Assessment of Differences Between the Ports of Rotterdam, Valparaíso and San Antonio Towards Smart Ports, Emphasising Digital Technologies
Abstract
1. Introduction
2. Materials and Methods
3. Technologies for Optimising Port Activity
3.1. Blockchain in Port Optimisation
3.2. Artificial Intelligence in Port Optimisation
3.3. Big Data in Port Optimisation
3.4. IoT in Port Optimisation
3.5. 5G Network in Port Optimisation
3.6. Digital Twins in Port Optimisation
4. Port 4.0 and Port 5.0: Differences Between the Ports of Rotterdam, Valparaíso and San Antonio
4.1. Interaction and Integration of Technologies for a Smart Port
4.2. Port Assessment
Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| BC | Blockchain |
| CNN | Convolutional Neural Network |
| CRRCCA | Consolidated Report on Requests for Clarifications, Corrections or Additions |
| DT | Digital Twins |
| IoT | Internet of Things |
| LSTM | Long Short-Term Memory |
| PCS | Port Community System |
| RFID | Radio-Frequency Identification |
Appendix A
References
- Belmoukari, B.; Audy, J.F.; Forget, P. Smart port: A systematic literature review. Eur. Transp. Res. Rev. 2023, 15, 4. [Google Scholar] [CrossRef]
- Yang, Y.C.; Ge, Y.E. Adaptation strategies for port infrastructure and facilities under climate change at the Kaohsiung port. Transp. Policy 2020, 97, 232–244. [Google Scholar] [CrossRef]
- Kearney, A.; Harrington, D.; Kelliher, F. Executive capability for innovation: The Irish seaports sector. Eur. J. Train. Dev. 2018, 42, 342–361. [Google Scholar] [CrossRef]
- Sekar, D.M. Efficiency of Port Operation Its Influence on Supply Chain Network Design. Manag. Account. J. 2022, 57, 39. [Google Scholar] [CrossRef]
- Yang, B.; Mao, J. Knowledge Service Model of Port Supply Chain Enterprise Based on Ontology. J. Phys. Conf. Ser. 2020, 1575, 12003. [Google Scholar] [CrossRef]
- Wong, K.H.T.; Shou, E.C.; Zhang, H.; Ng, A.K.Y. Strategy formulation of new generation ports: A case study of Hong Kong International Terminals Ltd. (HIT). Res. Transp. Bus. Manag. 2017, 22, 239–254. [Google Scholar] [CrossRef]
- United Nations. Reveiw of Maritime Transport 2018; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Yagci, M.; Noordali, M. Maritime Trade: Riding the Waves of Commerce and Weathering the Storms of Disruption; Islamic Development Bank Institute: Jeddah, Saudi Arabia, 2024. [Google Scholar] [CrossRef]
- Obasi, C.; Oyakegha, S.; Monday, O.A. Port Logistics and Supply Chain Management: An Empirical Review. Afr. J. Econ. Sustain. Dev. 2024, 7, 82–91. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Z.; Xiao, G. Quantitative analysis of the impact of port economic development on maritime logistics and supply chain efficiency. Appl. Math. Nonlinear Sci. 2024, 9, 1–15. [Google Scholar] [CrossRef]
- Yarova, N.; Vorkunova, O. Global economic concept of creating a logistics center based on a maritime commercial port. Dev. Manag. Entrep. Methods Transp. 2022, 81, 27–42. [Google Scholar] [CrossRef]
- Flynn, M.; Lee, T.; Notteboom, T. The next step on the port generations ladder: Customer-centric and community ports. In Current Issues in Shipping, Ports and Logistics; Notteboom, T., Ed.; UPA—University Press Antwerp: Antwerp, Belgium, 2011; pp. 497–510. [Google Scholar]
- Sadia, R.; Tuli, F.A.; Lal, K. Digitization History and its Impact on the Economy, Employment, and Society. Glob. Discl. Econ. Bus. 2023, 12, 15–24. [Google Scholar] [CrossRef]
- EnerTIC. XIII Guía de Referencia Smart Energy; Technical Report; Plataforma enerTIC: Madrid, Spain, 2024. [Google Scholar]
- Molavi, A.; Lim, G.J.; Race, B. A framework for building a smart port and smart port index. Int. J. Sustain. Transp. 2020, 14, 686–700. [Google Scholar] [CrossRef]
- Jahn, C.; Nellen, N. Smart Port Concept: Strategic Development, Best Practices, Perspectives of Development. In Arctic Maritime Logistics: The Potentials and Challenges of the Northern Sea Route; Ilin, I., Devezas, T., Jahn, C., Eds.; Contributions to Management Science; Springer International Publishing: Cham, Switzerland, 2022; pp. 81–93. [Google Scholar] [CrossRef]
- Behdani, B. Port 4.0: A conceptual model for smart port digitalization. Transp. Res. Procedia 2023, 74, 346–353. [Google Scholar] [CrossRef]
- Kusumawati, E.D.; Karjono, K.; Karmanis, K. Review of Port Management Integrated Digitization System: A Pathway to Efficient and Sustainable Port Operations. Marit. Park J. Marit. Technol. Soc. 2023, 2, 52–57. [Google Scholar] [CrossRef]
- Paliwal, T.; Sikdar, A.; Kachhi, Z. Integration of Advanced Technologies for Industry 4.0. In AI-Driven IoT Systems for Industry 4.0; Jose, D., Nanjundan, P., Paul, S., Mohanty, S.N., Eds.; CRC Press: Boca Raton, FL, USA, 2024; pp. 114–142. [Google Scholar] [CrossRef]
- Molina, R. La revolución digital del mar: Los puertos del futuro. Rev. Obras Públicas 2018, 165, 66–71. [Google Scholar]
- Durán, C.; Fernández-Campusano, C.; Carrasco, R.; Carrillo, E. DMLBC: Dependable machine learning for seaports using blockchain technology. J. King Saud Univ.-Comput. Inf. Sci. 2024, 36, 101918. [Google Scholar] [CrossRef]
- Kaliszewski, A. Porty pia̧tej oraz szóstej generacji (5GP, 6GP)—ewolucja ekonomicznej i społecznej roli portów. Stud. Mater. Inst. Transp. Handlu Morskiego 2017, 14, 93–123. [Google Scholar] [CrossRef]
- Vetrivel, S.C.; Mohanasundaram, T. Industry 5.0 From Automation to Autonomy: Engineering the Shift. In Innovations in Engineering and Food Science; Mehta, S., Islam, F., Imran, A., Eds.; IGI Global: Hershey, PA, USA, 2024; Chapter 4; pp. 88–118. [Google Scholar] [CrossRef]
- Valionienė, E.; Župerkienė, E. Port-City Cultural Interaction’s Influence on the Sustainable Coastal Development. Cah. Sci. Transp.-Sci. Pap. Transp. 2024, 82, 133–151. [Google Scholar] [CrossRef]
- Hirata, E.; Watanabe, D.; Lambrou, M. Shipping Digitalization and Automation for the Smart Port. In Supply Chain—Recent Advances and New Perspectives in the Industry 4.0 Era; Bányai, T., Bányai, Á., Kaczmar, I., Eds.; IntechOpen: Rijeka, Croatia, 2022; Chapter 7; p. 102015. [Google Scholar] [CrossRef]
- Giraldo, J.D.; Castaño, T.; González, J.; López, V.; Velásquez, P.; Tamayo, J. Utilidad de las tecnologías de las industria 4.0 en los smart ports. Ing. Compet. 2024, 26, e-30212814. [Google Scholar] [CrossRef]
- Karagkouni, K.; Boile, M. Classification of Green Practices Implemented in Ports: The Application of Green Technologies, Tools, and Strategies. J. Mar. Sci. Eng. 2024, 12, 571. [Google Scholar] [CrossRef]
- Abaza, W.; Shalaby, A.F.; Yehia, M. Constructing a Theoretical Framework of the Urban Transformation Processes of the Port City Interface towards Resilient Egyptian Port Cities. Civ. Eng. Archit. 2022, 10, 71–92. [Google Scholar] [CrossRef]
- Markus, M.L. Technochange Management: Using IT to Drive Organizational Change. J. Inf. Technol. 2004, 19, 4–20. [Google Scholar] [CrossRef]
- Buiza-Camacho-Camacho, G.; del Mar Cerbán-Jiménez, M.; González-Gaya, C. Assessment of the factors influencing on a smart port with an analytic hierarchy process. Rev. DYNA 2016, 91, 498–501. [Google Scholar]
- Nguyen, H.P.; Pham, N.D.K.; Bui, V.D. Technical-Environmental Assessment of Energy Management Systems in Smart Ports. Int. J. Renew. Energy Dev. 2022, 11, 889–901. [Google Scholar] [CrossRef]
- Iberahim, H.; Albashri, N.Z.; Warnoh, I.E.; Rushdan, A.; Matsuura, Y. Port digitalisation: Technology readiness assessment and segmentation profile of malaysian port operators. J. Sustain. Sci. Manag. 2024, 19, 104–122. [Google Scholar] [CrossRef]
- Sooprayen, K.; Van de Kaa, G.; Pruyn, J.F.J. Factors for innovation adoption by ports: A systematic literature review. J. Ocean Eng. Mar. Energy 2024, 10, 953–962. [Google Scholar] [CrossRef] [PubMed]
- Nardo, M.; Saisana, M.; Saltelli, A.; Tarantola, S.; Hoffman, A.; Giovannini, E. Handbook on Constructing Composite Indicators: Methodology and User Guide; Number 2005/03; OECD Publishing: Paris, France, 2005. [Google Scholar] [CrossRef]
- Greco, S.; Ishizaka, A.; Tasiou, M.; Torrisi, G. On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness. Soc. Indic. Res. 2019, 141, 61–94. [Google Scholar] [CrossRef]
- Gonçalves, A.; de Aguiar Dutra, A.R.; de Andrade Guerra, J.B.S.O.; Dutra, A. Ports and Climate Change: A Systematic Review Aligned With the Sustainable Development Goals. Sustain. Dev. 2025, in press. [Google Scholar] [CrossRef]
- International Bank for Reconstruction and Development. The Container Port Performance Index 2023: A Comparable Assessment of Performance Based on Vessel Time in Port; World Bank Publications: Washington, DC, USA, 2024; p. 82. [Google Scholar]
- Directemar. Boletín Estadistico Marítimo: Datos 2023; Technical Report; Armada de Chile: Valparaíso, Chile, 2024. [Google Scholar]
- Igonor, O.S.; Amin, M.B.; Garg, S. The Application of Blockchain Technology in the Field of Digital Forensics: A Literature Review. Blockchains 2025, 3, 5. [Google Scholar] [CrossRef]
- Morales-Alarcón, C.H.; Bodero-Poveda, E.; Villa-Yánez, H.M.; Buñay-Guisñan, P.A. Blockchain and Its Application in the Peer Review of Scientific Works: A Systematic Review. Publications 2024, 12, 40. [Google Scholar] [CrossRef]
- Almarri, S.; Aljughaiman, A. Blockchain Technology for IoT Security and Trust: A Comprehensive SLR. Sustainability 2024, 16, 10177. [Google Scholar] [CrossRef]
- Tsiulin, S.; Reinau, K.H.; Hilmola, O.P.; Goryaev, N.; Karam, A. Blockchain-based applications in shipping and port management: A literature review towards defining key conceptual frameworks. Rev. Int. Bus. Strateg. 2020, 30, 201–224. [Google Scholar] [CrossRef]
- Guan, P.; Wood, L.C.; Wang, J.X.; Duong, L.N.K. Blockchain adoption in the port industry: A systematic literature review. Cogent Bus. Manag. 2024, 11, 2431650. [Google Scholar] [CrossRef]
- Alahmadi, D.H.; Baothman, F.A.; Alrajhi, M.M.; Alshahrani, F.S.; Albalawi, H.Z. Comparative analysis of blockchain technology to support digital transformation in ports and shipping. J. Intell. Syst. 2021, 31, 55–69. [Google Scholar] [CrossRef]
- Kasaei, A.; Albadvi, A. Cargo chain: Cargo Management in Port Logistics with Blockchain Technology. Res. Sq. 2023; preprint. [Google Scholar] [CrossRef]
- Andrushchak, I. Aspects of blockchain technology as a component of information security. In Technical, Agricultural and Physical Sciences as the Main Sciences of Human Development; International Science Group, Ed.; Primedia eLaunch LLC: Dallas, TX, USA, 2024; pp. 292–300. [Google Scholar] [CrossRef]
- Ahmad, R.W.; Hasan, H.; Jayaraman, R.; Salah, K.; Omar, M. Blockchain applications and architectures for port operations and logistics management. Esearch Transp. Bus. Manag. 2021, 41, 100620. [Google Scholar] [CrossRef]
- Farah, M.B.; Ahmed, Y.; Mahmoud, H.; Shah, S.A.; Al-kadri, M.O.; Taramonli, S.; Bellekens, X.; Abozariba, R.; Idrissi, M.; Aneiba, A. A survey on blockchain technology in the maritime industry: Challenges and future perspectives. Futur. Gener. Comput. Syst. 2024, 157, 618–637. [Google Scholar] [CrossRef]
- Dwinovan, N.; Dillah, A.; Najmuddin, F.; Verawati, K. Eksplorasi Potensi Penggunaan Blockchain Dalam Optimalisasi Manajemen Pelabuhan di Indonesia: Tinjauan Literatur. J. Multidisiplin Dehasen 2024, 3, 277. [Google Scholar] [CrossRef]
- Liaqat, M.; Almazroi, A.A.; Shuja, J.; Mustafa, E. Securing oil port logistics: A blockchain framework for efficient and trustworthy trade documents. PLoS ONE 2024, 19, e0309526. [Google Scholar] [CrossRef]
- Derpich, I.; Duran, C.; Carrasco, R.; Moreno, F.; Fernandez-Campusano, C.; Espinosa-Leal, L. Pursuing Optimization Using Multimodal Transportation System: A Strategic Approach to Minimizing Costs and CO2 Emissions. J. Mar. Sci. Eng. 2024, 12, 976. [Google Scholar] [CrossRef]
- Durán, C.; Derpich, I.; Carrasco, R. Optimization of Port Layout to Determine Greenhouse Gas Emission Gaps. Sustainability 2022, 14, 13517. [Google Scholar] [CrossRef]
- Fuertes, G.; Alfaro, M.; Soto, I.; Carrasco, R.; Iturralde, D.; Lagos, C. Optimization model for location of RFID antennas in a supply chain. In Proceedings of the 2018 7th International Conference on Computers Communications and Control (ICCCC), Oradea, Romania, 8–12 May 2018; pp. 203–209. [Google Scholar] [CrossRef]
- Nasih, S.; Arezki, S.; Gadi, T. Blockchain Technology for tracking and tracing containers: Model and conception. Data Metadata 2024, 3, 373. [Google Scholar] [CrossRef]
- Wang, S.; Zhen, L.; Xiao, L.; Attard, M. Data-Driven Intelligent Port Management Based on Blockchain. Asia-Pac. J. Oper. Res. 2021, 38, 2040017. [Google Scholar] [CrossRef]
- Alkhaldi, B.; Al-Omary, A. Supply-Blockchain Functional Prototype for Optimizing Port Operations Using Hyperledger Fabric. Blockchains 2024, 2, 217–233. [Google Scholar] [CrossRef]
- Sangeerth, P.S.; Lakshmy, K.V. Blockchain based Smart Contracts in Automation of Shipping Ports. In Proceedings of the 2021 6th International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 20–22 January 2021; pp. 1248–1253. [Google Scholar] [CrossRef]
- Shamala, L.M.; Balasaraswathi, V.R.; Gayathri, R. Revolutionizing Industry and Business Processes with Smart Contracts in Blockchain. In Decentralizing the Online Experience With Web3 Technologies, 11th ed.; Darwish, D., Ed.; IGI Global: Hershey, PA, USA, 2024; pp. 225–245. [Google Scholar] [CrossRef]
- An, H.; Yu, L.; Li, Y.; Chen, C.; Liang, X.; Jiao, Y.; Zhao, G. Research on Logistics Traceability Application Based on Blockchain Technology. In Proceedings of the 2023 7th International Conference on Electronic Information Technology and Computer Engineering (EITCE ’23), New York, NY, USA, 20–22 October 2024; pp. 1691–1696. [Google Scholar] [CrossRef]
- Khan, M.R.; Masood, F.; Gul, I.; Khan, M.R. Blockchain Technology in Supply Chain Management: Opportunities and Challenges. In Convergence of Industry 4.0 and Supply Chain Sustainability; IGI Global: Hershey, PA, USA, 2024; pp. 275–295. [Google Scholar] [CrossRef]
- Karjono, K.; Kusumawati, E.D.; Pambudi, M.A.L.; Karmanis, K. Maritime Supply Chain Optimisation: A Case Study of Blockchain Integration in Port Logistics Management. Marit. Park J. Marit. Technol. Soc. 2024, 3, 135–141. [Google Scholar] [CrossRef]
- Abdallah, R.; Besancenot, J.; Bertelle, C.; Duvallet, C.; Gilletta, F. Assessing Blockchain Challenges in the Maritime Sector. In Blockchain and Applications, 4th International Congress; Prieto, J., Benítez Martínez, F.L., Ferretti, S., Arroyo Guardeño, D., Tomás Nevado-Batalla, P., Eds.; Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2023; Volume 595, pp. 13–22. [Google Scholar] [CrossRef]
- Kapnissis, G.; Leligou, E.E.; Vaggelas, G. Blockchain Challenges in Maritime Industry: An Empirical Investigation of the Willingness and the Main Drivers of Adoption by the Hellenic Shipping Industry. Open J. Appl. Sci. 2020, 10, 779–790. [Google Scholar] [CrossRef]
- Szabo, J.; Bernard, C.; Philip, L. Legal Implications and Challenges of Blockchain Technology and Smart Contracts. Comput. Life 2024, 12, 6–10. [Google Scholar] [CrossRef]
- Pejović, Č.; Lee, U. Blockchain Bills of Lading: A New Generation of Electronic Transport Documents. Pored. Pomor. Pravo 2022, 61, 31–62. [Google Scholar] [CrossRef]
- Moraes, K.K.; Ganga, G.M.D.; Godinho Filho, M.; Santa-Eulalia, L.A.; Tortorella, G.L. Overcoming technological barriers for blockchain adoption in supply chains: A diffusion of innovation (DOI)-informed framework proposal. Supply Chain Manag. Int. J. 2024, 30, 19–49. [Google Scholar] [CrossRef]
- Sinniati, S.; Darma, G.S. The promise of blockchain: Analysing potentials and barriers in supply chain management. BISMA (Bisnis Dan Manaj.) 2023, 16, 87–114. [Google Scholar] [CrossRef]
- Jin, H.; Dai, X.; Xiao, J. Towards a Novel Architecture for Enabling Interoperability amongst Multiple Blockchains. In Proceedings of the 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), Vienna, Austria, 2–6 July 2018; pp. 1203–1211. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Cao, X.; Huang, C.; Liu, E.; Qian, S.; Liu, X.; Wu, Y.; Dong, F.; Qiu, C.W.; et al. Artificial intelligence: A powerful paradigm for scientific research. Innovation 2021, 2, 100179. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Muhammad, K.; Waheed, Y. Artificial intelligence and industrial applications-A revolution in modern industries. Ain Shams Eng. J. 2024, 15, 102886. [Google Scholar] [CrossRef]
- Zevallos, J.C.L.N.; Converso, G.; Hernández, A.D.; Doria-Andrade, J. Machine Learning and Automation Systems to Improve Port and Maritime Logistics Efficiency. J. Ecohumanism 2025, 4, 625–631. [Google Scholar] [CrossRef]
- Alonso Medina, P.; Sanz Sáiz, R. Soluciones basadas en inteligencia artificial para el desarrollo de negocios en entornos portuarios. Rev. Ord. Sect. Marítimo 2024, 2, 35–51. [Google Scholar] [CrossRef]
- Liu, X. The Collaborative Application of Internet of Things and Artificial Intelligence in Smart Logistics. Front. Comput. Intell. Syst. 2023, 6, 35–38. [Google Scholar] [CrossRef]
- Chaibi, M.; Daghrir, J. Artificial Intelligence for Predictive Maintenance of Port Equipment: A Revolution in Progress. In Design and Modeling of Mechanical Systems—VI; Chouchane, M., Abdennadher, M., Aifaoui, N., Chaari, F., Bouaziz, S., Affi, Z., Haddar, M., Romdhane, L., Benamara, A., Eds.; Lecture Notes in Mechanical Engineering; Springer: Cham, Switzerland, 2024; pp. 332–340. [Google Scholar]
- Nadaf, S. AI for Predictive Maintenance in Industries. Int. J. Res. Appl. Sci. Eng. Technol. 2024, 12, 2013–2017. [Google Scholar] [CrossRef]
- Dinh, G.H.; Pham, H.T.; Nguyen, L.C.; Dang, H.Q.; Pham, N.D.K. Leveraging Artificial Intelligence to Enhance Port Operation Efficiency. Pol. Marit. Res. 2024, 31, 140–155. [Google Scholar] [CrossRef]
- Mekkaoui, S.E.; Benabbou, L.; Berrado, A. Machine Learning Models for Efficient Port Terminal Operations: Case of Vessels’ Arrival Times Prediction. IFAC-PapersOnLine 2022, 55, 3172–3177. [Google Scholar] [CrossRef]
- Lourakis, M.; Pateraki, M. Computer vision for increasing safety in container handling operations. In Human Factors and Systems Interaction, Proceedings of the AHFE 2022, New York, NY, USA, 24–28 July 2022; AHFE International: Honolulu, HI, USA, 2022; Volume 52. [Google Scholar] [CrossRef]
- Sivakumar, C.; Vali, T.K.; Reddy, P.S.B.; Meghana, M.L.; Sukumar, Y. AI-Powered Video Surveillance for Enhanced Intrusion Detection. In Proceedings of the 2024 International Conference on IoT Based Control Networks and Intelligent Systems, Bengaluru, India, 17–18 December 2024; pp. 1630–1634. [Google Scholar] [CrossRef]
- Sivapriya, J.; Ramani, D.R.; Srivastava, R.P.; Kumar, K.; Nair, R.V. AI-Powered Anomaly and Threat Detection for Surveillance Footage Analysis. In Proceedings of the 2024 8th International Conference on Inventive Systems and Control, Coimbatore, India, 29–30 July 2024; pp. 240–247. [Google Scholar] [CrossRef]
- Vasanthageethan, S.G.D.A. Examining of the Impact of Artificial Intelligence on Threat Detection and Response Systems. Res. Arch. Rising Sch. 2025; preprint. [Google Scholar] [CrossRef]
- Khot, A.; Potadar, O.; Mitragotri, P. Artificial Intelligence in Cybersecurity. Int. J. Res. Appl. Sci. Eng. Technol. 2024, 12, 2025–2029. [Google Scholar] [CrossRef]
- Ceyhun, G.Ç. Recent Developments of Artificial Intelligence in Business Logistics: A Maritime Industry Case. In Digital Business Strategies in Blockchain Ecosystems: Transformational Design and Future of Global Business; Hacioglu, U., Ed.; Contributions to Management Science (MANAGEMENT SC.); Springer International Publishing: Cham, Switzerland, 2019; pp. 343–353. [Google Scholar] [CrossRef]
- Durlik, I.; Miller, T.; Kostecka, E.; Łobodzińska, A.; Kostecki, T. Harnessing AI for Sustainable Shipping and Green Ports: Challenges and Opportunities. Appl. Sci. 2024, 14, 5994. [Google Scholar] [CrossRef]
- Safuan; Syafira, A. Artificial Intelligence in Indonesian Ports: Opportunities and Challenges. Trans. Marit. Sci. 2024, 13, 1–17. [Google Scholar] [CrossRef]
- Kapoor, A. Big Data Infrastructure: Integrating Legacy Systems with AI-Driven Platforms. In Proceedings of the 10th International Conference Computer Science & Information Technology, Sydney, Australia, 19–20 October 2024; pp. 145–152. [Google Scholar] [CrossRef]
- Reddy Kovvuri, V.K. The Role of AI in Data Engineering and Integration in Cloud Computing. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 2024, 10, 616–623. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Y.C.; Zhou, M.; Fu, H. Beyond surveillance: Privacy, ethics, and regulations in face recognition technology. Front. Big Data 2024, 7, 1337465. [Google Scholar] [CrossRef] [PubMed]
- Capasso, C.; Zingoni, A.; Calabro, G.; Sterpa, A. Legal and Technical Answers to Privacy Issues raised by AI-based Facial Recognition Algorithms. In Proceedings of the 2023 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering, Milano, Italy, 25–27 October 2023; pp. 575–580. [Google Scholar] [CrossRef]
- Alsaigh, R.; Mehmood, R.; Katib, I.; Liang, X.; Alshanqiti, A.; Corchado, J.M.; See, S. Harmonizing AI governance regulations and neuroinformatics: Perspectives on privacy and data sharing. Front. Neuroinform. 2024, 18, 1472653. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Ko, Y.M. Learning-Driven Berth Allocation Optimization With Port Authority Behavior. IEEE Access 2025, 13, 173832–173843. [Google Scholar] [CrossRef]
- Wang, P.; Li, J.; Cao, X. Discrete Dynamic Berth Allocation Optimization in Container Terminal Based on Deep Q-Network. Mathematics 2024, 12, 3742. [Google Scholar] [CrossRef]
- Makhado, N.; Paepae, T.; Sejeso, M.; Harley, C. Berth Allocation and Quay Crane Scheduling in Port Operations: A Systematic Review. J. Mar. Sci. Eng. 2025, 13, 1339. [Google Scholar] [CrossRef]
- Luan, Y.; Jia, Q.S.; Xing, Y.; Li, Z.; Wang, T. An Efficient Real-Time Railway Container Yard Management Method Based on Partial Decoupling. IEEE Trans. Autom. Sci. Eng. 2025, 22, 14183–14200. [Google Scholar] [CrossRef]
- Zheng, S.; Sha, J.; Kong, Y.; Wang, Y. Research on artificial intelligence-driven container relocation problem for green ports. Front. Mar. Sci. 2025, 12, 1614356. [Google Scholar] [CrossRef]
- Kolangiammal, S.; Prabha, S.; Sivalakshmi, P.; P, N.; Kalaichelvi, S.; Sujatha, S. Transforming Yard Management for Optimizing Efficiency through IoT and AI Integration. In Proceedings of the 2024 8th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), Kirtipur, Nepal, 3–5 October 2024; pp. 218–223. [Google Scholar] [CrossRef]
- Aslam, S.; Navarro, A.; Aristotelous, A.; Garro Crevillen, E.; Martınez-Romero, A.; Martínez-Ceballos, Á.; Cassera, A.; Orphanides, K.; Herodotou, H.; Michaelides, M.P. Machine Learning-Based Predictive Maintenance at Smart Ports Using IoT Sensor Data. Sensors 2025, 25, 3923. [Google Scholar] [CrossRef]
- Kalafatelis, A.S.; Nomikos, N.; Giannopoulos, A.; Alexandridis, G.; Karditsa, A.; Trakadas, P. Towards Predictive Maintenance in the Maritime Industry: A Component-Based Overview. J. Mar. Sci. Eng. 2025, 13, 425. [Google Scholar] [CrossRef]
- Samonte, M.J.C.; Laurenio, E.N.B.; Lazaro, J.R.M. Enhancing Port and Maritime Cybersecurity Through AI—Enabled Threat Detection and Response. In Proceedings of the 2024 8th International Conference on Smart Grid and Smart Cities, Shanghai, China, 25–27 October 2024; pp. 412–420. [Google Scholar] [CrossRef]
- Pohontu, A.; Ermolai, V. Artificial Intelligence in Maritime Domain Awareness Applications: Trends and Prospects. In Digital Transformation; Ivascu, L., Cioca, L.I., Doina, B., Filip, F.G., Eds.; Intelligent Systems Reference Library; Springer Nature Switzerland: Cham, Switzerland, 2024; Volume 257, pp. 193–204. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Q.; Liang, M.; Peng, C.; Chen, C. Big-data-driven vessel destination prediction for smart port management. Eng. Appl. Artif. Intell. 2025, 154, 110829. [Google Scholar] [CrossRef]
- Cacho, J.L.; Tokarski, A.; Thomas, E.; Chkoniya, V. Port Dada Integration: Opportunities for Optimization and Value Creation. In Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry; Chkoniya, V., Ed.; Advances in Business Information Systems and Analytics (ABISA) Book Series; IGI Global: Hershey, PA, USA, 2021; Chapter 1; pp. 1–22. [Google Scholar] [CrossRef]
- Moldagulova, A.; Satybaldiyeva, R.; Kuandykov, A. Application of Big Data in Logistics. In Proceedings of the 6th International Conference on Engineering & MIS 2020 (ICEMIS’20), New York, NY, USA, 14–16 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Jović, M.; Tijan, E.; Marx, R.; Gebhard, B. Big Data Management in Maritime Transport. J. Marit. Transp. Sci. 2019, 57, 123–141. [Google Scholar] [CrossRef]
- Mirović, M.; Miličević, M.; Obradović, I. Veliki skupovi podataka u pomorskoj industriji. Naše More 2018, 65, 56–62. [Google Scholar] [CrossRef]
- Palippui, H. Integration of Technology and Regulations for Safe and Efficient Marine Logistics. Collab. Eng. Dly. Book Ser. 2024, 2, 1–7. [Google Scholar] [CrossRef]
- Ishii, S. Global logistics visibility. In ITS for Freight Logistics; Kawashima, H., Ed.; Institution of Engineering and Technology: Hertfordshire, UK, 2022. [Google Scholar] [CrossRef]
- Metzger, A.; Franke, J.; Jansen, T. Data-driven deep learning for proactive terminal process management. In Proceedings of the BPM (Industry Forum), Vienna, Austria, 1–6 September 2019; pp. 190–201. [Google Scholar]
- Espinosa-Jaramillo, M.T.; Chenet Zuta, M.E.; Koneti, C.; Jayasundar, S.; Olivares Zegarra, S.d.R.; Carvajal-Ordoñez, V.F.M. Digital twins in supply chain operations bridging the physical and digital worlds using ai. J. Electr. Syst. 2024, 20, 1764–1774. [Google Scholar] [CrossRef]
- Sang, X.; Huang, J. Thinking on the Application of Big-Data in Port Security Integration. In Proceedings of the International Conference on Management, Computer and Education Informatization; Advances in Computer Science Research; Atlantis Press: Dordrecht, The Netherlands, 2015; pp. 37–40. [Google Scholar] [CrossRef]
- Ayoola, I. Enhancing Business Decision-Making with Advanced Data Visualization: A Sectoral Comparative Analysis. Int. J. Res. Innov. Soc. Sci. 2024, VIII, 1–8. [Google Scholar] [CrossRef]
- Wang, K.; Xu, H.; Wang, H.; Qiu, R.; Hu, Q.; Liu, X. Digital twin-driven safety management and decision support approach for port operations and logistics. Front. Mar. Sci. 2024, 11, 1455522. [Google Scholar] [CrossRef]
- Herodotou, H.; Aslam, S.; Holm, H.; Theodossiou, S. Big Maritime Data Management. In Maritime Informatics; Lind, M., Michaelides, M., Ward, R., T. Watson, R., Eds.; Progress in IS; Springer International Publishing: Cham, Switzerland, 2021; pp. 313–334. [Google Scholar] [CrossRef]
- Borgi, T.; Zoghlami, N.; Abed, M. Big data for transport and logistics: A review. In Proceedings of the 2017 International Conference on Advanced Systems and Electric Technologies, Hammamet, Tunisia, 14–17 January 2017; pp. 44–49. [Google Scholar] [CrossRef]
- Li, Z. Big Data Management: Empowering Sustainable Logistics with Data-Driven Operation Optimization. Adv. Econ. Manag. Polit. Sci. 2023, 54, 64–68. [Google Scholar] [CrossRef]
- Ramani, K. Impact of Big Data on Security: Big Data Security Issues and Defense Schemes. In Cloud Security: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2019; pp. 2014–2038. [Google Scholar] [CrossRef]
- Ramalingeswara Rao, B.; Amritha, C. Challenges and Opportunities of Big Data Analytics for Maritime and Shipping Industry. Int. J. Eng. Technol. Manag. Sci. 2024, 8, 83–90. [Google Scholar] [CrossRef]
- Madhavaram, C.; Sunkara, J.R.; Bauskar, S.R.; Galla, E.P.; Gollangi, H.K. Data-driven management: The impact of visualization tools on business performance. SSRN Electron. J. 2025. [Google Scholar] [CrossRef]
- Yang, L.; Li, J.; Elisa, N.; Prickett, T.; Chao, F. Towards Big data Governance in Cybersecurity. Data-Enabled Discov. Appl. 2019, 3, 10. [Google Scholar] [CrossRef]
- Charłampowicz, J. Assessment of the Interplay of Various Factors in Port Governance: Development of the Theoretical Framework. Sci. J. Gdynia Marit. Univ. 2025, 133, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Issa-Zadeh, S.B.; Garay-Rondero, C.L. Maritime Pilotage and Sustainable Seaport: A Systematic Review. J. Mar. Sci. Eng. 2025, 13, 945. [Google Scholar] [CrossRef]
- Sabino Soares, C.C.; da Silva, E.; da Rocha Fernandes, A.; Delcio Parreira, W. Sensores Inteligentes em Sistemas Assistivos para Surdos: Uma Revisão Sistemática da Literatura. In Proceedings of the Anais do XIV Computer on the Beach—COTB’23, Florianópolis, Brasil, 30 March–1 April 2023; Volume 14, pp. 518–520. [Google Scholar] [CrossRef]
- Khan, J.Y.; Yuce, M.R. Internet of Things (IoT): Systems and Applications; Jenny Stanford Publishing: New York, NY, USA, 2019; p. 366. [Google Scholar] [CrossRef]
- Chhabra, Y.; Jadhav Bhatt, A. IoT Networks. In Network Optimization in Intelligent Internet of Things Applications; Khurana Batra, P., Mehra, P.S., Tanwar, S., Eds.; Chapman and Hall/CRC: New York, NY, USA, 2024; Chapter 1; pp. 3–18. [Google Scholar] [CrossRef]
- Kumar, G.; Godihal, J.H. IoT in Logistics and Transportation. In Connected Horizons Exploring IoT Applications in Infrastructure|Agriculture|Environment and Design; Godihal, J.H., Ed.; Iterative International Publishers, Selfypage Developers Pvt Ltd.: Novi, MI, USA, 2024; Volume 3, Chapter 6; pp. 54–62. [Google Scholar] [CrossRef]
- Vila Gómez, M. IoT Semantic-Based Monitoring of Infrastructures Using a Microservices Architecture; Tesi Doctoral, upc, Departament de Ciències de la Computació, Universitat Politècnica de Catalunya: Barcelona, Spain, 2024. [Google Scholar] [CrossRef]
- Kumar, M.R.; Devi, B.R.; Rangaswamy, K.; Sangeetha, M.; Kumar, K.V.R. IoT-Edge Computing for Efficient and Effective Information Process on Industrial Automation. In Proceedings of the 2023 International Conference on Networking and Communications, Chennai, India, 5–6 April 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Rao, B.S.; Gupta, M.M.; Sheikameer Batcha, S.; Katherin Mathew, S.; Ram, M.S.; Imanbayeva, Z. Deep Learning and Internet of Things (IoT) based Industrial Automation and Human Error Reduction. In Proceedings of the 2022 4th International Conference on Inventive Research in Computing Applications, Coimbatore, India, 21–23 September 2022; pp. 917–923. [Google Scholar] [CrossRef]
- Hussein, W.N.; Kamarudin, L.M.; Hussain, H.N.; Zakaria, A.; Badlishah Ahmed, R.; Zahri, N.A.H. The Prospect of Internet of Things and Big Data Analytics in Transportation System. J. Phys. Conf. Ser. 2018, 1018, 12013. [Google Scholar] [CrossRef]
- Premavathi, T.; Shekhar, A.; Raj, A.; Mohan, K.; Palaniappan, D.; Shukla, M. The Utilization of Internet of Things (IoT) in the Field of Robotics Process Automation. In Applications of New Technology in Operations and Supply Chain Management; Taghipour, A., Ed.; IGI Global: Hershey, PA, USA, 2024; pp. 337–359. [Google Scholar] [CrossRef]
- Syaputra, A.; Sutabri, T. Perancangan Sistem Monitoring Barang Logistik Berbasis IoT. Switch J. Sains Dan Teknol. Inf. 2024, 2, 102–111. [Google Scholar] [CrossRef]
- Pethe, S.; Sahu, A.; Kodarlikar, S.; Vamshidhar, M. IoT Research in Supply Chain Management and Logistics: Real-Time Asset Tracking and Inventory Management. In Proceedings of the 2024 International Conference on Innovations and Challenges in Emerging Technologies, Nagpur, India, 7–8 June 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Priya, S.; Sairam, A.; Azath, H.; Manivannan, S.K.; Mohankumar, N.; Vedasundara Vinayagam, P. Smart Ports Solutions for Cargo Container Tracking and Vessel Traffic Counting Systems using IoT and Cloud Computing. In Proceedings of the 2024 10th International Conference on Communication and Signal Processing, Melmaruvathur, India, 12–14 April 2024; pp. 1106–1111. [Google Scholar] [CrossRef]
- Cil, A.Y.; Abdurahman, D.; Cil, I. Internet of Things enabled real time cold chain monitoring in a container port. J. Shipp. Trade 2022, 7, 9. [Google Scholar] [CrossRef]
- Radha, C.; Madheswaran, M.; Lokesh, M.; Althaf, M.M. Environmental Monitoring in Internet of Things (IOT). Int. J. Res. Appl. Sci. Eng. Technol. 2024, 12, 1658–1663. [Google Scholar] [CrossRef]
- Ahmad, S.J. Environmental Monitoring Using IoT. J. Electr. Comput. Exp. 2023, 1, 36–39. [Google Scholar] [CrossRef]
- Nathisiya, B.M.; Radhakrishnan, A. Leveraging IoT Technology for Transformative Impact in the Maritime Sector. Salud Cienc. Tecnol.-Ser. Conf. 2024, 3, 1253. [Google Scholar] [CrossRef]
- Bulak, M.E. A Frontier Approach to Eco-Efficiency Assessment in the World’s Busiest Sea Ports. Sustainability 2024, 16, 1142. [Google Scholar] [CrossRef]
- Lestre, G.; Robaina, M.; Matias, J.; Oliveira, M. From Port to Policy: Studying Societal Impacts of Seaport Decarbonization. In Proceedings of the 2024 20th International Conference on the European Energy Market, Istanbul, Turkiye, 10–12 June 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Merino, J.; Sasidharan, M.; Herrera, M.; Zhou, H.; Crespo del Castillo, A.; Parlikad, A.K.; Brooks, R.; Poulter, K. Lessons learned from an IoT deployment for condition monitoring at the Port of Felixstowe. IFAC-PapersOnLine 2022, 55, 217–222. [Google Scholar] [CrossRef]
- Yang, Y.; Zhong, M.; Yao, H.; Yu, F.; Fu, X.; Postolache, O. Internet of things for smart ports: Technologies and challenges. IEEE Instrum. Meas. Mag. 2018, 21, 34–43. [Google Scholar] [CrossRef]
- Kori, A.; Channaveeramma, E.; Miskin Quadri, S.; Venkatachalam, K. IOT Privacy & Security. In Futuristic Trends in IOT; Iterative International Publishers, Selfypage Developers Pvt Ltd.: Karnataka, India, 2024; Volume 3, Chapter 3; pp. 50–64. [Google Scholar] [CrossRef]
- Anil, A.; Babu, A.R.; Antony, J.; Vilson, K.E.; Koshy, S. Security And Privacy Concern In IoT Devices. Int. J. Eng. Technol. Manag. Sci. 2023, 7, 491–502. [Google Scholar] [CrossRef]
- Gao, J.; Sun, Y.; Rameezdeen, R.; Chow, C. Understanding data governance requirements in IoT adoption for smart ports – a gap analysis. Marit. Policy Manag. 2024, 51, 617–630. [Google Scholar] [CrossRef]
- Taboada, I.; Shee, H. Understanding 5G technology for future supply chain management. Int. J. Logist. Res. Appl. 2020, 24, 392–406. [Google Scholar] [CrossRef]
- Pandikumar, S.; Shaheena, K.V.; Dinesh, T. Upgrading Industrial Automation with 5G and IoT. In Innovations and Trends in Modern Computer Science Technology—Overview, Challenges and Applications; Pandikumar, S., Thakur, M.K., Eds.; QTanalytics India: Delhi, India, 2024; pp. 57–77. [Google Scholar] [CrossRef]
- Purohit, A.; Kaushik, R.; Sharma, M.K. 5G and its Impact on IoT: A Review. J. Nonlinear Anal. Optim. 2023, 14, 31–42. [Google Scholar] [CrossRef]
- Qi, S.; Sun, W.; Zong, Y. Research on Ship Remote Monitoring and Intelligent Decision-making System Supported by 5G Communication. In Proceedings of the 2024 IEEE 6th International Conference on Civil Aviation Safety and Information Technology, Hangzhou, China, 23–25 October 2024; pp. 1399–1405. [Google Scholar] [CrossRef]
- Sharma, N.; Ahlawat, P. 5G for IoT: Between Reality and Friction. In Fundamental and Supportive Technologies for 5G Mobile Networks; El-Kader, S.M.A., Hussein, H., Eds.; IGI Global: Hershey, PA, USA, 2020; Chapter 1; pp. 1–23. [Google Scholar] [CrossRef]
- Shravika, J.; Shreya, P.; Shreya, R.; Shreyas, K. The Impact of 5G on IoT Ecosystems. Int. J. Netw. Syst. 2024, 13, 40–44. [Google Scholar] [CrossRef]
- HR, N.; Bargavi, S.K.M. 5G IoT Networks. Int. J. Adv. Res. Sci. Commun. Technol. 2024, 4, 679–683. [Google Scholar] [CrossRef]
- Goswami, S.; Mondal, S. The role of 5G in enhancing IOT connectivity: A systematic review on applications challenges and future prospects. Big Data Comput. Visions 2024, 4, 314–325. [Google Scholar] [CrossRef]
- Galati, M. Unleashing the Power of IoT with 5G and AI: A Paradigm Shift in Connectivity Services. SSRN Electron. J. 2023. [Google Scholar] [CrossRef]
- Haider, N.; Baig, M.Z.; Imran, M. Artificial Intelligence and Machine Learning in 5G Network Security: Opportunities, advantages, and future research trends. arXiv 2020, arXiv:2007.04490. [Google Scholar] [CrossRef]
- Manda, J.K. Infrastructure Management for 5G Networks: Optimizing Infrastructure Management Practices to Support the Deployment and Maintenance of 5G Networks, Aligning with Your Expertise in Managing Complex Telecom Infrastructure Projects. SSRN Electron. J. 2024. [Google Scholar] [CrossRef]
- Pragadeswaran, S.; Subha, N.; Arun Kumar, V.; Vijay Anand, D.; Veera Boopathy, E.; Bharathi, V. The Effects of 5g Technology on Wireless Sensor Networks: Innovations and Challenges. SSRN Electron. J. 2025. [Google Scholar] [CrossRef]
- Uusitalo, M.A.; Viswanathan, H.; Kokkoniemi-Tarkkanen, H.; Grudnitsky, A.; Moisio, M.; Harkonen, T.; Yli-Paunu, P.; Horsmanheimo, S.; Samardzija, D. Ultra-Reliable and Low-Latency 5G Systems for Port Automation. IEEE Commun. Mag. 2021, 59, 114–120. [Google Scholar] [CrossRef]
- Harish, T.; Suriya, V.; Velan, R. 5G/Next Generation Networks. In Proceedings of the International Conference on Recent Trends in Computing & Communication Technologies, Tamilnadu, India, 20 November 2024; pp. 590–600. [Google Scholar] [CrossRef]
- Andriani, O.F.; Nashiruddin, M.I.; Adriansyah, N.M. 5G Private Network Assessment for Port Industrial Area: Study case in Port of Tanjung Priok. In Proceedings of the 2023 IEEE International Conference on Communication, Networks and Satellite, Malang, Indonesia, 23–25 November 2023; pp. 584–590. [Google Scholar] [CrossRef]
- Pradeep, S.; Venkatesh, K.; Bhagavatula, S.; Roy, R.; Bhargavi, P.; Gupta, A. The Impact of 5G on Real-Time IoT Data Processing: Exploring Challenges and Innovative Solutions. In Proceedings of the 2024 International Conference on Electrical Electronics and Computing Technologies, Greater Noida, India, 29–31 August 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Farroha, B.S.; Farroha, D.L.; Cook, J.D.; Dutta, A. Exploring the security and operational aspects of the 5th generation wireless communication system. In Proceedings of the SPIE 11015, Open Architecture/Open Business Model Net-Centric Systems and Defense Transformation 2019, Baltimore, MD, USA, 14–18 April 2019; Volume 11015, p. 1101508. [Google Scholar] [CrossRef]
- Costa-Pérez, X.; Garcia-Saavedra, A.; Giust, F.; Sciancalepore, V.; Li, X.; Yousaf, Z.; Liebsch, M. Network Slicing for 5G Networks. In 5G Networks: Fundamental Requirements, Enabling Technologies, and Operations Management; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; Chapter 9; pp. 327–370. [Google Scholar] [CrossRef]
- Das, H.S.; Samanta, S.; Metia, R.; Samanta, D.; Bag, B. Cyber Security Techniques for 5G Networks. In Advanced Cyber Security Techniques for Data, Blockchain, IoT, and Network Protection; IGI Global: Hershey, PA, USA, 2024; pp. 123–146. [Google Scholar] [CrossRef]
- Sahu, V.; Sahu, N.; Sahu, R. Challenges and Opportunities of 5G Network: A Review of Research and Development. Am. J. Electr. Comput. Eng. 2024, 8, 11–20. [Google Scholar] [CrossRef]
- Messaoudi, F.; Bertin, P.; Ksentini, A. Towards the quest for 5G Network Slicing. In Proceedings of the 2020 IEEE 17th Annual Consumer Communications & Networking Conference, Las Vegas, NV, USA, 10–13 January 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Taleb, T.; Mada, B.; Corici, M.I.; Nakao, A.; Flinck, H. PERMIT: Network Slicing for Personalized 5G Mobile Telecommunications. IEEE Commun. Mag. 2017, 55, 88–93. [Google Scholar] [CrossRef]
- Subramanian, B.; Al Naamani, K.S.H.; Sagayee, G.M.A. Innovative Architectures and Management Strategies in 5G Communication Networks. Int. J. Comput. Math. Comput. Sci. 2024, 1, 1–7. [Google Scholar] [CrossRef]
- Singh, P.K.; Brahma, M.; Nath, P.; Ghosh, U. A Study on Secure Network Slicing in 5G. In Proceedings of the 2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops, Bangalore, India, 1–4 May 2023; pp. 52–61. [Google Scholar] [CrossRef]
- Taheribakhsh, M.; Jafari, A.; Peiro, M.M.; Kazemifard, N. 5G Implementation: Major Issues and Challenges. In Proceedings of the 2020 25th International Computer Conference, Computer Society of Iran, Tehran, Iran, 1–2 January 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Potter, A.; Wang, Y.; Naim, M. Scaling-up 5G adoption in smart ports: Barriers and enablers. Marit. Policy Manag. Manag. 2024, 52, 517–534. [Google Scholar] [CrossRef]
- De la Peña Zarzuelo, I.; Freire Seoane, M.J.; López Bermúdez, B.; Pais Montes, C. The Role of Simulation in the Ports and Maritime Industry: Practical Experiences and Outlook for the New Generation of Ports 4.0. In Proceedings of the 2019 World of Shipping Portugal, an International Research Conference on Maritime Affairs Summary Report, Carcavelos, Portugal, 21–22 November 2019; pp. 35–36. [Google Scholar]
- David, I.; Syriani, E. Automated Inference of Simulators in Digital Twins. In Handbook of Digital Twins; Lyu, Z., Ed.; CRC Press: Boca Raton, FL, USA, 2024; Chapter 8; pp. 122–148. [Google Scholar] [CrossRef]
- Mihai, S.; Yaqoob, M.; Hung, D.V.; Davis, W.; Towakel, P.; Raza, M.; Karamanoglu, M.; Barn, B.; Shetve, D.; Prasad, R.V.; et al. Digital Twins: A Survey on Enabling Technologies, Challenges, Trends and Future Prospects. IEEE Commun. Surv. Tutor. 2022, 24, 2255–2291. [Google Scholar] [CrossRef]
- Abdulhayan, S.; Abd, S.A. Big Data and Digital Twins. In Handbook of Industrial and Business Applications with Digital Twins; Krishnan, S., Anand, A.J., Sendhilkumar, S., Eds.; CRC Press: Boca Raton, FL, USA, 2024; Chapter 7; pp. 154–183. [Google Scholar] [CrossRef]
- Lachvajderova, L.; Trebuna, M.; Kadarova, J. Unlocking Industry Potential: The Evolution and Impact of Digital Twins. Acta Mech. Slovaca 2024, 28, 46–51. [Google Scholar] [CrossRef]
- Eom, J.; Kim, J.; Lee, S.; Yoon, J.; Kim, S. Digital twin development for berthing planning of ships. J. Inst. Control Robot. Syst 2022, 28, 724–732. [Google Scholar] [CrossRef]
- Eddy, C.W.; Castanier, M.P.; Wagner, J.R. Predictive Maintenance of a Ground Vehicle Using Digital Twin Technology. SAE Int. J. Adv. Curr. Pract. Mobil. 2024, 7, 865–876. [Google Scholar] [CrossRef]
- Yao, H.; Wang, D.; Su, M.; Qi, Y. Application of Digital Twins in Port System. J. Phys. Conf. Ser. 2021, 1846, 12008. [Google Scholar] [CrossRef]
- Oliveira, L.; Castro, M.; Ramos, R.; Santos, J.; Silva, J.; Dias, L. Digital Twin for Monitoring Containerized Hazmat Cargo in Port Areas. In Proceedings of the 2022 17th Iberian Conference on Information Systems and Technologies, Madrid, Spain, 22–25 June 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Zhou, E. Data-Driven Simulation Optimization in the Age of Digital Twins: Challenges and Developments. In Proceedings of the 2024 Winter Simulation Conference, Orlando, FL, USA, 15–18 December 2024; pp. 31–45. [Google Scholar] [CrossRef]
- Ok, S.Y. A Large-Scale 3D Visualization System for Port Container Terminal Simulation. J. Korea Inst. Inf. Commun. Eng. 2015, 19, 119–126. [Google Scholar] [CrossRef]
- Pasupuleti, M.K. Revolutionizing Industries with Digital Twin Technology. In Digital Twin Technology; National Education Services: Chicago, IL, USA, 2024; Chapter 7; pp. 61–79. [Google Scholar] [CrossRef]
- Chandaluri, R.; Nelakuditi, U. Monograph on Components, Design, and Applications of Digital Twin. Int. J. Next-Gener. Comput. 2022, 13. [Google Scholar] [CrossRef]
- Zeneli, M.; Marinova, G. Navigating the Future: Digital Twin in Maritime Industry. In Proceedings of the 2024 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications, Graz, Austria, 9–11 July 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Fernandes, A.; Gutierres, D.; Fugihara, M.; De Norman, B. Port Management Digital Twin and Control Tower Integration: An Approach to Support Real-Time Decision Making. In Proceedings of the 2024 Winter Simulation Conference, Orlando, FL, USA, 15–18 December 2024; pp. 2821–2831. [Google Scholar] [CrossRef]
- Mohapatra, A. Generative AI for Predictive Maintenance: Predicting Equipment Failures and Optimizing Maintenance Schedules Using AI. Int. J. Sci. Res. Manag. 2024, 12, 1648–1672. [Google Scholar] [CrossRef]
- Kane, A.P.; Kore, A.S.; Khandale, A.N.; Nigade, S.S.; Joshi, P.P. Predictive Maintenance using Machine Learning. arXiv 2022, arXiv:2205.09402. [Google Scholar] [CrossRef]
- Double Check. Traffic Technol. Int. 2023, 2023, 40–41. [CrossRef]
- Bao, X.; Jia, F.; Zhong, J.; Zhang, L.; Liu, C.; Chen, L.; Zheng, Y. Digital twin system for automated container terminal and a case study. In Proceedings of the 2024 IEEE 20th International Conference on Automation Science and Engineering, Bari, Italy, 28 August–1 September 2024; pp. 142–147. [Google Scholar] [CrossRef]
- Gebreab, S.; Musamih, A.; Salah, K.; Jayaraman, R.; Boscovic, D. Accelerating Digital Twin Development With Generative AI: A Framework for 3D Modeling and Data Integration. IEEE Access 2024, 12, 185918–185936. [Google Scholar] [CrossRef]
- Abayadeera, M.R.; Ganegoda, G. Digital Twin Technology: A Comprehensive Review. Int. J. Innov. Sci. Res. Technol. 2024, 10, 1485–1504. [Google Scholar] [CrossRef]
- Ly, R.; Shojaei, A.; Naderi, H. DT-DAO: Digital Twin and Blockchain-Based DAO Integration Framework for Smart Building Facility Management. In Proceedings of the Construction Research Congress 2024, Iowa, IA, USA, 20–23 March 2024; pp. 796–805. [Google Scholar] [CrossRef]
- Esiri, A.E.; Sofoluwe, O.O.; Ukato, A. Digital twin technology in oil and gas infrastructure: Policy requirements and implementation strategies. Eng. Sci. Technol. J. 2024, 5, 2039–2049. [Google Scholar] [CrossRef]
- Marino, A.; Pariso, P.; Picariello, M. Digital Twin in SMEs: Implementing Advanced Digital Technologies for Engineering Advancements. Macromol. Symp. 2024, 413, 2300176. [Google Scholar] [CrossRef]
- Wuni, I.Y.; Abankwa, D.A.; Koc, K.; Adukpo, S.E.; Antwi-Afari, M.F. Critical barriers to the adoption of integrated digital delivery in the construction industry. J. Build. Eng. 2024, 83, 108474. [Google Scholar] [CrossRef]
- Tyagi, A.K. Blockchain and Artificial Intelligence for Cyber Security in the Era of Internet of Things and Industrial Internet of Things Applications. In AI and Blockchain Applications in Industrial Robotics; Biradar, R.C., Geetha, D., Tabassum, N., Hegde, N., Lazarescu, M., Eds.; IGI Global: Hershey, PA, USA, 2023; Chapter 7; pp. 171–199. [Google Scholar] [CrossRef]
- Trivedi, N.K.; Tiwari, R.G.; Jain, A.K.; Sharma, V.; Gautam, V. Impact Analysis of Integrating AI, IoT, Big Data, and Blockchain Technologies: A Comprehensive Study. In Proceedings of the 2023 3rd Asian Conference on Innovation in Technology, Ravet IN, India, 25–27 August 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Nasih, S.; Arezki, S.; Gadi, T. Tracking and Tracing Containers Model Enabled Blockchain Basing on IOT Layers. In Innovations in Smart Cities Applications Volume 7; Ben Ahmed, M., Boudhir, A.A., El Meouche, R., Karas, I.R., Eds.; Lecture Notes in Networks and Systems; Springer Nature Switzerland: Cham, Switzerland, 2024; Volume 906, pp. 136–147. [Google Scholar] [CrossRef]
- Du, Y.; Li, C.; Wang, T.; Xu, Y. Special issue on “Smart port and shipping operations” in Maritime Policy & Management. Marit. Policy Manag. 2023, 50, 413–414. [Google Scholar] [CrossRef]
- Pathak, J.P.; Singh, K.; Roy, S. Role of Artificial Intelligence and Blockchain on Cyber Security: A PRISMA-Compliant Systematic Literature Review. In Data Visualization Tools for Business Applications; Muniasamy, M.A., Naim, A., Kumar, A., Eds.; IGI Global: Hershey, PA, USA, 2024; Chapter 13; pp. 287–320. [Google Scholar] [CrossRef]
- Durlik, I.; Miller, T.; Cembrowska-Lech, D.; Krzemińska, A.; Złoczowska, E.; Nowak, A. Navigating the Sea of Data: A Comprehensive Review on Data Analysis in Maritime IoT Applications. Appl. Sci. 2023, 13, 9742. [Google Scholar] [CrossRef]
- Parveen, K. Securing Breakneck Pace of 5G Networks Air Interfaces Through Proactive AI Monitoring. Int. J. Electron. Crime Investig. 2024, 8, 20–26. [Google Scholar] [CrossRef]
- Ameh, B. Digital tools and AI: Using technology to monitor carbon emissions and waste at each stage of the supply chain, enabling real-time adjustments for sustainability improvements. Int. J. Sci. Res. Arch. 2024, 13, 2741–2757. [Google Scholar] [CrossRef]
- Chung, S.H. Applications of smart technologies in logistics and transport: A review. Transp. Res. Part E Logist. Transp. Rev. 2021, 153, 102455. [Google Scholar] [CrossRef]
- Tauseef, M.; Kounte, M.R.; Nalband, A.H.; Ahmed, M.R. Exploring the Joint Potential of Blockchain and AI for Securing Internet of Things. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 885–895. [Google Scholar] [CrossRef]
- Muhati, E.; Rawat, D.B.; Sadler, B.M. A New Cyber-Alliance of Artificial Intelligence, Internet of Things, Blockchain, and Edge Computing. IEEE Internet Things Mag. 2022, 5, 104–107. [Google Scholar] [CrossRef]
- Vani, G.; Naveenkumar, R.; Singha, R.; Sharkar, R.; Kumar, N. Advancing Predictive Data Analytics in IoT and AI Leveraging Real time Data for Proactive Operations and System Resilience. Nanotechnol. Perceptions 2024, 20, 568–582. [Google Scholar] [CrossRef]
- Mukherjee, S.; Gupta, S.; Rawlley, O.; Jain, S. Leveraging big data analytics in 5G-enabled IoT and industrial IoT for the development of sustainable smart cities. Trans. Emerg. Telecommun. Technol. 2022, 33, e4618. [Google Scholar] [CrossRef]
- Tyler, N. The Smart Port Network. New Electron. 2020, 53, 10–12. [Google Scholar] [CrossRef]
- Yigit, Y.; Nguyen, L.D.; Ozdem, M.; Kinaci, O.K.; Hoang, T.; Canberk, B.; Duong, T.Q. TwinPort: 5G drone-assisted data collection with digital twin for smart seaports. Sci. Rep. 2023, 13, 12310. [Google Scholar] [CrossRef]
- Gunturu, V.; Ranga, J.; Murthy, C.R.; Swapna, B.; Balaram, A.; Raja, C. Artificial Intelligence Integrated with 5G for Future Wireless Networks. In Proceedings of the 2023 International Conference on Inventive Computation Technologies, Lalitpur, Nepal, 26–28 April 2023; pp. 1292–1296. [Google Scholar] [CrossRef]
- Nian, L.; Zhengwei, Z.; Yuandong, S.; Dongyang, Y. Wisdom Tower Crane Network Control System Based on 5G Technology. In Proceedings of the 2023 International Conference on Computers, Information Processing and Advanced Education, Ottawa, ON, Canada, 26–28 August 2023; pp. 284–287. [Google Scholar] [CrossRef]
- Kokkoniemi-Tarkkanen, H.; Horsmanheimo, S.; Grudnitsky, A.; Moisio, M.; Li, Z.; Uusitalo, M.A.; Samardzija, D.; Härkönen, T.; Yli-Paunu, P. Enabling Safe Wireless Harbor Automation via 5G URLLC. In Proceedings of the 2019 IEEE 2nd 5G World Forum, Dresden, Germany, 30 September–2 October 2019; pp. 403–408. [Google Scholar] [CrossRef]
- Golovan, A.; Mateichyk, V.; Gritsuk, I.; Lavrov, A.; Smieszek, M.; Honcharuk, I.; Volska, O. Enhancing Information Exchange in Ship Maintenance through Digital Twins and IoT: A Comprehensive Framework. Computers 2024, 13, 261. [Google Scholar] [CrossRef]
- Guyo, G.D. The Limitations of Research Findings behind the Veil of Subjectivities: Subjective Values and Extra-Subjective Challenges. Gadaa J. 2024, 7, 108–125. [Google Scholar]
- Xylouris, G.; Nomikos, N.; Kalafatelis, A.; Giannopoulos, A.; Spantideas, S.; Trakadas, P. Sailing into the future: Technologies, challenges, and opportunities for maritime communication networks in the 6G era. Front. Commun. Netw. 2024, 5, 1439529. [Google Scholar] [CrossRef]
- Pivetta, D.; Dall’Armi, C.; Sandrin, P.; Bogar, M.; Taccani, R. The role of hydrogen as enabler of industrial port area decarbonization. Renew. Sustain. Energy Rev. 2024, 189, 113912. [Google Scholar] [CrossRef]


| Value | Description |
|---|---|
| 1 | There is no public record or evidence of the existence and/or implementation of the technology analysed (non-existent or not implemented) |
| 2 | A pilot project or similar initiative is being implemented (incipient presence) |
| 3 | There is a project in operation, but with limited or expanding scope (observable presence) |
| 4 | The technology is used significantly in several port operations (established presence) |
| 5 | The technology has a comprehensive and strategic presence, meaning it is fully integrated into port management and operations (comprehensive and strategic presence and implementation) |
| Value | Description |
|---|---|
| 1 | Practices largely absent or problematic |
| 2 | Minimal compliance with standards in response to pressure |
| 3 | Systematic efforts observed, although with challenges or areas for improvement |
| 4 | Sustained good performance and proactive practices |
| 5 | Benchmark practices at national and international level |
| Rank | Colour | Definition |
|---|---|---|
| Early implementation | ||
| In transit | ||
| Smart Port |
| Tipe | Detail |
|---|---|
| Assessor 1 | Economist and expert in port development. |
| Assessor 2 | PhD, Expert in International Trade. |
| Assessor 3 | PhD, Researcher in data management. |
| Validator | PhD, Researcher in logistics and port management. |
| Technology | Port of Rotterdam | Port of Valparaíso | Port of San Antonio |
|---|---|---|---|
| PCS | 4.5 1,2 | 4 14–16 | 3.5 20,28 |
| BC | 4.5 3–13 | 4 17–19 | 3.5 21–27 |
| AI | 5 29–31 | 3 32–34 | 3.5 35–37 |
| Big data | 5 29,38 | 3 39,40 | 2.5 41 |
| IoT | 5 29,42–46 | 2 | 2 47 |
| 5G a | 4 43,48–51 | 2 52,53 | 3.5 54–57 |
| DT | 5 58,59 | 1 60 | 1 61 |
| Port 4.0 (average) | 4.5 | 2.7 | 2.8 |
| Assessment | Smart Port 4.0 | Early Implementation | Early Implementation |
| Environmental care | 5 62–69 | 4 34,70–78 | 4 25,26,79–85 |
| Working conditions and labour treatment | 4.5 67,86–90 | 3.5 35,91–96 | 3.5 37,84,94–100 |
| Community integration | 4.5 67,101–104 | 3 77,105–118 | 3 83,84,106–135 |
| Partial Port 5.0 (average) | 4.7 | 3.5 | 3.5 |
| Port 5.0 (average) | 4.7 | 3.1 | 3.1 |
| Assessment | Smart port 5.0 | In transition | In transition |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valenzuela-Silva, L.; Muñoz, M.; Lagos, C.; Sepúlveda-Rojas, J.P.; Carrasco, R. Assessment of Differences Between the Ports of Rotterdam, Valparaíso and San Antonio Towards Smart Ports, Emphasising Digital Technologies. J. Mar. Sci. Eng. 2025, 13, 2220. https://doi.org/10.3390/jmse13122220
Valenzuela-Silva L, Muñoz M, Lagos C, Sepúlveda-Rojas JP, Carrasco R. Assessment of Differences Between the Ports of Rotterdam, Valparaíso and San Antonio Towards Smart Ports, Emphasising Digital Technologies. Journal of Marine Science and Engineering. 2025; 13(12):2220. https://doi.org/10.3390/jmse13122220
Chicago/Turabian StyleValenzuela-Silva, Luis, Miguel Muñoz, Carolina Lagos, J. P. Sepúlveda-Rojas, and Raúl Carrasco. 2025. "Assessment of Differences Between the Ports of Rotterdam, Valparaíso and San Antonio Towards Smart Ports, Emphasising Digital Technologies" Journal of Marine Science and Engineering 13, no. 12: 2220. https://doi.org/10.3390/jmse13122220
APA StyleValenzuela-Silva, L., Muñoz, M., Lagos, C., Sepúlveda-Rojas, J. P., & Carrasco, R. (2025). Assessment of Differences Between the Ports of Rotterdam, Valparaíso and San Antonio Towards Smart Ports, Emphasising Digital Technologies. Journal of Marine Science and Engineering, 13(12), 2220. https://doi.org/10.3390/jmse13122220

