Deep Learning-Assisted ES-EKF for Surface AUV Navigation with SINS/GPS/DVL Integration
Abstract
1. Introduction
2. System Model Formulation
2.1. IMU Measurement Errors Modeling
2.2. Error State Kalman Filter
3. Deep Learning-Assisted Error State Kalman Filter
3.1. High-Level Architecture
3.2. Input Features
- At time step t, the difference between the estimated error-state and the predicted error-state is as follows: .
- The difference between the estimated error-state at time step t and the predicted error-state at time step is as follows: .
- The difference between the measured measurement at time step t and is as follows: .
- The innovation difference at time step t is as follows: .
- The measurement difference of the IMU between time step t and is as follows: .
- The evolution of the error state difference at the time step t is as follows: .
- The evolution of the measurement difference at time step t is as follows: .
3.3. Decoder-Based Covariance Estimator Architecture
3.4. Loss Function
4. Experiments
4.1. Experimental Setting
4.2. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Z.; Liu, W.; Li, L.; Guo, L.; Li, L. Modelling of a cable-drogue docking system for AUV. In Proceedings of the Global Oceans 2020: Singapore–U.S. Gulf Coast, Biloxi, MS, USA, 5–30 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Shao, H.; Wei, Y.; Guo, T.; Niu, J. An OCSVM Aided Integrated Navigation Fault Tolerance Strategy for Submarine-Pipeline-Detection AUV. In Proceedings of the OCEANS 2021: San Diego–Porto, San Diego, CA, USA, 20–23 September 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Lin, C.; Han, G.; Du, J.; Bi, Y.; Shu, L.; Fan, K. A Path Planning Scheme for AUV Flock-Based Internet-of-Underwater-Things Systems to Enable Transparent and Smart Ocean. IEEE Internet Things J. 2020, 7, 9760–9772. [Google Scholar] [CrossRef]
- Bobkov, V.; Morozov, M.; Inzartsev, A.; Panin, M. AUV Inspection of Subsea Pipelines Using Information from an Onboard Stereo Camera. In Proceedings of the 2024 International Conference on Ocean Studies (ICOS), Vladivostok, Russia, 8–11 October 2024; pp. 71–75. [Google Scholar] [CrossRef]
- Liu, Z.; Hou, J.; Ning, D.; Zhou, C.; Liang, G.; Zhang, F. Improving Deep Q Network Based on Marketing Psychology for AUV Path Planning in Unknown Marine Environments. IEEE Internet Things J. 2025, 12, 5476–5487. [Google Scholar] [CrossRef]
- Xu, B.; Guo, Y.; Wang, X. A DVL Measurement Correction Method in High Dynamic Environment and its Application for SINS/DVL Integrated Navigation. In Proceedings of the OCEANS 2024, Singapore, 14–18 April 2024; pp. 1–7. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, X.; Xu, X.; Klein, I. Virtual Beam Aided SINS/DVL Tightly Coupled Integration Method with Partial DVL Measurements. IEEE Trans. Veh. Technol. 2023, 72, 418–427. [Google Scholar] [CrossRef]
- Luo, L.; Huang, Y.; Zhang, Z.; Zhang, Y. A New Kalman Filter-Based In-Motion Initial Alignment Method for DVL-Aided Low-Cost SINS. IEEE Trans. Veh. Technol. 2021, 70, 331–343. [Google Scholar] [CrossRef]
- Feng, K.; Li, J.; Zhang, D.; Wei, X.; Yin, J. Robust Cubature Kalman Filter for SINS/GPS Integrated Navigation Systems with Unknown Noise Statistics. IEEE Access 2021, 9, 9101–9116. [Google Scholar] [CrossRef]
- Sarda, E.; Dhanak, M. Launch and Recovery of an Autonomous Underwater Vehicle from a Station-Keeping Unmanned Surface Vehicle. IEEE J. Ocean. Eng. 2018, 44, 290–299. [Google Scholar] [CrossRef]
- AUV Recovery Technology Development Based on Unmanned Surface Platform. J. Unmanned Undersea Syst. 2023, 31, 501. [CrossRef]
- Gao, L.; Fan, Z.; He, T.; Lv, J.; Zhang, X. A Loosely Coupled INS/BDS Integrated Navigation System. In Proceedings of the 2024 5th International Conference on Computer Vision, Image and Deep Learning (CVIDL), Zhuhai, China, 19–21 April 2024; pp. 1054–1058. [Google Scholar] [CrossRef]
- Zhao, L.; Qiu, H.; Feng, Y. Analysis of a robust Kalman filter in loosely coupled GPS/INS navigation system. Measurement 2016, 80, 138–147. [Google Scholar] [CrossRef]
- H T, M.; Akram, V.; Reddy, S.; KN, M.G.; LD, U.K. An Error-State Extended Kalman Filter Based State Estimation and Localization Algorithm for Autonomous Systems. In Proceedings of the 2023 International Conference on Smart Systems for Applications in Electrical Sciences (ICSSES), Tumakuru, India, 7–8 July 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Kim, C.; Bae, G.; Shin, W.; Wang, S.; Oh, H. EKF-Based Radar-Inertial Odometry with Online Temporal Calibration. IEEE Robot. Autom. Lett. 2025, 10, 7230–7237. [Google Scholar] [CrossRef]
- Gao, P.; Fang, J.; He, J.; Ma, S.; Wen, G.; Li, Z. GRU–Transformer Hybrid Model for GNSS/INS Integration in Orchard Environments. Agriculture 2025, 15, 1135. [Google Scholar] [CrossRef]
- Niu, Z.; Cong, L.; Qin, H. Research on High Precision Attitude Estimation Based on Gait Cycle Modeling with IMU for PDR. In Proceedings of the 2023 3rd International Conference on Electronic Information Engineering and Computer Science (EIECS), Changchun, China, 22–24 September 2023; pp. 574–579. [Google Scholar] [CrossRef]
- Brigadnov, I.; Lutonin, A.; Bogdanova, K. Error State Extended Kalman Filter Localization for Underground Mining Environments. Symmetry 2023, 15, 344. [Google Scholar] [CrossRef]
- Gogliettino, G.; Pisoni, F.; Di Grazia, D. Use of Reinforcement Learning to Improve GNSS Satellites Signal Acquisition Search Strategy. In Proceedings of the 2024 IEEE International Workshop on Metrology for Automotive (MetroAutomotive), Bologna, Italy, 26–28 June 2024; pp. 58–63. [Google Scholar] [CrossRef]
- Bai, Y.; Jia, W.; Jin, X.; Su, T.; Kong, J. Data-Driven Integrated Inertial Navigation Based on ESN Model. In Proceedings of the 2023 China Automation Congress (CAC), Chongqing, China, 17–19 November 2023; pp. 357–361. [Google Scholar] [CrossRef]
- Shao, Y.h.; Han, B.; Luo, Y. A method based on CNN-BiLSTM for UAV navigation error compensation in GNSS denied environment. In Proceedings of the 2023 9th International Conference on Computer and Communications (ICCC), Chengdu, China, 8–11 December 2023; pp. 689–694. [Google Scholar] [CrossRef]
- Kanhere, A.V.; Gupta, S.; Shetty, A.; Gao, G. Improving GNSS Positioning using Neural Network-based Corrections. arXiv 2022, arXiv:2110.09581v3. [Google Scholar] [CrossRef]
- Zhang, H.; Xiong, H.; Hao, S.; Yang, G.; Wang, M.; Chen, Q. A Novel Multidimensional Hybrid Position Compensation Method for INS/GPS Integrated Navigation Systems During GPS Outages. IEEE Sens. J. 2024, 24, 962–974. [Google Scholar] [CrossRef]
- Wang, G.; Xu, X.; Yao, Y.; Tong, J. A Novel BPNN-Based Method to Overcome the GPS Outages for INS/GPS System. IEEE Access 2019, 7, 82134–82143. [Google Scholar] [CrossRef]
- Viswanath, A.; Sameer, S.M. A Novel Elman Network Based INS/GPS Fusion Filter to Enhance Tracking Accuracy in UAVs. In Proceedings of the 2021 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT), Online, 17–18 July 2021; pp. 16–20. [Google Scholar] [CrossRef]
- Cohen, N.; Yampolsky, Z.; Klein, I. Set-Transformer BeamsNet for AUV Velocity Forecasting in Complete DVL Outage Scenarios. In Proceedings of the 2023 IEEE Underwater Technology (UT), Tokyo, Japan, 6–9 March 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Yona, M.; Klein, I. Compensating for Partial Doppler Velocity Log Outages by Using Deep- Learning Approaches. In Proceedings of the 2021 IEEE International Symposium on Robotic and Sensors Environments (ROSE), Virtual Conference, 28–29 October 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Feng, S.; Li, X.; Zhang, S.; Jian, Z.; Duan, H.; Wang, Z. A review: State estimation based on hybrid models of Kalman filter and neural network. Syst. Sci. Control Eng. 2023, 11, 2173682. [Google Scholar] [CrossRef]
- Jouaber, S.; Bonnabel, S.; Velasco-Forero, S.; Pilté, M. NNAKF: A Neural Network Adapted Kalman Filter for Target Tracking. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 4075–4079. [Google Scholar] [CrossRef]
- Xu, L.; Niu, R. EKFNet: Learning System Noise Covariance Parameters for Nonlinear Tracking. IEEE Trans. Signal Process. 2024, 72, 3139–3152. [Google Scholar] [CrossRef]
- Li, S.; Mikhaylov, M.; Pany, T.; Mikhaylov, N. Exploring the Potential of the Deep-Learning-Aided Kalman Filter for GNSS/INS Integration: A Study on 2-D Simulation Datasets. IEEE Trans. Aerosp. Electron. Syst. 2024, 60, 2683–2691. [Google Scholar] [CrossRef]
- Choi, G.; Park, J.; Shlezinger, N.; Eldar, Y.C.; Lee, N. Split-KalmanNet: A Robust Model-Based Deep Learning Approach for State Estimation. IEEE Trans. Veh. Technol. 2023, 72, 12326–12331. [Google Scholar] [CrossRef]
- Buchnik, I.; Revach, G.; Steger, D.; van Sloun, R.J.G.; Routtenberg, T.; Shlezinger, N. Latent-KalmanNet: Learned Kalman Filtering for Tracking from High-Dimensional Signals. IEEE Trans. Signal Process. 2024, 72, 352–367. [Google Scholar] [CrossRef]
- Revach, G.; Shlezinger, N.; Ni, X.; Escoriza, A.L.; van Sloun, R.J.G.; Eldar, Y.C. KalmanNet: Neural Network Aided Kalman Filtering for Partially Known Dynamics. IEEE Trans. Signal Process. 2022, 70, 1532–1547. [Google Scholar] [CrossRef]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv 2014, arXiv:1412.3555v1. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2023, arXiv:1706.03762. [Google Scholar] [CrossRef] [PubMed]
- Grewal, M.S.; Weill, L.R.; Andrews, A.P. Global Positioning Systems, Inertial Navigation, and Integration; Wiley-Interscience: New York, NY, USA, 2007. [Google Scholar]
- Zhang, L.; Zhou, H.; Gao, Y. An in-motion alignment method of AUV SINS/DVL navigation system based on FGO. Measurement 2023, 222, 113578. [Google Scholar] [CrossRef]
- Bian, Y.; Li, Z.; Wang, G.; Qin, H.; Hu, M.; Qin, X.; Ding, R. A Unidirectional Trend IMM Method for SINS/DVL/USBL Navigation System Under the Time-Varying Noise Environment. IEEE Trans. Instrum. Meas. 2025, 74, 1–14. [Google Scholar] [CrossRef]
- Sheng, G.; Liu, X.; Zhang, Y.; Shao, Q.; Xu, H.; Cheng, X.; Yuan, X. The EKF-based SINS/DVL integrated navigation for AUV on lie group under hovring condition. Ocean Eng. 2025, 325, 120742. [Google Scholar] [CrossRef]
- Mehra, R. On the identification of variances and adaptive Kalman filtering. IEEE Trans. Autom. Control 1970, 15, 175–184. [Google Scholar] [CrossRef]









| Navigation Solutions | Horizontal Error (m) | RMSE |
|---|---|---|
| SINS | 1715.8108 | 1209.5987 |
| GPS | 0.6714 | 0.5114 |
| SINS/DVL | 2.3478 | 0.5086 |
| SINS/DVL/GPS | 0.6287 | 0.5016 |
| Settings | Value |
|---|---|
| Epoch | 100 |
| Batch | 1 |
| Sequence length | 1 |
| Multi-heads | 4 |
| Linear dimension | 128 |
| Input dimension | 61 |
| Output dimension | 21 |
| The shape of Q | (15, 15) |
| The shape of R | (6, 6) |
| Initial learning rate |
| Covariance Estimator | Loss (RMSE) | Trainable Parameters | Convergence Epoch | Test Duration (s) |
|---|---|---|---|---|
| Transformer | 0.4776 (0.0877) | 1,196,693 | 92 | 17.44 |
| GRU | 0.0007 (0.0622) | 175,125 | 23 | 14.62 |
| Our model (excluding and ) | 0.0005 (0.0419) | 108,565 | 95 | 12.70 |
| Our method | 0.0003 (0.0274) | 110,229 | 91 | 13.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Xu, B.; Ye, B.; Li, F. Deep Learning-Assisted ES-EKF for Surface AUV Navigation with SINS/GPS/DVL Integration. J. Mar. Sci. Eng. 2025, 13, 2035. https://doi.org/10.3390/jmse13112035
Yang Y, Xu B, Ye B, Li F. Deep Learning-Assisted ES-EKF for Surface AUV Navigation with SINS/GPS/DVL Integration. Journal of Marine Science and Engineering. 2025; 13(11):2035. https://doi.org/10.3390/jmse13112035
Chicago/Turabian StyleYang, Yuanbo, Bo Xu, Baodong Ye, and Feimo Li. 2025. "Deep Learning-Assisted ES-EKF for Surface AUV Navigation with SINS/GPS/DVL Integration" Journal of Marine Science and Engineering 13, no. 11: 2035. https://doi.org/10.3390/jmse13112035
APA StyleYang, Y., Xu, B., Ye, B., & Li, F. (2025). Deep Learning-Assisted ES-EKF for Surface AUV Navigation with SINS/GPS/DVL Integration. Journal of Marine Science and Engineering, 13(11), 2035. https://doi.org/10.3390/jmse13112035

