Uncertainty Analysis of Overflow Due to Sea Dike Failure During Typhoon Events
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Typhoon Model
2.3. Storm Surge and Wave Model
2.3.1. ADCIRC Model v52
2.3.2. SWAN Model v41.31
2.4. Sea Dike Failure Model
2.5. Statistical Error Analysis
2.6. Research Outline
3. Results
3.1. Storm Surge and Wave Model Calibration and Validation
3.2. Sensitivity Analysis of Sea Dike Failure Model Parameters
3.3. Uncertainty Analysis
4. Discussion
4.1. Novelty and Strength
4.2. Limitations and Applicability
4.3. Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Water Resources Agency, Ministry of Economic Affairs. 2020 Water Resources Statistics of the Republic of China; Water Resources Agency, Ministry of Economic Affairs: Taipei City, Taiwan, 2020.
- Jelesnianski, C.P. A numerical calculation of storm tides induced by a tropical storm impinging on a continental shelf. Mon. Weather Rev. 1965, 93, 343–358. [Google Scholar] [CrossRef]
- Glahn, B.; Taylor, A.; Kurkowski, N.; Shaffer, W.A. The Role of the SLOSH model in national weather service storm surge forecasting. Natl. Weather Dig. 2009, 33, 3–14. [Google Scholar]
- Zhang, Y.; Baptista, A.M. SELFE: A semi-implicit Eulerian-Lagrangian finite-element model for cross-scale ocean circulation. Ocean Model. 2008, 21, 71–96. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, F.; Stanev, E.V.; Grashorn, S. Seamless cross-scale modeling with SCHISM. Ocean Model. 2016, 102, 64–81. [Google Scholar] [CrossRef]
- Westerink, J.J.; Luettich, R.A.; Blain, C.A.; Scheffner, N.W. ADCIRC: An Advanced Three-Dimensional Circulation Model for Shelves, Coasts and Estuaries; Report 2: Users’ Manual for ADCIRC-2DDI. Technical Report, DRP-94; U.S. Army Corps of Engineers: Wahington, DC, USA, 1994.
- Amarouche, K.; Akpinor, A.; Bachari, N.E.S.; Cakmak, R.E.; Houma, F. Evaluation of a high-resolution wave hindcast model SWAN for the West Mediterranean basin. Appl. Ocean Res. 2019, 84, 225–241. [Google Scholar] [CrossRef]
- Vieira, F.; Cavalcante, G.; Campos, E. Analysis of wave climate and trends in a semi-enclosed basin (Persian Gulf) using a validated SWAN model. Ocean Eng. 2020, 196, 106821. [Google Scholar] [CrossRef]
- Yan, J.; Rong, Z.; Li, P.; Qin, T.; Yu, X.; Chi, Y.; Gao, Z. Modeling waves over the Changjiang River Estuary using a high-resolution unstructured SWAN model. Ocean Model. 2022, 173, 102007. [Google Scholar]
- Rybalko, A.; Myslenkov, S. Analysis of current influence on the wind wave parameters in the Black Sea based on SWAN simulations. J. Ocean Eng. Mar. Energy 2023, 9, 145–163. [Google Scholar] [CrossRef]
- Jialei, L.; Shi, J.; Zhang, W.; Xia, J.; Wang, Q. Numerical simulations on waves in the Northwest Pacific Ocean based on SWAN models. J. Phys. Conf. Ser. 2023, 2486, 012034. [Google Scholar] [CrossRef]
- Foteinis, S.; Hancock, J.; Mazarakis, N.; Tsoutsos, T.; Synolakis, C.E. A comparative analysis of wave power in the nearshore by WAM estimates and in-situ (AWAC) measurements. The case study of Varkiza, Athens, Greece. Energy 2017, 138, 500–508. [Google Scholar] [CrossRef]
- Stathopoulos, C.; Galanis, G.; Kallos, G. A coupled modeling study of mechanical and thermodynamical air-ocean interface processes under sea storm conditions. Dyn. Atmos. Ocean. 2020, 91, 101140. [Google Scholar] [CrossRef]
- Bhavithra, R.S.; Sannasiraj, S.A. Climate change projection of wave climate due to Vardah cyclone in the Bay of Bengal. Dyn. Atmos. Ocean. 2022, 97, 101279. [Google Scholar] [CrossRef]
- Heo, K.Y.; Ha, T.; Park, K.S. The effects of a typhoon-induced oceanic cold wake on typhoon intensity and typhoon-induced ocean waves. J. Hydro-Environ. Res. 2017, 14, 61–75. [Google Scholar] [CrossRef]
- Abdolali, A.; Roland, A.; van der Westhuysen, A.; Meixner, J.; Chawla, A.; Hesser, T.J.; Smith, J.M.; Sikiric, M.D. Large-scale hurricane modeling using domain decomposition parallelization and implicit scheme implemented in WAVEWATCH III wave model. Coast. Eng. 2020, 157, 103656. [Google Scholar] [CrossRef]
- Soran, M.B.; Amarouche, K.; Akpinar, A. Spatial calibration of WAVEWATCH III model against satellite observations using different input and dissipation parameterizations in the Black Sea. Ocean Eng. 2022, 257, 111627. [Google Scholar] [CrossRef]
- Dietrich, J.C.; Tanaka, S.; Westerink, J.J.; Dawson, C.N.; Luettich, R.A., Jr.; Zijlema, M.; Holthuijsen, L.H.; Smith, J.M.; Westerink, L.G.; Westerink, H.J. Performance of the unstructured-mesh, SWAN+ADCIRC model in computing hurricane waves and surge. J. Sci. Comput. 2012, 52, 468–497. [Google Scholar] [CrossRef]
- Bhaskaran, P.K.; Nayak, S.; Bonthu, S.R.; Murty, P.L.N.; Sen, D. Performance and validation of a coupled parallel ADCIRC–SWAN model for THANE cyclone in the Bay of Bengal. Environ. Fluid Mech. 2013, 13, 601–623. [Google Scholar] [CrossRef]
- Marsooli, R.; Lin, N. Impacts of climate change on hurricane flood hazards in Jamaica Bay, New York. Clim. Change 2020, 163, 2153–2171. [Google Scholar] [CrossRef]
- Marsooli, R.; Wang, Y. Quantifying tidal phase effects on coastal flooding induced by hurricane sandy in manhattan, New York using a micro-scale hydrodynamic model. Front. Built Environ. 2020, 6, 149. [Google Scholar] [CrossRef]
- Vijayan, L.; Huang, W.; Ma, M.; Ozguven, E.; Ghorbanzadeh, M.; Yang, J.; Yang, Z. Improving the accuracy of hurricane wave modeling in Gulf of Mexico with dynamically-coupled SWAN and ADCIRC. Ocean Eng. 2023, 274, 114044. [Google Scholar] [CrossRef]
- Sebastian, M.; Behera, M.R.; Prakash, K.R.; Murty, P.L.N. Performance of various wind models for storm surge and wave prediction in the Bay of Bengal: A case study of Cyclone Hudhud. Ocean Eng. 2024, 297, 117113. [Google Scholar] [CrossRef]
- Burcharth, H.F. Reliability-based design of coastal structures. Adv. Coast. Ocean Eng. 1997, 3, 145–214. [Google Scholar]
- Schüttrumpf, H.; Oumeraci, H. Layer thicknesses and velocities of wave overtopping flow at seadikes. Coast. Eng. 2005, 52, 473–495. [Google Scholar] [CrossRef]
- Stanczak, G.; Oumeraci, H. Model for prediction of sea dike breaching initiated by breaking wave impact. Nat. Hazards 2012, 61, 673–687. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, G.; Hu, J.; Chen, X.; Yang, W.; Tao, A. Experimental study on mechanism of sea-dike failure due to wave overtopping. Appl. Ocean Res. 2017, 68, 171–181. [Google Scholar] [CrossRef]
- Yang, X. Study on slamming pressure calculation formula of plunging breaking wave on sloping sea dike. Int. J. Nav. Archit. Ocean Eng. 2017, 9, 439–445. [Google Scholar] [CrossRef]
- Losada, M.A. Method to assess the interplay of slope, relative water depth, wave steepness, and sea state persistence in the progression of damage to the rock layer over impermeable dikes. Ocean Eng. 2021, 239, 109904. [Google Scholar] [CrossRef]
- Bernitt, L.; Madsen, H.T. Temporal development of a sea dike breach. In Coastal Engineering 2008; World Scientific: Hackensack, NJ, USA, 2009; pp. 3237–3249. [Google Scholar]
- Bernitt, L.; Lynett, P. Breaching of sea dikes. Coast. Eng. Proc. 2011, 32, 1. [Google Scholar] [CrossRef]
- Van Steeg, P.; Joosten, R.A.; Steendam, G.J. Physical model tests to determine the roughness of stair shaped revetments. In Proceedings of the 3rd International Conference on Protection Against Overtopping, Grange-over-Sands, UK, 6–8 June 2018. [Google Scholar]
- Pan, J.; Wang, S.; Sun, T.; Chen, M.; Wang, D. Experimental study on inner slope failure mechanism of seawall by coupling effect of storm surge and wave. J. Oceanol. Limnol. 2019, 37, 1912–1920. [Google Scholar] [CrossRef]
- Li, M.S.; Hsu, C.J.; Hsu, H.C.; Tsai, L.H. Numerical analysis of vertical breakwater stability under extreme waves. J. Mar. Sci. Eng. 2020, 8, 986. [Google Scholar] [CrossRef]
- Synolakis, C.E. The runup of solitary waves. J. Fluid Mech. 1987, 185, 523–545. [Google Scholar] [CrossRef]
- Lo, H.Y.; Park, Y.S.; Liu, P.L.F. On the run-up and back-wash processes of single and double solitary waves—An experimental study. Coast. Eng. 2013, 80, 1–14. [Google Scholar] [CrossRef]
- Pujara, N.; Miller, D.; Park, Y.S.; Baldock, T.E.; Liu, P.L.F. The influence of wave acceleration and volume on the swash flow driven by breaking waves of elevation. Coast. Eng. 2020, 158, 103697. [Google Scholar] [CrossRef]
- Li, Y.; Raichlen, F. Energy balance model for breaking solitary wave runup. J. Waterw. Port Coast. Ocean Eng. 2003, 129, 47–59. [Google Scholar] [CrossRef]
- Hsiao, S.C.; Hsu, T.W.; Lin, T.C.; Chang, Y.H. On the evolution and run-up of breaking solitary waves on a mild sloping beach. Coast. Eng. 2008, 55, 975–988. [Google Scholar] [CrossRef]
- Wu, G.; Shi, F.; Kirby, J.T.; Liang, B.; Shi, J. Modeling wave effects on storm surge and coastal inundation. Coast. Eng. 2018, 140, 371–382. [Google Scholar] [CrossRef]
- Carrier, G.F.; Greenspan, H.P. Water waves of finite amplitude on a sloping beach. J. Fluid Mech. 1985, 4, 97–109. [Google Scholar] [CrossRef]
- Hughes, S.A. Estimation of wave run-up on smooth, impermeable slopes using the wave momentum flux parameter. Coast. Eng. 2004, 51, 1085–1104. [Google Scholar] [CrossRef]
- Pedersen, G.K.; Lindstrom, E.; Bertelsen, A.F.; Jensen, A.; Laskovski, D.; Saelevik, G. Runup and boundary layers on sloping beaches. Phys. Fluids 2013, 25, 012102. [Google Scholar] [CrossRef]
- Wu, W.; Li, P.; Zhai, F.; Gu, Y.; Liu, Z. Evaluation of different wind resources in simulating wave height for the Bohai, Yellow, and East China Seas (BYES) with SWAN model. Cont. Shelf Res. 2020, 207, 104217. [Google Scholar] [CrossRef]
- Hall, J.V.; Watts, J.W. Laboratory Investigation of the Vertical Rise of Solitary Waves on Impermeable Slopes: Tech. Memo; Beach Erosion US Board Engineer Research and Development Center: Vicksburg, MI, USA, 1953. [Google Scholar]
- Higuera, P.; Liu, P.L.F.; Lin, C.; Wong, W.Y.; Kao, M.J. Highly-resolved numerical and laboratory analysis for nonbreaking solitary wave swash over a steep slope. Coast. Eng. Proc. 2018, 36, 152266. [Google Scholar] [CrossRef]
- Li, C.; Özkan-Haller, H.T.; Lomonaco, P.; Maddux, T.B.; García-Medina, G. Experimental study of wave runup variability on a dissipative beach. J. Geophys. Res. Ocean. 2022, 127, e2022jc018418. [Google Scholar] [CrossRef]
- Svensson, C.; Kjeldsen, T.R.; Jones, D.A. Flood frequency estimation using a joint probability approach within a Monte Carlo framework. Hydrol. Sci. J. 2013, 58, 8–27. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Luo, Y.; Zhang, M. Climate change sensitivity assessment of streamflow and agricultural pollutant transport in California’s Central Valley using Latin hypercube sampling. Hydrol. Process. 2013, 27, 2666–2675. [Google Scholar] [CrossRef]
- Li, N.; McLaughlin, D.; Kinzelbach, W.; Li, W.P.; Dong, X.G. Using an ensemble smoother to evaluate parameter uncertainty of an integrated hydrological model of Yanqi basin. J. Hydrol. 2015, 529, 146–158. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, X.L.; Huo, Z.L.; Feng, S.Y.; Huang, G.H.; Mao, X.M. Uncertainty and sensitivity assessments of an agricultural–hydrological model (RZWQM2) using the GLUE method. J. Hydrol. 2016, 534, 19–30. [Google Scholar] [CrossRef]
- Reder, K.; Alcamo, J.; Flörke, M. A sensitivity and uncertainty analysis of a continental-scale water quality model of pathogen pollution in African rivers. Ecol. Model. 2017, 351, 129–139. [Google Scholar] [CrossRef]
- Moreno-Rodenas, A.M.; Tscheikner-Gratl, F.; Langeveld, J.G.; Clemens, F.H.L.R. Uncertainty analysis in a large-scale water quality integrated catchment modelling study. Water Res. 2019, 158, 46–60. [Google Scholar] [CrossRef]
- Oddo, P.C.; Lee, B.S.; Garner, G.G.; Srikrishnan, V.; Reed, P.M.; Forest, C.E.; Keller, K. Deep uncertainties in sea-level rise and storm surge projections: Implications for coastal flood risk management. Risk Anal. 2020, 40, 153–168. [Google Scholar] [CrossRef]
- Durap, A.; Balas, C.E.; Çokgör, S.; Balas, E.A. An integrated Bayesian risk model for coastal flow slides using 3-D hydrodynamic transport and Monte Carlo simulation. Mar. Sci. Eng. 2023, 11, 943. [Google Scholar] [CrossRef]
- Silva, A.V.; Gomes, G.J.C.; Huertas, J.R.C.; Cândido, E.S. Exploring tailings dam stability considering uncertainties in the critical state parameters of the NorSand model. Geotech. Geol. Eng. 2024, 42, 4721–4741. [Google Scholar] [CrossRef]
- Fleming, J.; Fulcher, C.; Luettich, R.; Estrade, B.; Allen, G.; Winer, H. A real time storm surge forecasting using ADCIRC. Estuarine and coastal modeling. In Proceedings of the 10th International Conference on Estuarine and Coastal Modeling, Newport, RI, USA, 5–7 November 2007; pp. 893–912. [Google Scholar]
- Young, I.R.; Sobey, R.J. The Numerical Prediction of Tropical Cyclone Wind-Waves; Department of Civil & Systems Engineering, James Cook University of North Queensland: Townsville, Australia, 1981. [Google Scholar]
- Graham, H.E.; Nunn, D.E. Meteorological Conditions Pertinent to Standard Project Hurricane; Atlantic and Gulf Coasts of United States, National Hurricane Research Project, Report No. 33; US Weather Service: Silver Spring, MA, USA, 1959.
- Luettich, R.A.; Westerink, J.J.; Scheffner, N.W. ADCIRC: An Advanced Three-Dimensional Circulation Model for Shelves, Coasts, and Estuaries, Report I: Theory and Methodology of ADCIRC-2DDI and ADCIRC-3DL; Technical Report DRP-92-6; US Army Corps of Engineers: Washington, DC, USA, 1992.
- Fofonova, V.; Androsov, A.; Sander, L.; Kuznetsov, I.; Amorim, F.; Hass, H.C.; Wiltshire, K.H. Non-linear aspects of the tidal dynamics in the Sylt-Rømø Bight, south-eastern North Sea. Ocean Sci. 2019, 15, 1761–1782. [Google Scholar] [CrossRef]
- Yang, Z.; Shao, W.; Ding, Y.; Shi, J.; Ji, Q. Wave simulation by the SWAN model and FVCOM considering the sea-water level around the Zhoushan Islands. J. Mar. Sci. Eng. 2020, 8, 783. [Google Scholar] [CrossRef]
- Ou, S.H.; Liau, J.M.; Hsu, T.W.; Tzang, S.Y. Simulating typhoon waves by SWAN wave model in coastal waters of Taiwan. Ocean Eng. 2002, 29, 947–971. [Google Scholar] [CrossRef]
- Sukhinov, A.; Protsenko, E.; Protsenko, S.; Panasenko, N. Wind wave dynamic’s analysis based on 3d wave hydrodynamics and SWAN models using remote sensing data. In Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East; Springer Nature: Cham, Switzerland, 2024; pp. 399–406. [Google Scholar]
- Akpinar, A.; van Vledder, G.P.; Kömürcü, M.İ.; Ozger, M. Evaluation of the numerical wave model (SWAN) for wave simulation in the Black Sea. Cont. Shelf Res. 2012, 50–51, 80–99. [Google Scholar] [CrossRef]
- Longuet-Higgins, M.S.; Stewart, R.W. Radiation stress and mass transport in gravity waves, with application to ‘surf beats’. J. Fluid Mech. 1962, 13, 481–504. [Google Scholar] [CrossRef]
- Xie, D.M.; Zou, Q.P.; Canon, J.W. Application of SWAN+ADCIRC to tide-surge and wave simulation in Gulf of Maine during Patriot’s Day storm. Water Sci. Eng. 2016, 9, 33–41. [Google Scholar] [CrossRef]
- Janssen, P.A.E.M.; Lionello, P.; Reistad, M.; Hollingsworth, A. Hindcasts and data assimilation studies with the WAM model during the SEASET period. J. Geophys. Res. 1989, 94, 973–993. [Google Scholar] [CrossRef]
- McGovern, D.J.; Allsop, W.; Rossetto, T.; Chandler, I. Large-scale experiments on tsunami inundation and overtopping forces at vertical sea walls. Coast. Eng. 2023, 179, 104222. [Google Scholar] [CrossRef]
- Hoshiyamada. Technical Standards and Commentary for Harbor Facilities (Volume I); Japan Port and Harbor Association: Tokyo, Japan, 2007. [Google Scholar]
- Vicinanza, D.; Frigaard, P. Wave pressure acting on a seawave slot-cone generator. Coast. Eng. 2008, 55, 553–568. [Google Scholar] [CrossRef]
- Stephenson, W.J.; Kirk, R.M. Development of shore platforms on Kaikoura Peninsula, South Island, New Zealand: Part One: The role of waves. Geomorphology 2000, 32, 21–41. [Google Scholar] [CrossRef]
- Wu, D.; Liu, H. Effects of the bed roughness and beach slope on the non-breaking solitary wave runup height. Coast. Eng. 2022, 174, 104122. [Google Scholar] [CrossRef]
- Liu, W.C.; Wu, C.Y. Flash flood routing modeling for levee-breaks and overbank flows due to typhoon events in a complicated river system. Nat. Hazards 2011, 58, 1057–1076. [Google Scholar] [CrossRef]
- Chu, D.; Niu, H.; Qiao, W.; Zhang, X.; Zhang, J. Modeling study on the asymmetry of positive and negative storm surges along the southeastern coast of China. J. Mar. Sci. Eng. 2021, 9, 458. [Google Scholar] [CrossRef]
- Chen, W.B.; Liu, W.C. Modeling investigation of asymmetric tidal mixing and residual circulation in a partially mixing estuary. Environ. Fluid Mech. 2016, 16, 167–191. [Google Scholar] [CrossRef]
- Munroe, R.; Curtis, S. Storm surge evolution and its relationship to climate oscillations at Duck, NC. Theor. Appl. Climatol. 2017, 129, 185–200. [Google Scholar] [CrossRef]
- Xu, G.; Chen, X.; Gao, Z.; Dai, J.; Wang, J. Probabilistic models of marine environmental variables and their impact on dynamic responses of a sea-crossing suspension bridge. Ocean Eng. 2024, 308, 118210. [Google Scholar] [CrossRef]
- Smemoe, C.M.; Nelson, E.J.; Zundel, A.K.; Miller, A.W. Demonstrating floodplain uncertainty using flood probability maps. J. Am. Water Resour. Assoc. 2007, 43, 359–371. [Google Scholar] [CrossRef]
- Berends, K.D.; Warmink, J.J.; Hulscher, S.J.M.H. Efficient uncertainty quantification for impact analysis of human interventions in rivers. Environ. Model. Softw. 2018, 107, 50–58. [Google Scholar] [CrossRef]
- Altomare, C.; Tafuni, A.; Domínguez, J.M.; Crespo, A.J.C.; Gironella, X.; Sospedra, J. SPH simulations of real sea waves impacting a large-scale structure. J. Mar. Sci. Eng. 2020, 8, 826. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, Q.; Zhang, C. Numerical simulation of solitary waves overtopping on a sloping sea dike using a particle method. Wave Motion 2020, 95, 102535. [Google Scholar] [CrossRef]
- Yang, X.; Liang, G.; Hu, T.; Zhang, G.; Zhang, Z. Establishment of 3D numerical wave flume and its application to the wave propagation based on SPH method. Ocean Eng. 2024, 313, 119460. [Google Scholar] [CrossRef]
- Rajesh, B.G.; Choudhury, D. Sliding and overturning stability of seawalls subjected to non-breaking waves. In Proceedings of the 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Fukuoka, Japan, 9–13 November 2015. [Google Scholar]
Statistical Indices | Water Level | Wave Height | ||||
---|---|---|---|---|---|---|
Taipei Tamsui Estuary | Taichung Harbor | Hualien Harbor | Suao Buoy | Hsinchu Buoy | Qigu Buoy | |
Typhoon Soulik (2013) | ||||||
RMSE (m) | 0.24 | 0.33 | 0.11 | 0.37 | 0.28 | 0.25 |
DB | −0.39 | −0.1 | −0.21 | −0.11 | −0.09 | −0.08 |
Skill | 0.98 | 0.96 | 0.99 | 0.92 | 0.93 | 0.95 |
Typhoon Matmo (2014) | ||||||
RMSE (m) | 0.29 | 0.35 | 0.12 | 0.34 | 0.36 | 0.28 |
DB | 0.05 | 0.07 | 0.01 | −0.07 | −0.06 | −0.02 |
Skill | 0.96 | 0.92 | 0.99 | 0.90 | 0.88 | 0.93 |
Typhoon Haitang (2017) | ||||||
RMSE (m) | 0.22 | 0.30 | 0.14 | 0.21 | 0.33 | 0.32 |
DB | 0.15 | −0.03 | 0.23 | 0.02 | 0.21 | 0.09 |
Skill | 0.98 | 0.96 | 0.98 | 0.93 | 0.89 | 0.91 |
Parameter | Statistical Indices | Beta | Normal | Gamma | Lognormal | Weibull 3P | Log-Pearson 3 |
---|---|---|---|---|---|---|---|
γ | KS | 0.0137 | 0.0455 | 0.0243 | 0.026 | 0.0152 | 0.026 |
AIC | 61 | 313 | 166 | 200 | 87 | 203 | |
λSH | KS | 0.0087 | 0.0111 | 0.019 | 0.0241 | 0.0154 | 0.0098 |
AIC | −960 | −879 | −776 | −740 | −818 | −912 | |
α | KS | 0.0378 | 0.0632 | 0.0204 | 0.0354 | 0.0124 | 0.0239 |
AIC | −757 | −515 | −757 | −682 | −845 | −713 | |
β | KS | 0.0161 | 0.0319 | 0.0336 | 0.056 | 0.0135 | 0.0147 |
AIC | −372 | −228 | −219 | −149 | −410 | −374 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.-C.; Liu, W.-C.; Liu, H.-M. Uncertainty Analysis of Overflow Due to Sea Dike Failure During Typhoon Events. J. Mar. Sci. Eng. 2025, 13, 573. https://doi.org/10.3390/jmse13030573
Huang W-C, Liu W-C, Liu H-M. Uncertainty Analysis of Overflow Due to Sea Dike Failure During Typhoon Events. Journal of Marine Science and Engineering. 2025; 13(3):573. https://doi.org/10.3390/jmse13030573
Chicago/Turabian StyleHuang, Wei-Che, Wen-Cheng Liu, and Hong-Ming Liu. 2025. "Uncertainty Analysis of Overflow Due to Sea Dike Failure During Typhoon Events" Journal of Marine Science and Engineering 13, no. 3: 573. https://doi.org/10.3390/jmse13030573
APA StyleHuang, W.-C., Liu, W.-C., & Liu, H.-M. (2025). Uncertainty Analysis of Overflow Due to Sea Dike Failure During Typhoon Events. Journal of Marine Science and Engineering, 13(3), 573. https://doi.org/10.3390/jmse13030573