0.38 |
60 | 0.42 | 0.36 | 0.39 | 0.40 | 0.44 | 0.44 | 0.41 | 0.42 |
70 | 0.60 | 0.02 | 0.41 | 0.40 | 0.45 | 0.42 | 0.39 | 0.38 |
80 | 0.75 | 0.82 | 0.40 | 0.40 | 0.45 | 0.33 | 0.40 | 0.40 |
90 | 0.40 | 0.40 | 0.40 | 0.40 | 0.41 | 0.41 | 0.40 | 0.38 |
100 | 0.39 | 0.41 | 0.40 | 0.40 | 0.40 | 0.41 | 0.40 | 0.40 |
Time (s) | Scenario 4.5 | Scenario 4.6 | Scenario 4.7 | Scenario 4.8 | ||||
---|---|---|---|---|---|---|---|---|
CRI1 | CRI2 | CRI1 | CRI2 | CRI1 | CRI2 | CRI1 | CRI2 | |
10 | 0.40 | 0.40 | 0.41 | 0.40 | 0.41 | 0.40 | 0.41 | 0.40 |
20 | 0.40 | 0.40 | 0.40 | 0.40 | 0.39 | 0.41 | 0.40 | 0.40 |
30 | 0.40 | 0.40 | 0.40 | 0.40 | 0.39 | 0.40 | 0.40 | 0.40 |
40 | 0.53 | 0.41 | 0.40 | 0.41 | 0.53 | 0.02 | 0.41 | 0.41 |
50 | 0.47 | 0.42 | 0.40 | 0.42 | 0.43 | 0.39 | 0.45 | 0.44 |
60 | 0.42 | 0.37 | 0.44 | 0.38 | 0.43 | 0.38 | 0.43 | 0.41 |
70 | 0.41 | 0.41 | 0.41 | 0.37 | 0.41 | 0.41 | 0.42 | 0.54 |
80 | 0.41 | 0.41 | 0.47 | 0.90 | 0.41 | 0.41 | 0.44 | 0.56 |
90 | 0.41 | 0.41 | 0.41 | 0.41 | 0.41 | 0.41 | 0.41 | 0.41 |
100 | 0.39 | 0.41 | 0.41 | 0.41 | 0.40 | 0.41 | 0.31 | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, S.; Sun, G.; He, Y.; Sun, Y.; Song, S.; Zhang, W.; Jiao, H. A Novel COLREGs-Based Automatic Berthing Scheme for Autonomous Surface Vessels. J. Mar. Sci. Eng. 2025, 13, 903. https://doi.org/10.3390/jmse13050903
Yuan S, Sun G, He Y, Sun Y, Song S, Zhang W, Jiao H. A Novel COLREGs-Based Automatic Berthing Scheme for Autonomous Surface Vessels. Journal of Marine Science and Engineering. 2025; 13(5):903. https://doi.org/10.3390/jmse13050903
Chicago/Turabian StyleYuan, Shouzheng, Gongwu Sun, Yunqian He, Yuxin Sun, Simeng Song, Wanyuan Zhang, and Huifeng Jiao. 2025. "A Novel COLREGs-Based Automatic Berthing Scheme for Autonomous Surface Vessels" Journal of Marine Science and Engineering 13, no. 5: 903. https://doi.org/10.3390/jmse13050903
APA StyleYuan, S., Sun, G., He, Y., Sun, Y., Song, S., Zhang, W., & Jiao, H. (2025). A Novel COLREGs-Based Automatic Berthing Scheme for Autonomous Surface Vessels. Journal of Marine Science and Engineering, 13(5), 903. https://doi.org/10.3390/jmse13050903