Adaptive Sampling and Identification of Calanoid Copepods Using Acoustic Sensor Data and eDNA Metabarcoding: A Data-Driven Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample and Data Collection
2.2. Metabarcoding
2.3. Plankton Net Samples
3. Results
3.1. Adaptive Sampling
3.2. Metabarcoding
3.3. Validation Data
4. Discussion
4.1. Improving Sampling Using Information Fusion
4.2. Suggestions for Future Work
4.3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yates, K.L.; Clarke, B.; Thurstan, R.H. Purpose vs. Performance: What Does Marine Protected Area Success Look Like? Environ. Sci. Policy 2019, 92, 76–86. [Google Scholar] [CrossRef]
- Guidetti, P.; Milazzo, M.; Bussotti, S.; Molinari, A.; Murenu, M.; Pais, A.; Spanò, N.; Balzano, R.; Agardy, T.; Boero, F.; et al. Italian Marine Reserve Effectiveness: Does Enforcement Matter? Biol. Conserv. 2008, 141, 699–709. [Google Scholar] [CrossRef]
- Rinaldi, A. Biodiversity 2030: A Road Paved with Good Intentions. EMBO Rep. 2021, 22, e53130. [Google Scholar] [CrossRef] [PubMed]
- Perino, A.; Pereira, H.M.; Felipe-Lucia, M.; Kim, H.J.; Kühl, H.S.; Marselle, M.R.; Meya, J.N.; Meyer, C.; Navarro, L.M.; van Klink, R.; et al. Biodiversity Post-2020: Closing the Gap between Global Targets and National-Level Implementation. Conserv. Lett. 2022, 15, e12848. [Google Scholar] [CrossRef]
- Knight, K.; Seddon, E.S.; Toombs, T.P. A Framework for Evaluating Biodiversity Mitigation Metrics. Ambio 2020, 49, 1232–1240. [Google Scholar] [CrossRef]
- Proença, V.; Martin, L.J.; Pereira, H.M.; Fernandez, M.; McRae, L.; Belnap, J.; Böhm, M.; Brummitt, N.; García-Moreno, J.; Gregory, R.D.; et al. Global Biodiversity Monitoring: From Data Sources to Essential Biodiversity Variables. Biol. Conserv. 2017, 213, 256–263. [Google Scholar] [CrossRef]
- Powell, J.R.; Ohman, M.D. Use of Glider-Class Acoustic Doppler Profilers for Estimating Zooplankton Biomass. J. Plankton Res. 2012, 34, 563–568. [Google Scholar] [CrossRef]
- Basedow, S.L.; McKee, D.; Lefering, I.; Gislason, A.; Daase, M.; Trudnowska, E.; Egeland, E.S.; Choquet, M.; Falk-Petersen, S. Remote Sensing of Zooplankton Swarms. Sci. Rep. 2019, 9, 686. [Google Scholar] [CrossRef]
- Langlois, V.S.; Allison, M.J.; Bergman, L.C.; To, T.A.; Helbing, C.C. The Need for Robust QPCR-Based EDNA Detection Assays in Environmental Monitoring and Species Inventories. Environ. DNA 2021, 3, 519–527. [Google Scholar] [CrossRef]
- Picheral, M.; Catalano, C.; Brousseau, D.; Claustre, H.; Coppola, L.; Leymarie, E.; Coindat, J.; Dias, F.; Fevre, S.; Guidi, L.; et al. The Underwater Vision Profiler 6: An Imaging Sensor of Particle Size Spectra and Plankton, for Autonomous and Cabled Platforms. Limnol. Oceanogr. Methods 2022, 20, 115–129. [Google Scholar] [CrossRef]
- SINTEF OceanLab Observatory. Available online: https://www.oceanlabobservatory.no/ (accessed on 1 February 2025).
- Capurso, G.; Carroll, B.; Stewart, K.A. Transforming Marine Monitoring: Using EDNA Metabarcoding to Improve the Monitoring of the Mediterranean Marine Protected Areas Network. Mar. Policy 2023, 156, 105807. [Google Scholar] [CrossRef]
- Fu, M.; Hemery, L.; Sather, N. Cost Efficiency of Environmental DNA as Compared to Conventional Methods for Biodiversity Monitoring Purposes at Marine Energy Sites; Pacific Northwest National Laboratory (PNNL): Richland, WA, USA, 2021. [Google Scholar]
- McGeady, R.; Runya, R.M.; Dooley, J.S.G.; Howe, J.A.; Fox, C.J.; Wheeler, A.J.; Summers, G.; Callaway, A.; Beck, S.; Brown, L.S.; et al. A Review of New and Existing Non-Extractive Techniques for Monitoring Marine Protected Areas. Front. Mar. Sci. 2023, 10, 1126301. [Google Scholar]
- Deiner, K.; Bik, H.M.; Mächler, E.; Seymour, M.; Lacoursière-Roussel, A.; Altermatt, F.; Creer, S.; Bista, I.; Lodge, D.M.; de Vere, N.; et al. Environmental DNA Metabarcoding: Transforming How We Survey Animal and Plant Communities. Mol. Ecol. 2017, 26, 5872–5895. [Google Scholar] [CrossRef] [PubMed]
- Charron, D.F. Ecosystem Approaches to Health for a Global Sustainability Agenda. Ecohealth 2012, 9, 256–266. [Google Scholar]
- Roman, M.R.; Adolf, H.A.; Landry, M.R.; Madin, L.P.; Steinberg, D.K.; Zhang, X. Estimates of Oceanic Mesozooplankton Production: A Comparison Using the Bermuda and Hawaii Time-Series Data. Deep Sea Res. Part II Top. Stud. Oceanogr. 2002, 49, 175–192. [Google Scholar]
- Steinberg, D.K.; Lomas, M.W.; Cope, J.S. Long-Term Increase in Mesozooplankton Biomass in the Sargasso Sea: Linkage to Climate and Implications for Food Web Dynamics and Biogeochemical Cycling. Glob. Biogeochem. Cycles 2012, 26, 11. [Google Scholar] [CrossRef]
- McQuatters-Gollop, A.; Mitchell, I.; Vina-Herbon, C.; Bedford, J.; Addison, P.F.E.; Lynam, C.P.; Geetha, P.N.; Vermeulan, E.A.; Smit, K.; Bayley, D.T.I.; et al. From Science to Evidence—How Biodiversity Indicators Can Be Used for Effective Marine Conservation Policy and Management. Front. Mar. Sci. 2019, 6, 109. [Google Scholar]
- Batten, S.D.; Abu-Alhaija, R.; Chiba, S.; Edwards, M.; Graham, G.; Jyothibabu, R.; Kitchener, J.A.; Koubbi, P.; McQuatters-Gollop, A.; Muxagata, E.; et al. A Global Plankton Diversity Monitoring Program. Front. Mar. Sci. 2019, 6, 321. [Google Scholar]
- Thackeray, S.J.; Henrys, P.A.; Hemming, D.; Bell, J.R.; Botham, M.S.; Burthe, S.; Helaouet, P.; Johns, D.G.; Jones, I.D.; Leech, D.I.; et al. Phenological Sensitivity to Climate across Taxa and Trophic Levels. Nature 2016, 535, 241–245. [Google Scholar] [CrossRef]
- Reygondeau, G.; Beaugrand, G. Future Climate-Driven Shifts in Distribution of Calanus Finmarchicus. Glob. Change Biol. 2011, 17, 756–766. [Google Scholar] [CrossRef]
- Choquet, M.; Hatlebakk, M.; Dhanasiri, A.K.S.; Kosobokova, K.; Smolina, I.; Søreide, J.E.; Svensen, C.; Melle, W.; Kwasniewski, S.; Eiane, K.; et al. Genetics Redraws Pelagic Biogeography of Calanus. Biol. Lett. 2017, 13, 20170588. [Google Scholar] [CrossRef]
- Nielsen, T.G.; Kjellerup, S.; Smolina, I.; Hoarau, G.; Lindeque, P. Live Discrimination of Calanus Glacialis and C. Finmarchicus Females: Can We Trust Phenological Differences? Mar. Biol. 2014, 161, 1299–1306. [Google Scholar] [CrossRef]
- Geller, J.; Meyer, C.; Parker, M.; Hawk, H. Redesign of PCR Primers for Mitochondrial Cytochrome c Oxidase Subunit I for Marine Invertebrates and Application in All-Taxa Biotic Surveys. Mol. Ecol. Resour. 2013, 13, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Wangensteen, O.S.; Palacín, C.; Guardiola, M.; Turon, X. DNA Metabarcoding of Littoral Hardbottom Communities: High Diversity and Database Gaps Revealed by Two Molecular Markers. PeerJ 2018, 2018, e4705. [Google Scholar] [CrossRef]
- Illumina. 2013. Available online: https://www.illumina.com/ (accessed on 1 February 2025).
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet J. 2011, 17, 10. [Google Scholar] [CrossRef]
- Bucklin, A.; Peijnenburg, K.T.C.A.; Kosobokova, K.N.; O’Brien, T.D.; Blanco-Bercial, L.; Cornils, A.; Falkenhaug, T.; Hopcroft, R.R.; Hosia, A.; Laakmann, S.; et al. Toward a Global Reference Database of COI Barcodes for Marine Zooplankton. Mar. Biol. 2021, 168, 78. [Google Scholar] [CrossRef]
- Bardenhorst, S.K.; Vital, M.; Karch, A.; Rübsamen, N. Richness Estimation in Microbiome Data Obtained from Denoising Pipelines. Comput. Struct. Biotechnol. J. 2022, 20, 508–520. [Google Scholar] [CrossRef]
- Stewart, K.A. Understanding the Effects of Biotic and Abiotic Factors on Sources of Aquatic Environmental DNA. Biodivers. Conserv. 2019, 28, 983–1001. [Google Scholar]
- Farkas, J.; Svendheim, L.H.; Øverjordet, I.B.; Davies, E.J.; Altin, D.; Nordtug, T.; Olsvik, P.A.; Jager, T.; Hansen, B.H. Effects of Mine Tailing Exposure on the Development of Early Life Stages of the Marine Copepod Calanus Finmarchicus. J. Toxicol. Environ. Health—Part A Curr. Issues 2023, 88, 85–93. [Google Scholar] [CrossRef]
- Hansen, B.H.; Altin, D.; Rørvik, S.F.; Øverjordet, I.B.; Olsen, A.J.; Nordtug, T. Comparative Study on Acute Effects of Water Accommodated Fractions of an Artificially Weathered Crude Oil on Calanus Finmarchicus and Calanus Glacialis (Crustacea: Copepoda). Sci. Total Environ. 2011, 409, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Strand, E.; Bagøien, E.; Edwards, M.; Broms, C.; Klevjer, T. Spatial Distributions and Seasonality of Four Calanus Species in the Northeast Atlantic. Prog. Oceanogr. 2020, 185, 102344. [Google Scholar] [CrossRef]
- Skreslet, S.; Olsen, K.; Mohus, Å.; Tande, K.S. Stage-Specific Habitats of Calanus Finmarchicus and Calanus Helgolandicus in a Stratified Northern Norwegian Fjord. ICES J. Mar. Sci. 2000, 57, 1656–1663. [Google Scholar]
- Djurhuus, A.; Pitz, K.; Sawaya, N.A.; Rojas-Márquez, J.; Michaud, B.; Montes, E.; Muller-Karger, F.; Breitbart, M. Evaluation of Marine Zooplankton Community Structure through Environmental DNA Metabarcoding. Limnol. Oceanogr. Methods 2018, 16, 209–221. [Google Scholar] [CrossRef]
- Suter, L.; Polanowski, A.M.; Clarke, L.J.; Kitchener, J.A.; Deagle, B.E. Capturing Open Ocean Biodiversity: Comparing Environmental DNA Metabarcoding to the Continuous Plankton Recorder. Mol. Ecol. 2021, 30, 3140–3157. [Google Scholar]
- Nielsen, K.M.; Johnsen, P.J.; Bensasson, D.; Daffonchio, D. Release and Persistence of Extracellular DNA in the Environment. Environ. Biosaf. Res. 2007, 6, 37–53. [Google Scholar] [CrossRef]
- Lindeque, P.K.; Harris, R.P.; Jones, M.B.; Smerdon, G.R. Simple Molecular Method to Distinguish the Identity of Calanus Species (Copepoda: Calanoida) at Any Developmental Stage. Mar. Biol. 1999, 133, 91–96. [Google Scholar]
- Choquet, M.; Kosobokova, K.; Kwaśniewski, S.; Hatlebakk, M.; Dhanasiri, A.K.S.; Melle, W.; Daase, M.; Svensen, C.; Søreide, J.E.; Hoarau, G. Can Morphology Reliably Distinguish between the Copepods Calanus Finmarchicus and C. Glacialis, or Is DNA the Only Way? Limnol. Oceanogr. Methods 2018, 16, 237–252. [Google Scholar] [CrossRef]
- Gabrielsen, T.M.; Merkel, B.; Søreide, J.E.; Johansson-Karlsson, E.; Bailey, A.; Vogedes, D.; Nygård, H.; Varpe, Ø.; Berge, J. Potential Misidentifications of Two Climate Indicator Species of the Marine Arctic Ecosystem: Calanus Glacialis and C. Finmarchicus. Polar Biol. 2012, 35, 1621–1628. [Google Scholar] [CrossRef]
- Lindeque, P.K.; Harris, R.P.; Jones, M.B.; Smerdon, G.R. Distribution of Calanus Spp. as Determined Using a Gnetic Identification System. Sci. Mar. 2004, 68 (Suppl. 1), 121–129. [Google Scholar]
- Holman, L.E.; Parker-Nance, S.; De Bruyn, M.; Creer, S.; Carvalho, G.; Rius, M. Managing Human-Mediated Range Shifts: Understanding Spatial, Temporal and Genetic Variation in Marine Non-Native Species. Philos. Trans. R. Soc. B Biol. Sci. 2022, 377, 20210025. [Google Scholar] [CrossRef]
- Xiong, W.; Li, H.; Zhan, A. Early Detection of Invasive Species in Marine Ecosystems Using High-Throughput Sequencing: Technical Challenges and Possible Solutions. Mar. Biol. 2016, 163, 139. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, L.; Deng, Y.; Zhi, X.; Jiang, Y.H.; Tu, Q.; Xie, J.; Van Nostrand, J.D.; He, Z.; Yang, Y. Reproducibility and Quantitation of Amplicon Sequencing-Based Detection. ISME J. 2011, 5, 1303–1313. [Google Scholar] [CrossRef] [PubMed]
- Berge, J.; Cottier, F.; Varpe, Ø.; Renaud, P.E.; Falk-Petersen, S.; Kwasniewski, S.; Griffiths, C.; SØreide, J.E.; Johnsen, G.; Aubert, A.; et al. Arctic Complexity: A Case Study on Diel Vertical Migration of Zooplankton. J. Plankton Res. 2014, 36, 1279–1297. [Google Scholar] [CrossRef]
- Bandara, K.; Varpe, Ø.; Wijewardene, L.; Tverberg, V.; Eiane, K. Two Hundred Years of Zooplankton Vertical Migration Research. Biol. Rev. 2021, 96, 1547–1589. [Google Scholar] [CrossRef]
- Yamahara, K.M.; Preston, C.M.; Birch, J.; Walz, K.; Marin, R.; Jensen, S.; Pargett, D.; Roman, B.; Ussler, W.; Zhang, Y.; et al. In Situ Autonomous Acquisition and Preservation of Marine Environmental Dna Using an Autonomous Underwater Vehicle. Front. Mar. Sci. 2019, 6, 373. [Google Scholar] [CrossRef]
- Hendricks, A.; Mackie, C.M.; Luy, E.; Sonnichsen, C.; Smith, J.; Grundke, I.; Tavasoli, M.; Furlong, A.; Beiko, R.G.; LaRoche, J.; et al. Compact and Automated EDNA Sampler for in Situ Monitoring of Marine Environments. Sci. Rep. 2023, 13, 5210. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veylit, L.; Piarulli, S.; Farkas, J.; Davies, E.J.; Stevenson-Jones, R.; Aas, M.; Majaneva, S.; Hakvåg, S. Adaptive Sampling and Identification of Calanoid Copepods Using Acoustic Sensor Data and eDNA Metabarcoding: A Data-Driven Approach. J. Mar. Sci. Eng. 2025, 13, 685. https://doi.org/10.3390/jmse13040685
Veylit L, Piarulli S, Farkas J, Davies EJ, Stevenson-Jones R, Aas M, Majaneva S, Hakvåg S. Adaptive Sampling and Identification of Calanoid Copepods Using Acoustic Sensor Data and eDNA Metabarcoding: A Data-Driven Approach. Journal of Marine Science and Engineering. 2025; 13(4):685. https://doi.org/10.3390/jmse13040685
Chicago/Turabian StyleVeylit, Lara, Stefania Piarulli, Julia Farkas, Emlyn J. Davies, Ralph Stevenson-Jones, Marianne Aas, Sanna Majaneva, and Sigrid Hakvåg. 2025. "Adaptive Sampling and Identification of Calanoid Copepods Using Acoustic Sensor Data and eDNA Metabarcoding: A Data-Driven Approach" Journal of Marine Science and Engineering 13, no. 4: 685. https://doi.org/10.3390/jmse13040685
APA StyleVeylit, L., Piarulli, S., Farkas, J., Davies, E. J., Stevenson-Jones, R., Aas, M., Majaneva, S., & Hakvåg, S. (2025). Adaptive Sampling and Identification of Calanoid Copepods Using Acoustic Sensor Data and eDNA Metabarcoding: A Data-Driven Approach. Journal of Marine Science and Engineering, 13(4), 685. https://doi.org/10.3390/jmse13040685