Prescribed Performance-Based Formation Control for Multiple Autonomous Underwater Helicopters with Complex Dynamic Characteristics
Abstract
:1. Introduction
2. Preliminaries and Problem Formulation
2.1. AUHs Dynamics
2.2. Formation Structure and Graph Theory
2.3. RBFNN
3. NN-Based AUH Formation Control Mechanism
3.1. FTPPC
3.2. State Observer Design
3.3. NN-Based AUH Formation Controller
4. AUH Formation Control Using Experience
4.1. Learn from Formation Track Control
4.2. Experience-Based AUH Formation Controller
5. Simulation Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Joshi, B.; Xanthidis, M.; Roznere, M.; Burgdorfer, N.J.; Mordohai, P.; Li, A.Q.; Rekleitis, I. Underwater exploration and mapping. In Proceedings of the 2022 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV), Singapore, 19–21 September 2022; pp. 1–7. [Google Scholar]
- Mirza, J.; Kanwal, F.; Salaria, U.A.; Ghafoor, S.; Aziz, I.; Atieh, A.; Almogren, A.; Haq, A.U.; Kanwal, B. Underwater temperature and pressure monitoring for deep-sea SCUBA divers using optical techniques. Front. Phys. 2024, 12, 1417293. [Google Scholar] [CrossRef]
- Mirza, J.; Atieh, A.; Kanwal, B.; Ghafoor, S.; Almogren, A.; Kanwal, F.; Aziz, I. Relay aided UWOC-SMF-FSO based hybrid link for underwater wireless optical sensor network. Opt. Fiber Technol. 2025, 89, 104045. [Google Scholar] [CrossRef]
- Wibisono, A.; Piran, M.J.; Song, H.K.; Lee, B.M. A survey on unmanned underwater vehicles: Challenges, enabling technologies, and future research directions. Sensors 2023, 23, 7321. [Google Scholar] [CrossRef]
- Thuyen, N.A.; Thanh, P.N.N.; Anh, H.P.H. Adaptive finite-time leader-follower formation control for multiple AUVs regarding uncertain dynamics and disturbances. Ocean Eng. 2023, 269, 113503. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Wei, Y.; Zhang, C. Bounded neural adaptive formation control of multiple underactuated AUVs under uncertain dynamics. ISA Trans. 2020, 105, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Q.; Shen, Y.; Dai, N.; He, B. Multi-AUV cooperative control and autonomous obstacle avoidance study. Ocean Eng. 2024, 304, 117634. [Google Scholar] [CrossRef]
- Zhuang, Y.; Huang, H.; Sharma, S.; Xu, D.; Zhang, Q. Cooperative path planning of multiple autonomous underwater vehicles operating in dynamic ocean environment. ISA Trans. 2019, 94, 174–186. [Google Scholar] [CrossRef]
- Li, H.; An, X.; Feng, R.; Chen, Y. Motion control of autonomous underwater helicopter based on linear active disturbance rejection control with tracking differentiator. Appl. Sci. 2023, 13, 3836. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, Z.; Xie, M.; Wu, F.; Huang, H. Finite-time prescribed performance trajectory tracking control for the autonomous underwater helicopter. Ocean Eng. 2023, 280, 114628. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Q.; Huang, H. Low-complexity tracking for autonomous underwater helicopters with event-triggered mechanism. Ocean Eng. 2023, 280, 114633. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, M.; Yao, F.; Chu, Z. Observer-based region tracking control for underwater vehicles without velocity measurement. Nonlinear Dyn. 2022, 108, 3543–3560. [Google Scholar] [CrossRef]
- Li, J.; Tian, Z.; Zhang, H.; Li, W. Robust finite-time control of a multi-AUV formation based on prescribed performance. J. Mar. Sci. Eng. 2023, 11, 897. [Google Scholar] [CrossRef]
- Gao, Z.; Guo, G. Fixed-time sliding mode formation control of AUVs based on a disturbance observer. IEEE/CAA J. Automat. Sin. 2020, 7, 539–545. [Google Scholar] [CrossRef]
- Li, X.; Qin, H.; Li, L. Fixed-time formation control for AUVs with unknown actuator faults based on lumped disturbance observer. Ocean Eng. 2023, 269, 113495. [Google Scholar] [CrossRef]
- Li, Z.; Wang, M.; Ma, G.; Zou, T. Adaptive reinforcement learning fault-tolerant control for AUVs with thruster faults based on the integral extended state observer. Ocean Eng. 2023, 271, 113722. [Google Scholar] [CrossRef]
- Kong, S.; Sun, J.; Qiu, C.; Wu, Z.; Yu, J. Extended State Observer-Based Controller with Model Predictive Governor for 3-D Trajectory Tracking of Underactuated Underwater Vehicles. IEEE Trans. Ind. Inf. 2021, 17, 6114–6124. [Google Scholar] [CrossRef]
- Fang, K.; Fang, H.; Zhang, J.; Yao, J.; Li, J. Neural adaptive output feedback tracking control of underactuated AUVs. Ocean Eng. 2021, 234, 109211. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Q.; Huang, H. Adaptive neural networks trajectory tracking control for autonomous underwater helicopters with prescribed performance. Ocean Eng. 2022, 264, 112519. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Wei, Y.; Zhang, C. Observer-Based Neural Formation Control of Leader-Follower AUVs with Input Saturation. IEEE Syst. J. 2021, 15, 2553–2561. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, O. Adaptive Backstepping Axial Position Tracking Control of Autonomous Undersea Vehicles with Deferred Output Constraint. Appl. Sci. 2023, 13, 2219. [Google Scholar] [CrossRef]
- Wang, C.; Hill, D.J. Learning from neural control. IEEE Trans. Neural Netw. 2006, 17, 130–146. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Licht, S.; He, H. Formation Learning Control of Multiple Autonomous Underwater Vehicles with Heterogeneous Nonlinear Uncertain Dynamics. IEEE Trans. Cybern. 2018, 48, 2920–2934. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.-L.; He, S.; Ma, Y.; Yuan, C. Cooperative Learning-Based Formation Control of Autonomous Marine Surface Vessels with Prescribed Performance. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 2565–2577. [Google Scholar] [CrossRef]
- Yaghmaie, F.A.; Modares, H.; Gustafsson, F. Reinforcement Learning for Partially Observable Linear Gaussian Systems Using Batch Dynamics of Noisy Observations. IEEE Trans. Autom. Control 2024, 69, 6379–6404. [Google Scholar] [CrossRef]
- Nguyen, K.; Dang, V.T.; Pham, D.D.; Dao, P.N. Formation control scheme with reinforcement learning strategy for a group of multiple surface vehicles. Int. J. Robust. Nonlinear Control 2024, 34, 2252–2279. [Google Scholar] [CrossRef]
- Huang, H.; He, W.; Li, J.; Xu, B.; Yang, C.; Zhang, W. Disturbance Observer-Based Fault-Tolerant Control for Robotic Systems with Guaranteed Prescribed Performance. IEEE Trans. Cybern. 2022, 52, 772–783. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Y.; Yue, D.; Zhao, J. Adaptive Tracking for Uncertain Switched Nonlinear Systems with Prescribed Performance Under Slow Switching. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 7279–7288. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.-J.; Tong, S. Fuzzy-Based Multierror Constraint Control for Switched Nonlinear Systems and Its Applications. IEEE Trans. Fuzzy Syst. 2019, 27, 1519–1531. [Google Scholar] [CrossRef]
- Xu, Z.; Sun, C.; Liu, Q. Output-Feedback Prescribed Performance Control for the Full-State Constrained Nonlinear Systems and Its Application to DC Motor System. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 3898–3907. [Google Scholar] [CrossRef]
- Qiu, J.; Wang, T.; Sun, K.; Rudas, I.J.; Gao, H. Disturbance Observer-Based Adaptive Fuzzy Control for Strict-Feedback Nonlinear Systems with Finite-Time Prescribed Performance. IEEE Trans. Fuzzy Syst. 2022, 30, 1175–1184. [Google Scholar] [CrossRef]
- Sui, S.; Chen, C.L.P.; Tong, S. A Novel Adaptive NN Prescribed Performance Control for Stochastic Nonlinear Systems. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 3196–3205. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Bai, W.; Zhao, X.; Liu, P.X. Finite-Time-Prescribed Performance-Based Adaptive Fuzzy Control for Strict-Feedback Nonlinear Systems with Dynamic Uncertainty and Actuator Faults. IEEE Trans. Cybern. 2022, 52, 6959–6971. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.-L.; Wang, M.; Wang, C. Neural Learning Control of Marine Surface Vessels with Guaranteed Transient Tracking Performance. IEEE Trans. Ind. Electron. 2016, 63, 1717–1727. [Google Scholar] [CrossRef]
- Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Yi, S.; Wang, J.; Li, B. Composite backstepping control with finite-time convergence. Optik 2017, 142, 260–272. [Google Scholar] [CrossRef]
- Xie, M.; Wu, Z.; Huang, H. Low-complexity formation control of marine vehicle system based on prescribed performance. Nonlinear Dyn. 2024, 112, 18311–18332. [Google Scholar] [CrossRef]
- Wang, C.; Hill, D.J. Deterministic Learning Theory for Identification, Recognition, and Control; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
Study | Dynamic Model Consideration | Robustness to Disturbances | Learning Mechanism | Performance Metrics |
---|---|---|---|---|
[12,18,22] | Unknown dynamics | Moderate | None | UUB errors |
[13] | Feedback linearization | High | None | Finite-time convergence |
[14,15] | Unknown dynamics, external disturbances | High | None | Fixed-time convergence |
[16] | Thruster faults, unknown disturbances | Moderate | Reinforcement learning | UUB errors |
[17,27,29] | Unknown disturbances | Moderate | None | UUB errors |
[19] | Thruster faults, unknown disturbances | Low | None | Specified convergence time |
[20] | Unknown dynamics, input saturation | Low | None | UUB errors |
[23] | Uncertainties | High | Deterministic learning | UUB errors |
[24] | Unknown disturbances, uncertainties | High | Cooperative learning | UUB errors |
[26] | Dynamic models | Moderate | Reinforcement learning | UUB errors |
[30] | Full-state constraints, disturbances | Moderate | None | Specified convergence time |
Proposed | Unknown dynamics, uncertainties, external disturbances | High | Experience-based learning | Specified convergence time |
Terms | Values |
---|---|
The initial states | |
The reference trajectory of the virtual leader | |
The external disturbance |
Methods | The Adaptive NN-Based Control Method | The Experience-Based Control Method |
---|---|---|
Simulation time setting (s) | 200 | 200 |
Actual running time (s) | 97.62 | 83.67 |
Tracking error in translation degree (m) | <0.03 | <0.03 |
Tracking error in rotation degree (rad) | <0.03 | <0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Song, Z.; Huang, H. Prescribed Performance-Based Formation Control for Multiple Autonomous Underwater Helicopters with Complex Dynamic Characteristics. J. Mar. Sci. Eng. 2024, 12, 2246. https://doi.org/10.3390/jmse12122246
Wu Z, Song Z, Huang H. Prescribed Performance-Based Formation Control for Multiple Autonomous Underwater Helicopters with Complex Dynamic Characteristics. Journal of Marine Science and Engineering. 2024; 12(12):2246. https://doi.org/10.3390/jmse12122246
Chicago/Turabian StyleWu, Zheyuan, Zilong Song, and Haocai Huang. 2024. "Prescribed Performance-Based Formation Control for Multiple Autonomous Underwater Helicopters with Complex Dynamic Characteristics" Journal of Marine Science and Engineering 12, no. 12: 2246. https://doi.org/10.3390/jmse12122246
APA StyleWu, Z., Song, Z., & Huang, H. (2024). Prescribed Performance-Based Formation Control for Multiple Autonomous Underwater Helicopters with Complex Dynamic Characteristics. Journal of Marine Science and Engineering, 12(12), 2246. https://doi.org/10.3390/jmse12122246