Prescribed Performance-Based Formation Control for Multiple Autonomous Underwater Helicopters with Complex Dynamic Characteristics
Abstract
1. Introduction
2. Preliminaries and Problem Formulation
2.1. AUHs Dynamics
2.2. Formation Structure and Graph Theory
2.3. RBFNN
3. NN-Based AUH Formation Control Mechanism
3.1. FTPPC
3.2. State Observer Design
3.3. NN-Based AUH Formation Controller
4. AUH Formation Control Using Experience
4.1. Learn from Formation Track Control
4.2. Experience-Based AUH Formation Controller
5. Simulation Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Joshi, B.; Xanthidis, M.; Roznere, M.; Burgdorfer, N.J.; Mordohai, P.; Li, A.Q.; Rekleitis, I. Underwater exploration and mapping. In Proceedings of the 2022 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV), Singapore, 19–21 September 2022; pp. 1–7. [Google Scholar]
- Mirza, J.; Kanwal, F.; Salaria, U.A.; Ghafoor, S.; Aziz, I.; Atieh, A.; Almogren, A.; Haq, A.U.; Kanwal, B. Underwater temperature and pressure monitoring for deep-sea SCUBA divers using optical techniques. Front. Phys. 2024, 12, 1417293. [Google Scholar] [CrossRef]
- Mirza, J.; Atieh, A.; Kanwal, B.; Ghafoor, S.; Almogren, A.; Kanwal, F.; Aziz, I. Relay aided UWOC-SMF-FSO based hybrid link for underwater wireless optical sensor network. Opt. Fiber Technol. 2025, 89, 104045. [Google Scholar] [CrossRef]
- Wibisono, A.; Piran, M.J.; Song, H.K.; Lee, B.M. A survey on unmanned underwater vehicles: Challenges, enabling technologies, and future research directions. Sensors 2023, 23, 7321. [Google Scholar] [CrossRef]
- Thuyen, N.A.; Thanh, P.N.N.; Anh, H.P.H. Adaptive finite-time leader-follower formation control for multiple AUVs regarding uncertain dynamics and disturbances. Ocean Eng. 2023, 269, 113503. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Wei, Y.; Zhang, C. Bounded neural adaptive formation control of multiple underactuated AUVs under uncertain dynamics. ISA Trans. 2020, 105, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Q.; Shen, Y.; Dai, N.; He, B. Multi-AUV cooperative control and autonomous obstacle avoidance study. Ocean Eng. 2024, 304, 117634. [Google Scholar] [CrossRef]
- Zhuang, Y.; Huang, H.; Sharma, S.; Xu, D.; Zhang, Q. Cooperative path planning of multiple autonomous underwater vehicles operating in dynamic ocean environment. ISA Trans. 2019, 94, 174–186. [Google Scholar] [CrossRef]
- Li, H.; An, X.; Feng, R.; Chen, Y. Motion control of autonomous underwater helicopter based on linear active disturbance rejection control with tracking differentiator. Appl. Sci. 2023, 13, 3836. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, Z.; Xie, M.; Wu, F.; Huang, H. Finite-time prescribed performance trajectory tracking control for the autonomous underwater helicopter. Ocean Eng. 2023, 280, 114628. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Q.; Huang, H. Low-complexity tracking for autonomous underwater helicopters with event-triggered mechanism. Ocean Eng. 2023, 280, 114633. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, M.; Yao, F.; Chu, Z. Observer-based region tracking control for underwater vehicles without velocity measurement. Nonlinear Dyn. 2022, 108, 3543–3560. [Google Scholar] [CrossRef]
- Li, J.; Tian, Z.; Zhang, H.; Li, W. Robust finite-time control of a multi-AUV formation based on prescribed performance. J. Mar. Sci. Eng. 2023, 11, 897. [Google Scholar] [CrossRef]
- Gao, Z.; Guo, G. Fixed-time sliding mode formation control of AUVs based on a disturbance observer. IEEE/CAA J. Automat. Sin. 2020, 7, 539–545. [Google Scholar] [CrossRef]
- Li, X.; Qin, H.; Li, L. Fixed-time formation control for AUVs with unknown actuator faults based on lumped disturbance observer. Ocean Eng. 2023, 269, 113495. [Google Scholar] [CrossRef]
- Li, Z.; Wang, M.; Ma, G.; Zou, T. Adaptive reinforcement learning fault-tolerant control for AUVs with thruster faults based on the integral extended state observer. Ocean Eng. 2023, 271, 113722. [Google Scholar] [CrossRef]
- Kong, S.; Sun, J.; Qiu, C.; Wu, Z.; Yu, J. Extended State Observer-Based Controller with Model Predictive Governor for 3-D Trajectory Tracking of Underactuated Underwater Vehicles. IEEE Trans. Ind. Inf. 2021, 17, 6114–6124. [Google Scholar] [CrossRef]
- Fang, K.; Fang, H.; Zhang, J.; Yao, J.; Li, J. Neural adaptive output feedback tracking control of underactuated AUVs. Ocean Eng. 2021, 234, 109211. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Q.; Huang, H. Adaptive neural networks trajectory tracking control for autonomous underwater helicopters with prescribed performance. Ocean Eng. 2022, 264, 112519. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Wei, Y.; Zhang, C. Observer-Based Neural Formation Control of Leader-Follower AUVs with Input Saturation. IEEE Syst. J. 2021, 15, 2553–2561. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, O. Adaptive Backstepping Axial Position Tracking Control of Autonomous Undersea Vehicles with Deferred Output Constraint. Appl. Sci. 2023, 13, 2219. [Google Scholar] [CrossRef]
- Wang, C.; Hill, D.J. Learning from neural control. IEEE Trans. Neural Netw. 2006, 17, 130–146. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Licht, S.; He, H. Formation Learning Control of Multiple Autonomous Underwater Vehicles with Heterogeneous Nonlinear Uncertain Dynamics. IEEE Trans. Cybern. 2018, 48, 2920–2934. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.-L.; He, S.; Ma, Y.; Yuan, C. Cooperative Learning-Based Formation Control of Autonomous Marine Surface Vessels with Prescribed Performance. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 2565–2577. [Google Scholar] [CrossRef]
- Yaghmaie, F.A.; Modares, H.; Gustafsson, F. Reinforcement Learning for Partially Observable Linear Gaussian Systems Using Batch Dynamics of Noisy Observations. IEEE Trans. Autom. Control 2024, 69, 6379–6404. [Google Scholar] [CrossRef]
- Nguyen, K.; Dang, V.T.; Pham, D.D.; Dao, P.N. Formation control scheme with reinforcement learning strategy for a group of multiple surface vehicles. Int. J. Robust. Nonlinear Control 2024, 34, 2252–2279. [Google Scholar] [CrossRef]
- Huang, H.; He, W.; Li, J.; Xu, B.; Yang, C.; Zhang, W. Disturbance Observer-Based Fault-Tolerant Control for Robotic Systems with Guaranteed Prescribed Performance. IEEE Trans. Cybern. 2022, 52, 772–783. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Y.; Yue, D.; Zhao, J. Adaptive Tracking for Uncertain Switched Nonlinear Systems with Prescribed Performance Under Slow Switching. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 7279–7288. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.-J.; Tong, S. Fuzzy-Based Multierror Constraint Control for Switched Nonlinear Systems and Its Applications. IEEE Trans. Fuzzy Syst. 2019, 27, 1519–1531. [Google Scholar] [CrossRef]
- Xu, Z.; Sun, C.; Liu, Q. Output-Feedback Prescribed Performance Control for the Full-State Constrained Nonlinear Systems and Its Application to DC Motor System. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 3898–3907. [Google Scholar] [CrossRef]
- Qiu, J.; Wang, T.; Sun, K.; Rudas, I.J.; Gao, H. Disturbance Observer-Based Adaptive Fuzzy Control for Strict-Feedback Nonlinear Systems with Finite-Time Prescribed Performance. IEEE Trans. Fuzzy Syst. 2022, 30, 1175–1184. [Google Scholar] [CrossRef]
- Sui, S.; Chen, C.L.P.; Tong, S. A Novel Adaptive NN Prescribed Performance Control for Stochastic Nonlinear Systems. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 3196–3205. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Bai, W.; Zhao, X.; Liu, P.X. Finite-Time-Prescribed Performance-Based Adaptive Fuzzy Control for Strict-Feedback Nonlinear Systems with Dynamic Uncertainty and Actuator Faults. IEEE Trans. Cybern. 2022, 52, 6959–6971. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.-L.; Wang, M.; Wang, C. Neural Learning Control of Marine Surface Vessels with Guaranteed Transient Tracking Performance. IEEE Trans. Ind. Electron. 2016, 63, 1717–1727. [Google Scholar] [CrossRef]
- Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Yi, S.; Wang, J.; Li, B. Composite backstepping control with finite-time convergence. Optik 2017, 142, 260–272. [Google Scholar] [CrossRef]
- Xie, M.; Wu, Z.; Huang, H. Low-complexity formation control of marine vehicle system based on prescribed performance. Nonlinear Dyn. 2024, 112, 18311–18332. [Google Scholar] [CrossRef]
- Wang, C.; Hill, D.J. Deterministic Learning Theory for Identification, Recognition, and Control; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
Study | Dynamic Model Consideration | Robustness to Disturbances | Learning Mechanism | Performance Metrics |
---|---|---|---|---|
[12,18,22] | Unknown dynamics | Moderate | None | UUB errors |
[13] | Feedback linearization | High | None | Finite-time convergence |
[14,15] | Unknown dynamics, external disturbances | High | None | Fixed-time convergence |
[16] | Thruster faults, unknown disturbances | Moderate | Reinforcement learning | UUB errors |
[17,27,29] | Unknown disturbances | Moderate | None | UUB errors |
[19] | Thruster faults, unknown disturbances | Low | None | Specified convergence time |
[20] | Unknown dynamics, input saturation | Low | None | UUB errors |
[23] | Uncertainties | High | Deterministic learning | UUB errors |
[24] | Unknown disturbances, uncertainties | High | Cooperative learning | UUB errors |
[26] | Dynamic models | Moderate | Reinforcement learning | UUB errors |
[30] | Full-state constraints, disturbances | Moderate | None | Specified convergence time |
Proposed | Unknown dynamics, uncertainties, external disturbances | High | Experience-based learning | Specified convergence time |
Terms | Values |
---|---|
The initial states | |
The reference trajectory of the virtual leader | |
The external disturbance |
Methods | The Adaptive NN-Based Control Method | The Experience-Based Control Method |
---|---|---|
Simulation time setting (s) | 200 | 200 |
Actual running time (s) | 97.62 | 83.67 |
Tracking error in translation degree (m) | <0.03 | <0.03 |
Tracking error in rotation degree (rad) | <0.03 | <0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Song, Z.; Huang, H. Prescribed Performance-Based Formation Control for Multiple Autonomous Underwater Helicopters with Complex Dynamic Characteristics. J. Mar. Sci. Eng. 2024, 12, 2246. https://doi.org/10.3390/jmse12122246
Wu Z, Song Z, Huang H. Prescribed Performance-Based Formation Control for Multiple Autonomous Underwater Helicopters with Complex Dynamic Characteristics. Journal of Marine Science and Engineering. 2024; 12(12):2246. https://doi.org/10.3390/jmse12122246
Chicago/Turabian StyleWu, Zheyuan, Zilong Song, and Haocai Huang. 2024. "Prescribed Performance-Based Formation Control for Multiple Autonomous Underwater Helicopters with Complex Dynamic Characteristics" Journal of Marine Science and Engineering 12, no. 12: 2246. https://doi.org/10.3390/jmse12122246
APA StyleWu, Z., Song, Z., & Huang, H. (2024). Prescribed Performance-Based Formation Control for Multiple Autonomous Underwater Helicopters with Complex Dynamic Characteristics. Journal of Marine Science and Engineering, 12(12), 2246. https://doi.org/10.3390/jmse12122246