Simulation-Driven Design Optimization of a Destroyer-Type Vessel via Multi-Fidelity Supervised Active Learning
Abstract
:1. Introduction
2. Multi-Fidelity Supervised Active Learning Method
2.1. Supervised Learning Method
2.2. Multi-Fidelity Method
2.3. Active Learning Method
3. Optimization Problem Formulation and Setup
- Problem A: and , admitting only solutions that maintain the original lower dimensions, with the possibility of increasing them only by 3% with respect to the parent hull.
- Problem B: and , admitting a maximum variation of ±3% with respect to the parent hull.
3.1. Design Space Definition
3.2. Numerical Solvers
3.2.1. URANS Solver
3.2.2. Potential Flow Solver
3.2.3. Strip Theory Solver
4. Results
4.1. Preliminary Analysis of the Parent Hull in Calm Water
4.2. Shape Optimization Problem
5. Conclusions and Future Works
Author Contributions
Funding
Conflicts of Interest
References
- Čampara, L.; Hasanspahić, N.; Vujičić, S. Overview of MARPOL ANNEX VI regulations for prevention of air pollution from marine diesel engines. SHS Web Conf. 2018, 58, 01004. [Google Scholar] [CrossRef]
- IMO. 2023 IMO Strategy on Reduction of GHG Emissions from Ships; MEPC80/17/Add.1; Annex 15 Resolution MEPC.377(80); IMO: London, UK, 2023. [Google Scholar]
- Nikolopoulos, L.; Boulougouris, E. A study on the statistical calibration of the holtrop and mennen approximate power prediction method for full hull form, low froude number vessels. J. Ship Prod. Des. 2019, 35, 41–68. [Google Scholar] [CrossRef]
- Harries, S.; Abt, C. Faster turn-around times for the design and optimization of functional surfaces. Ocean Eng. 2019, 193, 106470. [Google Scholar] [CrossRef]
- Serani, A.; Stern, F.; Campana, E.F.; Diez, M. Hull-form stochastic optimization via computational-cost reduction methods. Eng. Comput. 2022, 38, 2245–2269. [Google Scholar] [CrossRef]
- Beran, P.S.; Bryson, D.; Thelen, A.S.; Diez, M.; Serani, A. Comparison of multi-fidelity approaches for military vehicle design. In Proceedings of the AIAA Aviation 2020 Forum, Virtual Event, 15–19 June 2020; p. 3158. [Google Scholar]
- Coppedè, A.; Gaggero, S.; Vernengo, G.; Villa, D. Hydrodynamic shape optimization by high fidelity CFD solver and Gaussian process based response surface method. Appl. Ocean Res. 2019, 90, 101841. [Google Scholar] [CrossRef]
- Miao, A.; Zhao, M.; Wan, D. CFD-based multi-objective optimisation of S60 Catamaran considering Demihull shape and separation. Appl. Ocean Res. 2020, 97, 102071. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, W.; Wan, D. Resistance and wake distortion optimization of JBC considering ship-propeller interaction. Ocean Eng. 2022, 244, 110376. [Google Scholar] [CrossRef]
- Nazemian, A.; Ghadimi, P. Automated CFD-based optimization of inverted bow shape of a trimaran ship: An applicable and efficient optimization platform. Sci. Iran. 2021, 28, 2751–2768. [Google Scholar] [CrossRef]
- Harries, S.; Uharek, S. Application of radial basis functions for partially-parametric modeling and principal component analysis for faster hydrodynamic optimization of a catamaran. J. Mar. Sci. Eng. 2021, 9, 1069. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, Z.; Dai, Y.; Cui, L.; Zhang, Z.; Wang, P. Multi-objective optimization of a bow thruster based on URANS numerical simulations. Ocean Eng. 2022, 247, 110784. [Google Scholar] [CrossRef]
- Lv, H.; Wei, C.; Liang, X.; Yi, H. Optimisation of wave-piercing trimaran outrigger layout with comprehensive consideration of resistance and seakeeping. Ocean Eng. 2022, 250, 111050. [Google Scholar] [CrossRef]
- Luo, W.; Guo, X.; Dai, J.; Rao, T. Hull optimization of an underwater vehicle based on dynamic surrogate model. Ocean Eng. 2021, 230, 109050. [Google Scholar] [CrossRef]
- Pellegrini, R.; Wackers, J.; Broglia, R.; Serani, A.; Visonneau, M.; Diez, M. A multi-fidelity active learning method for global design optimization problems with noisy evaluations. Eng. Comput. 2023, 39, 3183–3206. [Google Scholar] [CrossRef]
- Bonfiglio, L.; Perdikaris, P.; Vernengo, G.; de Medeiros, J.S.; Karniadakis, G. Improving swath seakeeping performance using multi-fidelity Gaussian process and Bayesian optimization. J. Ship Res. 2018, 62, 223–240. [Google Scholar] [CrossRef]
- Gaggero, S.; Vernengo, G.; Villa, D. A marine propeller design method based on two-fidelity data levels. Appl. Ocean Res. 2022, 123, 103156. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, W.; Wan, D. Multi-fidelity Co-Kriging surrogate model for ship hull form optimization. Ocean Eng. 2022, 243, 110239. [Google Scholar] [CrossRef]
- Wackers, J.; Pellegrini, R.; Serani, A.; Visonneau, M.; Diez, M. Efficient initialization for multi-fidelity surrogate-based optimization. J. Ocean Eng. Mar. Energy 2023, 9, 291–307. [Google Scholar] [CrossRef]
- Kennell, C.G.; White, B.L.; Comstock, E.N. Innovative Naval Designs for North Atlantic Opeartions. SNAME Trans. 1985, 93, 261–281. [Google Scholar]
- Barr, A.H. Global and Local Deformations of Solid Primitives. SIGGRAPH Comput. Graph. 1984, 18, 21–30. [Google Scholar] [CrossRef]
- Serani, A.; Diez, M.; Campana, E.F.; Fasano, G.; Peri, D.; Iemma, U. Globally Convergent Hybridization of Particle Swarm Optimization Using Line Search-Based Derivative-Free Techniques. In Recent Advances in Swarm Intelligence and Evolutionary Computation; Studies in Computational, Intelligence; Yang, X.S., Ed.; Springer International Publishing: Cham, Switzerland, 2015; Volume 585, pp. 25–47. [Google Scholar]
- Volpi, S.; Diez, M.; Gaul, N.; Song, H.; Iemma, U.; Choi, K.K.; Campana, E.F.; Stern, F. Development and validation of a dynamic metamodel based on stochastic radial basis functions and uncertainty quantification. Struct. Multidiscip. Optim. 2015, 51, 347–368. [Google Scholar] [CrossRef]
- Gutmann, H.M. A radial basis function method for global optimization. J. Glob. Optim. 2001, 19, 201–227. [Google Scholar] [CrossRef]
- Forrester, A.I.; Keane, A.J. Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 2009, 45, 50–79. [Google Scholar] [CrossRef]
- Piazzola, C.; Tamellini, L.; Pellegrini, R.; Broglia, R.; Serani, A.; Diez, M. Comparing multi-index stochastic collocation and multi-fidelity stochastic radial basis functions for forward uncertainty quantification of ship resistance. Eng. Comput. 2023, 39, 2209–2237. [Google Scholar] [CrossRef]
- Serani, A.; Pellegrini, R.; Broglia, R.; Wackers, J.; Visonneau, M.; Diez, M. An adaptive N-fidelity metamodel for design and operational-uncertainty space exploration of complex industrial problems. In Proceedings of the VIII International Conference on Computational Methods in Marine Engineering MARINE, Gothenburg, Sweden, 13–15 May 2019. [Google Scholar]
- Serani, A.; Pellegrini, R.; Wackers, J.; Jeanson, C.E.; Queutey, P.; Visonneau, M.; Diez, M. Adaptive multi-fidelity sampling for CFD-based optimisation via radial basis function metamodels. Int. J. Comput. Fluid Dyn. 2019, 33, 237–255. [Google Scholar] [CrossRef]
- Lambe, A.B.; Martins, J.R. Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes. Struct. Multidiscip. Optim. 2012, 46, 273–284. [Google Scholar] [CrossRef]
- Bales, S.L. Designing Ships to the Natural Environment. Nav. Eng. J. 1983, 95, 31–40. [Google Scholar] [CrossRef]
- Sederberg, T.W.; Parry, S.R. Free-form deformation of solid geometric models. ACM SIGGRAPH Comput. Graph. 1986, 20, 151–160. [Google Scholar] [CrossRef]
- Di Mascio, A.; Broglia, R.; Muscari, R. Prediction of hydrodynamic coefficients of ship hulls by high-order Godunov-type methods. J. Mar. Sci. Technol. 2009, 14, 19–29. [Google Scholar] [CrossRef]
- Spalart, P.; Allmaras, S. A one-equation turbulence model for aerodynamic flows. In Proceedings of the 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1992; p. 439. [Google Scholar]
- Broglia, R.; Durante, D. Accurate prediction of complex free surface flow around a high speed craft using a single-phase level set method. Comput. Mech. 2018, 62, 421–437. [Google Scholar] [CrossRef]
- Zaghi, S.; Di Mascio, A.; Broglia, R.; Muscari, R. Application of dynamic overlapping grids to the simulation of the flow around a fully-appended submarine. Math. Comput. Simul. 2015, 116, 75–88. [Google Scholar] [CrossRef]
- Favini, B.; Broglia, R.; Di Mascio, A. Multi–grid Acceleration of Second Order ENO Schemes from Low Subsonic to High Supersonic Flows. Int. J. Num. Meth. Fluids 1996, 23, 589–606. [Google Scholar] [CrossRef]
- Bassanini, P.; Bulgarelli, U.; Campana, E.F.; Lalli, F. The wave resistance problem in a boundary integral formulation. Surv. Math. Ind. 1994, 4, 151–194. [Google Scholar]
- Dawson, C.W. A practical computer method for solving ship-wave problems. In Proceedings of the 2nd International Conference on Numerical Ship Hydrodynamics, Berkeley, CA, USA, 19–21 September 1977; pp. 30–38. [Google Scholar]
- Schlichting, H.; Gersten, K. Boundary-Layer Theory; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Xing, T.; Stern, F. Factors of safety for Richardson extrapolation. J. Fluids Eng. 2010, 132, 061403. [Google Scholar] [CrossRef]
- Serani, A.; Ficini, S.; Broglia, R.; Diez, M.; Goren, O.; Danisman, D.; Solak, H.P.; Yıldız, S.; Nikbay, M.; Scholcz, T.; et al. Shape Optimization of a Naval Destroyer by Multi-Fidelity Methods. In Proceedings of the 10th Conference on Computational Methods in Marine Engineering, Madrid, Spain, 27–29 June 2023. [Google Scholar]
- Serani, A.; Leotardi, C.; Iemma, U.; Campana, E.F.; Fasano, G.; Diez, M. Parameter selection in synchronous and asynchronous deterministic particle swarm optimization for ship hydrodynamics problems. Appl. Soft Comput. 2016, 49, 313–334. [Google Scholar] [CrossRef]
- Rumpfkeil, M.P.; Serani, A.; Beran, P.S. Multi-Fidelity Constrained Optimization Methods Applied to Benchmark Problems. In Proceedings of the 2024 AIAA SciTech Forum, Orlando, FL, USA, 8–12 January 2024. [Google Scholar]
Parameter | Symbol | Value | Units |
---|---|---|---|
Displacement | ∇ | 0.4660 | tonnes |
Length between perpendiculars | 5.9643 | m | |
Beam overall | 0.8679 | m | |
Draft | T | 0.2046 | m |
Variable | x-Layer | y-Layer | z-Layer | DoF | ||
---|---|---|---|---|---|---|
1 | 2 | 1 | y | −0.500 | 0.500 | |
1 | 2 | 2 | y | −0.500 | 0.500 | |
2 | 2 | 1 | y | −0.500 | 0.500 | |
9 | 2 | 1 | x | −0.100 | 0.000 | |
9 | 2 | 2 | x | −0.100 | 0.100 |
G3 | G2 | G1 | p | %G1 | |
---|---|---|---|---|---|
R [N] | 131.07 | 100.64 | 93.25 | 2.04 | 2.64 |
Sinkage/ [–] | −2.440 | −2.730 | −2.777 | 2.63 | 2.20 |
Trim [deg] | 2.073 | 4.342 | −1.988 | – | – |
Coefficient | Symbol | Original | Optimized A | Optimized B |
---|---|---|---|---|
Block | 0.321 | 0.321 | 0.312 | |
Section | 0.516 | 0.515 | 0.514 | |
Waterplane | 0.739 | 0.748 | 0.719 | |
Prismatic | 0.622 | 0.624 | 0.606 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spinosa, E.; Pellegrini, R.; Posa, A.; Broglia, R.; De Biase, M.; Serani, A. Simulation-Driven Design Optimization of a Destroyer-Type Vessel via Multi-Fidelity Supervised Active Learning. J. Mar. Sci. Eng. 2023, 11, 2232. https://doi.org/10.3390/jmse11122232
Spinosa E, Pellegrini R, Posa A, Broglia R, De Biase M, Serani A. Simulation-Driven Design Optimization of a Destroyer-Type Vessel via Multi-Fidelity Supervised Active Learning. Journal of Marine Science and Engineering. 2023; 11(12):2232. https://doi.org/10.3390/jmse11122232
Chicago/Turabian StyleSpinosa, Emanuele, Riccardo Pellegrini, Antonio Posa, Riccardo Broglia, Mario De Biase, and Andrea Serani. 2023. "Simulation-Driven Design Optimization of a Destroyer-Type Vessel via Multi-Fidelity Supervised Active Learning" Journal of Marine Science and Engineering 11, no. 12: 2232. https://doi.org/10.3390/jmse11122232
APA StyleSpinosa, E., Pellegrini, R., Posa, A., Broglia, R., De Biase, M., & Serani, A. (2023). Simulation-Driven Design Optimization of a Destroyer-Type Vessel via Multi-Fidelity Supervised Active Learning. Journal of Marine Science and Engineering, 11(12), 2232. https://doi.org/10.3390/jmse11122232