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Abstract: The paper presents the use of a supervised active learning approach for the solution of
a simulation-driven design optimization (SDDO) problem, pertaining to the resistance reduction
of a destroyer-type vessel in calm water. The optimization is formulated as a single-objective,
single-point problem with both geometrical and operational constraints. The latter also considers
seakeeping performance at multiple conditions. A surrogate model is used, based on stochastic
radial basis functions with lower confidence bounding, as a supervised active learning approach.
Furthermore, a multi-fidelity formulation, leveraging on unsteady Reynolds-averaged Navier–Stokes
equations and potential flow solvers, is used in order to reduce the computational cost of the SDDO
procedure. Exploring a five-dimensional design space based on free-form deformation under limited
computational resources, the optimal configuration achieves a resistance reduction of about 3% at the
escape speed and about 6.4% on average over the operational speed range.

Keywords: simulation-driven design; shape optimization; ship hydrodynamics; multi-fidelity;
surrogate modeling; supervised learning; active learning; efficient global optimization

1. Introduction

In the early 2000s, the International Maritime Organization (IMO) embarked on ini-
tiatives to improve vessel energy efficiency and reduce CO2 emissions from maritime
activities. A significant milestone was achieved in 2011 [1] when the IMO enforced the
Energy Efficiency Design Index (EEDI) and the Ship Energy Efficiency Management Plan
(SEEMP) to promote greenhouse gas reduction in the global maritime sector (effectively
enacted in 2013). Finally, in 2023, the focus of the IMO intensified on decarbonization [2],
aligning with the 2023 IMO MEPC strategy to comprehensively reduce greenhouse gas
emissions from ships.

With the aim of providing new hull forms, empirical methods can be used to assess
their performance [3], or simulation-driven design optimization (SDDO) frameworks [4]
can provide an enhancement of the entire design process of novel vessels. In the latter
case, numerical simulations are coupled with shape modification tools and optimization
algorithms in order to automatize and speed up the design process, leveraging on the use
of high-fidelity solvers. Nevertheless, SDDO based on high-fidelity solvers only is still
extremely expensive in terms of computational cost and does not provide new design solu-
tions within a reasonable time frame, especially if multiple operational and environmental
conditions are taken into consideration, or if a multidisciplinary analysis is needed. For this
reason, several cost-reduction methods have been developed in recent years in the SDDO
context for hull form optimization [5]. Among them, multi-fidelity approaches [6] generally
exploit a large number of low-fidelity, less computationally expensive simulations to assess
the design space and a small number of high-fidelity, more computationally expensive
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computations to identify the optimal design. The majority of multi-fidelity approaches
are based on supervised learning methods, exploiting surrogate modeling formulations,
like Gaussian processes/Kriging [7–9], radial basis functions [10,11], and support vector
regression [12,13]. Finally, to further reduce the computational burden associated with the
search for the global optimum, efficient global optimization strategies have been developed
thanks to the use of adaptive sampling or active learning. Instead of building the surrogate
model with a large amount of samples uniformly distributed within the design space,
active learning starts with a limited number of samples and iteratively adds new samples
just where they are most useful for the optimization process [14,15]. Examples of SDDO
procedures based on multi-fidelity supervised learning for marine application are still
limited: a multi-fidelity Gaussian process with Bayesian optimization is presented in [16]
for the seakeeping optimization of a SWATH model; a co-Kriging technique is used in [17]
for the design optimization of a marine propeller, whereas a comparison of its effectiveness
with single-fidelity Kriging is shown in [18] for the optimization of the DTMB 5415 model.
Furthermore, examples that include active learning processes in the multi-fidelity context
for marine applications are even more limited: stochastic radial basis functions are used in
combination with adaptive sampling in [15,19] for hydrofoil and destroyer optimization.

Herein the preliminary design optimization of a destroyer-type vessel is carried out
under limited computational resources, with the objective of reducing the ratio of total
resistance to the ship displacement in calm water at 30 kn (escape/maximum speed) under
different operational and geometrical constraints. The geometrical constraints include fixed
draft, limited variation of the overall beam, displacement, and length between perpen-
diculars, and finally a reserved volume for the sonar in the bow dome. The operational
constraints are based on the single significant amplitudes of roll and pitch motions, ad-
dressing the subsystem seakeeping performance as per NATO STANAG 4154 [20]. It is
worth noting that both power requirements and propeller sizing are directly dependent on
the performance at escape/maximum speed. This is the reason to conduct a single-point
optimization, at least in the preliminary design phase. The optimization is formulated as
a constraint single-objective problem for the bare hull with skeg at the model scale. The
shape modification is based on the free-form deformation (FFD) method [21], and a design
space of five variables is used. The optimization is conducted by using a multi-fidelity
supervised learning method, based on an adaptive stochastic radial basis function (SRBF)
surrogate model [15,19] and a memetic version of the particle swarm optimization (PSO)
algorithm [22]. In-house, high- and low-fidelity solvers are used for the evaluation of
the ship resistance in calm water. Specifically, high-fidelity computations are carried out
with an unsteady Reynolds-averaged Navier–Stokes (URANS) solver, whereas low-fidelity
computations are carried out with a linear potential flow solver. To the authors’ best
knowledge, this is one of the first examples of the application of a multi-fidelity supervised
active learning approach under limited computational resources for marine applications,
including geometrical and functional constraints.

The paper is organized as follows: the multi-fidelity supervised active learning method
is presented in Section 2; the optimization problem formulation, along with the design
space definition and the numerical solver descriptions are given in Section 3; the discussion
of the results is in Section 4; and, finally, concluding remarks are addressed in Section 5.

2. Multi-Fidelity Supervised Active Learning Method

Consider the following single-objective optimization problem

minimize f (x)

subject to g(x) ≤ 0

and to xl ≤ x ≤ xu

(1)

where f is the objective function, g is an inequality constraint, and x ∈ RD is the design
variables vector of dimension D, with xl and xu its lower and upper bounds, respectively.
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In the SDDO context, the objective function evaluation via computational fluid dynam-
ics (CFD) simulations can be very expensive. For this reason, instead of solving directly
the problem defined in Equation (1), supervised learning methods, such as surrogate mod-
eling, are used to alleviate the computational burden of the overall optimization process,
providing an approximation f̃ of f at a computational cost that is usually orders of magni-
tude lower than a CFD simulation. Nevertheless, the construction of a surrogate model
based only on high-fidelity simulations can still be onerous. For this reason, the use of
multi-fidelity approximations f̂ of f facilitates the solution of the problem in Equation (1)
even more. Finally, to further reduce the computational burden of the optimization process,
the surrogate model can be refined during the optimization process with an active learning
method to add information and improve the approximation of the objective function in
specific regions of interest of the design space. The same consideration can be made, even
for the constraints evaluations. Therefore, the optimization problem in Equation (1) can be
recast as follows:

minimize f̂ (x)

subject to ĝ(x) ≤ 0

and to xl ≤ x ≤ xu

(2)

The following subsections present the supervised learning, the multi-fidelity, and the
active learning methods.

2.1. Supervised Learning Method

The supervised learning approach for the approximation of a generic function, denoted
as q, relies on SRBF surrogate modeling as discussed in [23]. The process involves a training
dataset T comprising pairs of input variables x′ i and corresponding function values q(x′ i),
where i ranges from 1 to J. The input variables are standardized to a unit hypercube,
and the RBF prediction is determined using a power function kernel. This prediction is
defined by:

h(x, τ) = E[q] +
K

∑
j=1

wj|x− cj|τ . (3)

Here, E is the expected value, wj represents the unknown coefficients, cj denotes the RBF
centers (comprising K points), and τ is a stochastic tuning parameter sampled from a
uniform distribution within the range from τmin = 1 (polyharmonic spline with linear
kernel, [24]) to τmax = 3 (polyharmonic spline with cubic kernel, [25]). Notably, the choice
of the distribution for τ is arbitrary and serves as a representation of the degree of belief in
the tuning parameter.

The SRBF surrogate model, denoted as h̃(x), is computed by approximating the
expected value of h over τ using the Monte Carlo method as described in [26]. This
approximation is expressed as:

q(x) ≈ h̃(x) = Eτ [h(x, τ)] ≈ 1
Θ

Θ

∑
i=1

h(x, τi). (4)

Here, Θ represents the number of samples for τ, set to 100 in this context. The study
imposes the exact interpolation of the training set by setting K = J. The coefficients wj are
computed by solving the equation:

Aw = (q−E[q]) (5)

with w = [w1, . . . , wJ ]
T, Aij = ||xi − cj||τ with cj = x′j, and q = [q(x′1), . . . , q(x′J)]

T.
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The uncertainty associated with the SRBF surrogate model prediction, denoted as
Uh̃(x), is quantified using the 95%-confidence band of the cumulative density function
(CDF) of h(x, τ) with respect to τ for a fixed x. The expression for Uh̃ is as follows:

Uh̃(x) = CDF−1(0.975; x)−CDF−1(0.025; x), (6)

with

CDF(λ; x) ≈ 1
Θ

Θ

∑
i=1
H[λ− h(x, τi)], (7)

whereH(·) is the Heaviside step function [23].
Finally, since the SRBF with power kernel has low accuracy when extrapolating,

both the surrogate model prediction and the associated uncertainty are bounded (in the
following denoted with the subscript ‘b’). Specifically, when only one training point is
available (J = 1), the surrogate model prediction and the associated uncertainty are set
equal to the function value at the training point q(x′) as follows:

h̃b(x) = q(x′i)

Uh̃b
(x) = q(x′i)

(8)

This approach is consistent with Equation (4), where the expected value of the training
set is added to the RBFs, thus providing non-zero prediction when only one training point
is available.

On the contrary, when J > 1 training points are available, the surrogate model
prediction and the associated uncertainty are bounded only in the regions of the domain
far from these training points, as follows:

h̃b(x) = h̃(x)[1− σ(r)] +E[q]σ(r)
Uh̃b

(x) = min
(
Uh̃,E[q]

) (9)

with σ, a sigmoid-like function, used to provide a smooth transition between the SRBF
prediction and the bounded prediction. Specifically, defining R as the smallest hyper-
rectangle containing the training point coordinates {x′}J

i=1, whose edges are parallel to the
Cartesian axis, the sigmoid-like function is defined as follows:

σ(r) =
1

1 + exp[υ(r− γ)]
, (10)

where
υ =

α

db + ε
and γ = β(db + ε), (11)

r is the Euclidean distance of x from the R boundaries, and db is the Euclidean distance
between the design variable boundaries and the boundary ofR.

2.2. Multi-Fidelity Method

Extending the definition of the training set to an arbitrary number L of fidelity levels
as {Tk}L

k=1, with each Tk = {(x′j, qk(x′j))}
Jk
j=1, the multi-fidelity approximation ĥk(x) of q(x)

reads [27]

ĥk(x) := h̃L(x) +
L−1

∑
i=k

ε̃i(x), (12)

where h̃L is the single-fidelity surrogate model associated with the lowest-fidelity training
set (constructed as in Equation (4)), and εi(x) is the inter-level error surrogate with the
associated training set Ei = {(y, φ− ĥi(y)) | (y, φ) ∈ Ti−1}.
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Assuming that the uncertainty associated with the prediction of the lowest-fidelity
Uh̃L

and the inter-level errors Uε̃i
are uncorrelated, the multi-fidelity approximation ĥ(x) of

q(x) and its uncertainty Uĥ read

q(x) ≈ ĥ(x) = h̃L(x) +
L−1

∑
i=1

ε̃i(x) (13)

Uĥ(x) =

√√√√U2
h̃L
(x) +

L−1

∑
i=1

U2
ε̃i
(x). (14)

2.3. Active Learning Method

The multi-fidelity surrogate model is dynamically updated by adding new train-
ing points. A new training point x? is identified based on an acquisition function ψ(x),
here defined by the lower confidence bounding (LCB) criterion [28], which aims to find
points with large prediction uncertainty and small objective function values. Accordingly,
LCB-based sampling strategies identify a new training point by solving the following
minimization problem:

minimize ψ(x) = αĥ(x)− (1− α)Uĥ(x)

subject to ĝ(x) ≤ 0

and to dT (x) ≥ d0

and to xl ≤ x ≤ xu,

(15)

where dT is the minimum distance from the existing training sets, which has to be greater
than the threshold value d0 (minimum acceptable distance to an existing training point)
to prevent ill-conditioning problems for the matrix A in Equation (5) and the occurrence
of new sampling points too close to the previous ones. The coefficient α in Equation (15),
which is utilized in the formulation of the acquisition function ψ, plays a pivotal role in
striking a balance between exploration and exploitation within the design space. When α is
set to 1, the acquisition function is primarily employed to directly search for the optimum
predicted by the surrogate model. However, this approach may not yield effective results,
particularly during the initial stages of the training process when the accuracy of the
response surface is often significantly compromised due to the limited number of sampled
data points. In contrast, when α is set to 0, the acquisition function is utilized to identify
regions of maximum uncertainty in the prediction. This strategy is undoubtedly valuable
for achieving a robust global approximation of the response surface. Nonetheless, it can
be resource intensive and may lead to the exploration of areas within the design space
that are not relevant from an optimization perspective. To strike a balanced approach that
encompasses both exploration and exploitation, a common choice is to set α = 0.5, which
coincides with the standard formulation of the LCB method.

Once x? is identified, to automatically select the fidelity level to sample, a fidelity
selection vector ϕ is defined as follows:

ϕ≡ {Uε̃1
/β1, ..., Uε̃L−1

/βL−1, U f̃L
/βL}, (16)

where βi = ci/c1, i = 1, ..., L, with ci as the computational cost associated with the i-th level.
Using a non-nested training set, the i-fidelity level to sample is defined by identifying the
maximum value in ϕ as follows:

k = maxloc(ϕ) with i = k (17)

Finally, Figure 1 shows the extended design structure matrix (XDSM, [29]) of the
overall supervised active learning for multi-fidelity surrogate-based shape optimization
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with limited available budget. Note that the scheme is shown for a two-fidelity procedure,
as in the present work, and consequently, the NCC is the normalized computational cost,
where the high-fidelity evaluations have a cost equal to 1 and the low-fidelity ones have a
cost equal to β.

Figure 1. XDSM diagram of the supervised active learning workflow for multi-fidelity surrogate-
based shape optimization with two fidelity levels and budget-limited computational costs.

3. Optimization Problem Formulation and Setup

The hull under investigation is a destroyer-type vessel. Specifically, the bare hull
with skeg only (see Figure 2) is the subject of the optimization problem. The main parent
hull details are listed in Table 1, where T is the ship draft, Lpp is the length between
perpendiculars, ∇ is the displacement, and BOA the overall beam.

Figure 2. Side view of the original destroyer-type hull (red) with the skeg (orange). The blue line
indicates the undisturbed water level.

Table 1. Main non-dimensional parameters of the model scale (λ = 1/28) parent hull.

Parameter Symbol Value Units

Displacement ∇ 0.4660 tonnes
Length between perpendiculars Lpp 5.9643 m
Beam overall BOA 0.8679 m
Draft T 0.2046 m

The single-objective problem reads

minimize R/∇(x)
subject to Ω(x) > 90%,

T(x) = T0,

and to γl ≤
(

Lpp(x)/Lpp,0 − 1
)
· 100 ≤ γu,

γl ≤ (∇(x)/∇0 − 1) · 100 ≤ γu,

γl ≤ (BOA(x)/BOA,0 − 1) · 100 ≤ γu,

V(x) ≥ V0,

xl ≤ x ≤ xu

(18)
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where R is the total resistance in calm water at Fr = 0.381 (30 kn at full scale), Ω is the ship
operabiltity, and V is the volume reserved for the sonar in the dome. Subfix ‘0’ denotes
the parent hull values, whereas γl and γu refer to the lower and upper inequality limits
as percentages.

Given the general formulation for the optimization, two problems are defined and
denoted as A and B:

• Problem A: γl = 0% and γu = +3%, admitting only solutions that maintain the
original lower dimensions, with the possibility of increasing them only by 3% with
respect to the parent hull.

• Problem B: γl = −3% and γu = +3%, admitting a maximum variation of ±3% with
respect to the parent hull.

The main reason to split the problem into two is to assess the performance of the vessel
using (A) quite strict housing and space requirements (related to the beam, length, and dis-
placement), as well as (B) their relaxation. It may be noted that any reduction in resistance
due to displacement reduction for problem B is compensated by the objective function
definition (ratio of the resistance to the displacement), allowing for a fair comparison of the
two problems.

The operability is evaluated as

Ω(x) =
∫
Y

2⋂
n=1

[SSAn(x, y) ≤ SSA?
n]p(y)dy (19)

where y are the operational conditions. Here, the single significant amplitude (SSA) of the
roll and pitch motions (subsystem seakeeping performance criteria as per [20]) are considered
for 12 kn speed at sea state 6 (significant wave height, H1/3 equal to 5 m and modal period,
Tp equal to 12.4 s) and 20 kn at sea state 3 (H1/3 = 0.88 m and Tp = 7.5 s), considering the
North Atlantic Ocean [30] with a uniform probability distribution for wave headings and
sea state, using a Bretschneider spectrum. Roll and pitch maximum SSA values are 8 and
3 deg, respectively.

3.1. Design Space Definition

A different number of active control points, as well as their degrees of freedom and
range of variation, were preliminarily investigated, but for the sake of simplicity, only
the selected design space is here described in detail. The design space is defined by
five variables, corresponding to the degrees of freedom (DoF) of the “active” nodes of the
FFD lattice, shown in blue in Figure 3. In particular, the FFD nodes are composed of a
9 × 3 × 3 lattice in x, y, and z-layer directions, respectively. The five active nodes have
only one DoF, which corresponds to the design variables as detailed in Table 2. Finally,
Figure 3 (bottom) provides also the shape modification associated with the minimum and
maximum value of each design variable. FFD is based on the Bernstein polynomial and the
active control points, their degrees of freedom, and the associated range of variation are
defined in order to avoid unfeasible designs, allowing for the smooth and fair deformation
of the hull embedded by the FFD lattice. For the specific details of the FFD method, the
reader can refer to [31].

Table 2. Definition of the design variables in the FFD domain.

Variable x-Layer y-Layer z-Layer DoF xl xu

x1 1 2 1 y −0.500 0.500
x2 1 2 2 y −0.500 0.500
x3 2 2 1 y −0.500 0.500
x4 9 2 1 x −0.100 0.000
x5 9 2 2 x −0.100 0.100
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Figure 3. FFD design space: (top) lattice with active nodes in blue on top and definition of layer direc-
tions; (bottom) shape modification associated with minimum and maximum design variables values.

3.2. Numerical Solvers

Multi-fidelity surrogate-based optimization leverages multiple information sources.
Specifically, the calm-water total resistance evaluation is based on both high- (RANS) and
low-fidelity (potential flow) solvers, whereas the estimation of the operability is based on a
single-fidelity (strip theory) model. All the simulations are performed using the following
conditions: water density ρ = 998.5 kg/m3, kinematic viscosity ν = 1.09 × 10−6 m2/s,
and gravity acceleration g = 9.8033 m/s2.

3.2.1. URANS Solver

The high-fidelity solver used for the evaluation of the ship resistance in calm water is
χnavis, an in-house code, developed at CNR-INM [32]. χnavis is based on a finite-volume
discretization of the URANS equations, where the flow variables are defined at the cells
centers. Turbulent stresses are modeled through the Boussinesq hypothesis. The turbulent
viscosity is computed using the Spalart–Allmaras turbulence model [33]. No wall functions
are used, so the computational grids are designed to have the first grid elements off the
wall to meet the y+ ≤ 1 condition. Free-surface effects are modeled using a single-phase
level-set approach [34].

The computational domain extends from 1.5Lpp ahead of the hull up to 2.5Lpp behind
it, 2Lpp laterally, and 2Lpp vertically. On the solid walls, the velocity is set to zero, and
so is the pressure gradient. At the inlet, the velocity is set to its free-stream value, which
corresponds to the nominal hull speed, and the pressure is extrapolated from the inside. At
the outlet, the pressure is set to zero, whereas the velocity is extrapolated from the inside.
On the top boundary, which is always in the air, all the flow variables are extrapolated from
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the inside. Given the symmetry of the problem with respect to the plane y = 0, the solution
is computed on the half-hull, with symmetry conditions imposed on the longitudinal plane.
The computational grid is composed of 32 blocks, which can be partially overlapped by
exploiting the Chimera capabilities [35]. The mesh around the hull is an O-O type, whereas
the one around the skeg, which is generated separately, has an O-C topology. For the
background, a Cartesian mesh is adopted. The final grid consists of five million volumes
and is assembled by an overset pre-processor. The numerical solution is obtained through
a multi-grid approach [36], with four grid levels (from the coarsest G4 to the finest G1),
with a coarsening ratio of two along each of the curvilinear coordinates. The total number
of volumes for the four grids is equal to 5 M, 630 k, 78.3 k, and 9.8 k, from G1 to G4. A
detail of the grid G1 around the bulbous bow is shown in Figure 4a.

(a) χ-navis (b) WARP

Figure 4. Details of the computational grids.

The numerical solution is based on a succession of steady states. In particular, the
first step is the “even keel” condition (i.e., at a null trim angle and nominal sinkage). The
derivatives of the vertical force and pitch moment are estimated by numerical solutions,
by a slight perturbation of the trim angle and drift, relative to their initial values. Then,
using an iterative procedure, new trim and sinkage are derived by imposing a null pitching
moment and the vertical force equal to the ship weight. The procedure goes on until
convergence is achieved. Such an approach has a lower computational cost, about 25%
lower than a fully unsteady simulation.

3.2.2. Potential Flow Solver

The low-fidelity solver used for the evaluation of the ship resistance in calm water is
the WAve Resistance Program (WARP), an in-house code developed at CNR-INM [37].

The total resistance is estimated as the sum of the wave and the skin friction compo-
nents. The wave resistance is based on a double-model linearization (Dawson’s method [38])
and is computed as the integral of pressure over the wetted surface. The skin friction resis-
tance is estimated using a flat plate analogy, based on the local Reynolds number [39]. The
equilibrium of the two degrees of freedom for the ship advancing in calm water (sinkage
and trim) is reached by means of an iterative procedure, which takes into account the flow
equations and the rigid-body dynamics.

The simulations are also in this case performed on the half hull, taking advantage
of the problem symmetry. The surface grid counts 200 × 50 nodes. The computational
domain for the free surface extends from 2Lpp behind the hull to 1Lpp ahead and is 1Lpp
wide, counting up to 150 × 50 nodes. Overall, the computational grid counts 17.5 k nodes.
The grid is shown in Figure 4b.

WARP is used both for the preliminary assessment of the design space and for the
training of the multi-fidelity surrogate model.

3.2.3. Strip Theory Solver

The seakeeping performance is evaluated by a potential flow solution based on the
linearized strip theory. The 6DoF response of the ship is provided, advancing at a constant
forward speed with arbitrary heading in both regular waves and irregular seas. In addi-
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tion, the longitudinal, lateral, and vertical responses at specified locations of the ship are
also provided.

The hull with the skeg is discretized with 31 computational strips with 10 uniformly
distributed nodes along each strip curvilinear coordinate.

4. Results

In the following subsections, the hydrodynamic analysis of the parent hull in calm
water is performed using both the low-fidelity and the high-fidelity solvers. A sensitivity
analysis of the resistance as a function of the design variables is also carried out. Finally,
the results of the optimization and the operability analysis are discussed.

4.1. Preliminary Analysis of the Parent Hull in Calm Water

Figure 5 shows the total resistance, the sinkage, and the trim of the parent hull at
model scale at Froude numbers spanning an interval between 0.154 and 0.381, obtained
with WARP and χnavis. It should be clarified that the choice of conducting the optimiza-
tion campaign at model scale is twofold: (i) even if full-scale simulations would be more
realistic, they would be more computationally demanding to meet the resolution require-
ments within the boundary layer (y+ ≤ 1, meaning a higher number of cells would be
required), otherwise, wall functions need to be used at the expense of accuracy in the
evaluation of the frictional component of the forces, especially if large shape modifications
are involved; (ii) an experimental campaign at model scale in the CNR-INM towing tank
will be conducted in the future for validation of the numerical results.
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Figure 5. Resistance, sinkage, and trim obtained with the high-fidelity and low-fidelity solvers as a
function of the ship speed/Froude number. The uncertainty in the WARP results is also shown as the
shaded areas.

The results obtained with the low- and high-fidelity solvers are consistent, although
some discrepancies are observed, especially for the resistance values. The potential flow
solver underestimates the resistance value with an absolute error, relative to RANS com-
putations, ranging from 4.4% to 9.6%. The discrepancy between the results of the two
methods grows at higher speeds, and this can be attributed to the increase in the viscous
effects, which the potential flow solver cannot capture. Nevertheless, the low-fidelity solver
is appropriate for the purposes defined in Section 3.2.2 because its computational cost is
much lower (by about three orders of magnitude) than the high-fidelity one.

It is important to assess the grid uncertainty for WARP and χnavis. In particular, the
uncertainty for WARP as a function of the Froude number is plotted as a shaded area in
Figure 5, using the GCI method [40]. It is found that grid convergence is reached and that
the mean grid uncertainty is below 1% for both the sinkage and the resistance. For the
trim angle, the uncertainty is higher, and it is not possible to establish a grid convergence.
The reason is that the trim values are very small and close to zero, leading to numerical
issues. As far as χnavis is concerned, the grid convergence and the uncertainty analysis are



J. Mar. Sci. Eng. 2023, 11, 2232 11 of 19

performed only at the highest Froude number under investigation, i.e., Fr = 0.381, using
the so-called Factor of Safety method [40]. The results are shown in Table 3.

Table 3. Grid convergence results with χnavis at Fr = 0.381.

G3 G2 G1 p USN %G1

R [N] 131.07 100.64 93.25 2.04 2.64
Sinkage/LPP [–] −2.440 × 10−3 −2.730 × 10−3 −2.777 × 10−3 2.63 2.20
Trim [deg] 2.073 × 10−3 4.342 × 10−3 −1.988 × 10−2 – –

The order of accuracy p is close to the expected value of 2. Grid convergence is
achieved with a mean uncertainty of about 2.6% and 2.2% for the resistance and the
sinkage, respectively. In contrast, the trim angle is oscillatory divergent, and the numerical
uncertainty cannot be estimated in these conditions. As per the potential flow solution,
this is due to the negligible values of the trim angle. Finally, even if experimental data
are not yet available for validation purposes, both potential and viscous solvers have
been validated in the past on similar ships with topologically similar computational grids
(see [5,41]). Figure 6 shows the pressure coefficient Cp on the hull-wetted surface and the
wave pattern. On the free surface, the color map refers to the wave elevation with respect
to the undisturbed water level.

(a) Lateral view of the surface pressure coefficient and wave profile (blue line)

(b) Wave elevation view from below (c) Wave elevation and pressure field: 3D view

Figure 6. Contour maps of the pressure coefficient on the wetted surface of the parent hull and of the
elevation relative to the undisturbed water level, using the URANS solver.

Finally, using the low-fidelity solver, a sensitivity analysis is performed at Fr = 0.381,
where the increment of resistance is evaluated as a function of each single design variable,
keeping all the others at their nominal value. The results are shown in Figure 7. The
variables are scaled, dividing their value by the corresponding total range of variation. It is
demonstrated that by increasing or decreasing each isolated design variable, a reduction
of resistance up to 2% can be obtained. With these results, it is possible that an even more
significant resistance reduction could be obtained with an appropriate combination of the
design variables, at least using the potential flow.
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Figure 7. Sensitivity analysis with WARP at Fr = 0.381: variation of the total resistance as a function
of the variation of the design variables.

4.2. Shape Optimization Problem

A hybrid global/local version [22] of the deterministic PSO algorithm [42] is used for
both the active learning procedure (see Equation (15)) and the solution of the surrogate-
based optimization problem (see Equations (2) and (18)). The active learning procedure
started with a design of experiment (DoE), based on a face-centered central composite
design for the potential flow solution (corresponding to 11 low-fidelity training points,
given by the sensitivity analysis, as in Figure 7) and only one high-fidelity training point in
the domain center, given by the RANS solver. The training process is limited by a maximum
NCC = 15, with a computational cost ratio between low- and high-fidelity computations
corresponding to β = 0.001.

Figure 8 shows the convergence of the active learning process in terms of the surrogate
prediction of the resistance (top) and associated uncertainty (center), as well as the number
of training points for both fidelity levels (bottom). The training process is converged within
the limited budget by using 203 low-fidelity simulations and 14 high-fidelity simulations
and achieving an uncertainty associated with the resistance prediction at the minimum
lower than 0.1% of the training set range. It can be noticed that the training procedures
yield a proportional number of high- and low-fidelity samples up to NCC = 12, and both
the resistance prediction at the minimum and the associated uncertainty are still oscillating.
Afterward, the uncertainty decreases rapidly, converging below 0.1%, and the resistance
also converges, while the active learning process has mainly requested low-fidelity samples,
to just locally refine the surrogate response surface. Once the training process is finished,
the optimal solutions for problems A and B are identified and validated with a prediction
error ≤ 1% relative to RANS computations. The surrogate uncertainty at the minimum
and the validation error are two metrics that qualify and quantify the robustness and
effectiveness of the proposed active learning procedure. The solution of optimization
problems A and B leads to an improvement of the objective function at Fr = 0.381 of 0.9%
e 0.3%, respectively. The improvement is not particularly significant, likely because the
original ship design at Fr = 0.381 is already well performed. Despite this, considering only
the total resistance value, a reasonably good resistance reduction is achieved for problem B
(about 3% compared to the parent hull).

Figure 9 shows the variation of the objective function as a function of the Froude
number. It is worth noting that, although the variation of the objective function is not
significant at the design speed (Fr = 0.381), it is larger at all the other speeds. In particular,
in the solution of problem A, the objective function is always higher than the original
one, except for the design speed. Considering the speed profile as uniformly distributed,
for the sake of simplicity, the average increase is 1.9%, with a peak of 5.3% at Fr = 0.198
(corresponding to 15.6 knots at full scale). On the other hand, the solution of problem B,
where the geometrical constraints were allowed to vary between ±3% of their original
values, leads to a reduction in the objective function at all speeds, with an average reduction
of 3.4%. The maximum reduction of 5.5% occurs at Fr = 0.244 (corresponding to 19.2 knots
at full scale). In particular, for problem B, the displacement of the optimal hull lays
on the lower bound of the constraint (−3%), but this produces beneficial effects for the
performance of the vessel in the whole range of speeds. The main geometrical coefficients
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for the three configurations, the original ones and the optimal ones for problems A and B,
are listed in Table 4.
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Figure 8. Supervised active learning convergence: convergence of the multi-fidelity surrogate
prediction of the resistance (top) and associated uncertainty (center), and training sets size (bottom).
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Figure 9. Percentage variation of the objective function as a function of the Froude number, and so
the ship speed at model scale.

Table 4. Non-dimensional geometrical coefficients.

Coefficient Symbol Original Optimized A Optimized B

Block Cb 0.321 0.321 0.312
Section Cx 0.516 0.515 0.514

Waterplane Cwp 0.739 0.748 0.719
Prismatic Cp 0.622 0.624 0.606

Figure 10 shows in the left panels the original (dashed lines) and the optimized (solid
lines) hull body plans, and in the right panels the corresponding shape modifications,
whereas Figure 11 shows the sectional area diagrams of the original and the two optimized
hull shapes. It is observed that both optimized shapes present different sections close to
the stern. In particular, the optimized shape A presents a larger transom, whereas shape B
has a smaller stern section, a more curved transom and a smaller skeg. Such a geometry is
more beneficial for the propeller system since the flow in that region is less disturbed.
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(a) Problem A

(b) Problem B

Figure 10. Comparison between the body plans of the original (black dashed lines) and optimized
(colored solid lines) hull shapes derived from the optimization problems A (top) and B (bottom)
on the left; contours of the magnitude of the shape modification from the optimization procedures A
(top) and B (bottom) on the right.
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Figure 11. Sectional area diagrams for the original and the optimized hulls: the coordinate 0 corre-
sponds to the bow section, whereas 1 corresponds to the stern.

These differences can be appreciated also in Figure 12, where the pressure fields on
the parent hull at Fr = 0.381 are compared with those on the optimized hulls. Details of the
bulbous bow and of the skeg are shown in Figure 12a,b, respectively. At the bulbous bow,
no significant differences can be observed, whereas there is a pressure reduction at the rear
in the region of the skeg. It is also interesting to compare the wave elevation field among
the three configurations. This is shown in the contour maps in Figure 13, again at Fr = 0.381.
Also in this case, the most significant change between the original and the optimized wave
fields can be observed at the rear of the hull.
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(a) Bulbous bow

(b) Stern and skeg

Figure 12. Contour maps of the pressure coefficient in the bulbous bow region and in the skeg region.

(a) Stern (b) Bow

Figure 13. Comparison among the contour maps of the non-dimensional free-surface elevation η/Lpp

generated by the original and the optimized hulls A and B.

Figure 14 finally provides the resistance, the sinkage, and the trim curves as a function
of the ship speed, for the parent and the optimized hulls. It is observed that the resistance
curve of the optimized hull B is always below the other ones. The variation of sinkage and
trim is not significant.
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Figure 14. Resistance, sinkage and trim curves: comparison between the parent hull and the opti-
mized hulls.

Finally, Figure 15 shows the operability constraints of the ship. In particular, the RMS
of the roll and pitch motions are shown for sea state 3 at 20 kn and sea state 6 at 12 kn. For
the pitch motion, all three configurations are within the operability constraint established
by the STANAG criterion, see [20]. On the other hand, none of the three configurations meet
the requirements for the roll motion (maximum of 8 deg) for heading wave angles between
60 and 150 deg (where 0 deg corresponds to head waves) at sea state 6. Despite this, all three
configurations meet the operability condition assigned by the optimization constraints,
which is 90%. More specifically, the three hulls have an operability of about 92%.

Figure 15. Comparison of the seakeeping performance using SSA of the roll (top) and pitch (bottom)
motions for sea state 3 at 20 kn (left) and sea state 6 at 12 kn (right).
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5. Conclusions and Future Works

This paper presents a simulation-driven design optimization approach based on
supervised active learning for the optimization of a destroyer-type vessel, under limited
computational resources. The objective function is the resistance over the displacement
ratio in calm water at Fr = 0.381. The optimization also takes into account geometrical
and operability constraints, related to the seakeeping conditions at sea states 3 and 6.
Two optimization problems are solved: A) with geometrical constraints that can only be
increased by 3%, and B) with geometrical constraints that can be varied within the range
±3% relative to the original configuration.

A multi-fidelity adaptive surrogate model, based on the stochastic radial basis function,
is used to approximate the objective function, exploiting the solution of the hydrodynamic
problem using a URANS viscous high-fidelity solver and a low-fidelity potential flow solver.
The training process of the surrogate model was very effective since it used 203 low-fidelity
solutions and only 14 high-fidelity solutions. Both optimization processes led to a reduction
in the objective function lower than 1% at escape speed. This confirms the goodness of
the preliminary design. Nevertheless, if the performance of the two optimized hulls are
analyzed as a function of the advancement speed, it is observed that the optimized hull
B presents a significant performance increase for all the lower speeds in the range under
investigation, with a mean resistance reduction of 6.3%, whereas the optimized hull A has
reduced performance at lower speeds (1.9% on average). This is an important result that
highlights how the design optimization process should not be focused only on one single
condition, but for effective results, robust design optimization formulations have to be
taken into consideration.

In order to avoid the limitation of deterministic and single-objective formulations,
future work will be focused on the development and assessment of supervised active learn-
ing approaches capable of taking into consideration both robust optimization formulations
and multi-objective problems, as well as multi-fidelity constraints [43]. Furthermore, a
possible extension to a dynamic formulation of the lower confidence bounding method,
as an acquisition function, will be explored by balancing the weight coefficient with the
budget of function evaluation available for the solution of the optimization process. Finally,
validation studies will be conducted on both the original and the optimized vessels.
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