Differences in the Fate of Surface and Subsurface Microplastics: A Case Study in the Central Atlantic
Abstract
1. Introduction
2. Materials and Methods
2.1. Microplastics Sampling
2.2. Contamination Control
2.3. Microplastics Identification
3. Results
3.1. Surface Samples
3.2. Subsurface Samples
4. Discussion
4.1. Visual vs. FT-IR Analysis
4.2. Characteristics of MPs Particles
4.3. Role of Hydrophysics in the Spatial Distribution of MPs
- distribution is sporadic (found at 25–57% of stations);
- items with positive buoyancy, mainly (usually three types: PE, PP, EPS);
- lower abundance but higher weight concentration (in comparison with the same size fraction for subsurface).
- more uniform distribution (up to 90% of stations);
- items with both negative and positive buoyancy (up to 18 different types);
- smaller and lighter particles, even in the same size range.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crawford, C.B.; Quinn, B. Microplastic Pollutants; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Tiseo, I. Global Plastic Production 1950–2020. Available online: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/ (accessed on 17 October 2022).
- Sicotte, D.M. From cheap ethane to a plastic planet: Regulating an industrial global production network. Energy Res. Soc. Sci. 2020, 66, 101479. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Auta, H.S.; Emenike, C.; Fauziah, S.H. Distribution and importance of microplastics in the marine environment—A review of the sources, fate, effects, and potential solutions. Environ. Int. 2017, 102, 165–176. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Chen, J.P. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 2018, 137, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Liu, F.; Cryder, Z.; Huang, D.; Lu, Z.; He, Y.; Wang, H.; Lu, Z.; Brookes, P.C.; Tang, C.; et al. Microplastics in the soil environment: Occurrence, risks, interactions and fate–A review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2175–2222. [Google Scholar] [CrossRef]
- Bergmann, M.; Mützel, S.; Primpke, S.; Tekman, M.; Trachsel, J.; Gerdts, G. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 2019, 5, 1–11. [Google Scholar] [CrossRef] [PubMed]
- GESAMP. Guidelines for the Monitoring; Assessment of Plastic Litter in the Ocean; GESAMP: London, UK, 2019. [Google Scholar]
- Lusher, A.L.; Tirelli, V.; O’Connor, I.; Officer, R. Microplastics in Arctic polar waters: The first reported values of particles in surface and sub-surface samples. Sci. Rep. 2015, 5, 1–9. [Google Scholar] [CrossRef]
- Rothstein, S.I. Plastic Particle Pollution of the Surface of the Atlantic Ocean: Evidence from a Seabird. Condor 1973, 75, 344–345. [Google Scholar] [CrossRef]
- Enders, K.; Lenz, R.; Stedmon, C.; Nielsen, T.G. Abundance, size and polymer composition of marine microplastics ≥ 10 μm in the Atlantic Ocean and their modelled vertical distribution. Mar. Pollut. Bull. 2015, 100, 70–81. [Google Scholar] [CrossRef]
- Sjollema, S.B.; Redondo-Hasselerharm, P.; Leslie, H.; Kraak, M.; Vethaak, A.D. Do plastic particles affect microalgal photosynthesis and growth? Aquat. Toxicol. 2016, 170, 259–261. [Google Scholar] [CrossRef]
- Lehtiniemi, M.; Hartikainen, S.; Näkki, P.; Engström-Öst, J.; Koistinen, A.; Setälä, O. Size matters more than shape: Ingestion of primary and secondary microplastics by small predators. Food Webs 2018, 17, e00097. [Google Scholar] [CrossRef]
- Setälä, O.; Magnusson, K.; Lehtiniemi, M.; Norén, F. Distribution and abundance of surface water microlitter in the Baltic Sea: A comparison of two sampling methods. Mar. Pollut. Bull. 2016, 110, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; He, H.; Liu, M.; Li, S.; Tang, G.; Wang, W.; Huang, P.; Wei, G.; Lin, Y.; Chen, B.; et al. Lost but can’t be neglected: Huge quantities of small microplastics hide in the South China Sea. Sci. Total Environ. 2018, 633, 1206–1216. [Google Scholar] [CrossRef]
- Yakushev, E.; Gebruk, A.; Osadchiev, A.; Pakhomova, S.; Lusher, A.; Berezina, A.; van Bavel, B.; Vorozheikina, E.; Chernykh, D.; Kolbasova, G.; et al. Microplastics distribution in the Eurasian Arctic is affected by Atlantic waters and Siberian rivers. Commun. Earth Environ. 2021, 2, 1–10. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Nor, N.M.; Hermsen, E.; Kooi, M.; Mintenig, S.; De France, J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef]
- Farmen, E.; Provencher, J.; Aliani, S.; Baak, J.; Bergmann, M.; Booth, A.M.; Bourdages, M.P.T.; Buhl-Mortensen, L.; Feld, L.; Gabrielsen, G.W.; et al. AMAP Litter and Microplastics Monitoring Guidelines; Arctic Monitoring and Assessment Programme: Tromsø, Norway, 2021; p. 257. [Google Scholar]
- Silvestrova, K.; Stepanova, N. The distribution of microplastics in the surface layer of the Atlantic Ocean from the subtropics to the equator according to visual analysis. Mar. Pollut. Bull. 2021, 162, 111836. [Google Scholar] [CrossRef] [PubMed]
- Zhdanov, I.; Lokhov, A.; Belesov, A.; Kozhevnikov, A.; Pakhomova, S.; Berezina, A.; Frolova, N.; Kotova, E.; Leshchev, A.; Wang, X.; et al. Assessment of seasonal variability of input of microplastics from the Northern Dvina River to the Arctic Ocean. Mar. Pollut. Bull. 2022, 175, 113370. [Google Scholar] [CrossRef]
- Pakhomova, S.; Berezina, A.; Lusher, A.L.; Zhdanov, I.; Silvestrova, K.; Zavialov, P.; van Bavel, B.; Yakushev, E. Microplastic variability in subsurface water from the Arctic to Antarctica. Environ. Pollut. 2022, 298, 118808. [Google Scholar] [CrossRef]
- Cózar, A.; Echevarría, F.; González-Gordillo, J.I.; Irigoien, X.; Úbeda, B.; Hernández-León, S.; Palma, Á.T.; Navarro, S.; García-De-Lomas, J.; Ruiz, A.; et al. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. USA 2014, 111, 10239–10244. [Google Scholar] [CrossRef]
- Glukhovets, D.I.; Salyuk, P.; Artemiev, V.; Shtraikhert, E.; Zakharkov, S.P. Variability of Bio-Optical Characteristics of Surface Water Layer during Transatlantic Transect in 2019–2020. Oceanology 2021, 61, 872–880. [Google Scholar] [CrossRef]
- Vega-Moreno, D.; Abaroa-Pérez, B.; Rein-Loring, P.; Presas-Navarro, C.; Fraile-Nuez, E.; Machín, F. Distribution and transport of microplastics in the upper 1150 m of the water column at the Eastern North Atlantic Subtropical Gyre, Canary Islands, Spain. Sci. Total Environ. 2021, 788, 147802. [Google Scholar] [CrossRef] [PubMed]
Sample Type, Size, mm | Abundance, Average (Min–Max), Items/m3 | Weight Concentration, Average (Min–Max), µm/m3 | N of Stations, MPs Found/Total | Average Item Size, mm | N of Polymer Types |
---|---|---|---|---|---|
Surf, 1–5 | 0.026 (0–0.073) | 154.3 (0–503) | 4/7 | 2.8 × 2.1 | 2 |
Subsurf, 1–5 | 0.17 (0–0.88) | 4.3 (0–17.5) | 9/17 | 2.8 × 0.3 | 7 |
Subsurf, 0.3–1 | 0.44 (0–0.88) | 1.9 (0–8.8) | 12/17 | 0.55 × 0.2 | 9 |
Subsurf, 0.1–0.3 | 0.12 (0–0.45) | 0.06 (0–0.67) | 4/17 | 0.25 × 0.1 | 6 |
Subsurf, 0.1–5 | 0.78 (0–2.4) | 7.0 (0–26) | 15/17 | 1.1 × 0.2 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhdanov, I.; Pakhomova, S.; Berezina, A.; Silvestrova, K.; Stepanova, N.; Yakushev, E. Differences in the Fate of Surface and Subsurface Microplastics: A Case Study in the Central Atlantic. J. Mar. Sci. Eng. 2023, 11, 210. https://doi.org/10.3390/jmse11010210
Zhdanov I, Pakhomova S, Berezina A, Silvestrova K, Stepanova N, Yakushev E. Differences in the Fate of Surface and Subsurface Microplastics: A Case Study in the Central Atlantic. Journal of Marine Science and Engineering. 2023; 11(1):210. https://doi.org/10.3390/jmse11010210
Chicago/Turabian StyleZhdanov, Igor, Svetlana Pakhomova, Anfisa Berezina, Ksenia Silvestrova, Natalia Stepanova, and Evgeniy Yakushev. 2023. "Differences in the Fate of Surface and Subsurface Microplastics: A Case Study in the Central Atlantic" Journal of Marine Science and Engineering 11, no. 1: 210. https://doi.org/10.3390/jmse11010210
APA StyleZhdanov, I., Pakhomova, S., Berezina, A., Silvestrova, K., Stepanova, N., & Yakushev, E. (2023). Differences in the Fate of Surface and Subsurface Microplastics: A Case Study in the Central Atlantic. Journal of Marine Science and Engineering, 11(1), 210. https://doi.org/10.3390/jmse11010210