Lipids and Fatty Acids in Some Mesopelagic Fish Species: General Characteristics and Peculiarities of Adaptive Response to Deep-Water Habitat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Lipid Extraction and Analysis
2.2.1. Neutral Lipids Analysis
2.2.2. Polar Lipids Analysis
2.2.3. Fatty Acids Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berge, J.; Renaud, P.E.; Darnis, G.; Cottier, F.; Last, K.S.; Gabrielsen, T.M.; Johnsen, G.; Seuthe, L.; Weslawski, J.M.; Leu, E.; et al. In the dark: A review of ecosystem processes during the Arctic polar night. Prog. Oceanogr. 2015, 139, 258–271. [Google Scholar] [CrossRef] [Green Version]
- Murzina, S.A.; Pekkoeva, S.N.; Kondakova, E.A.; Nefedova, Z.A.; Filippova, K.A.; Nemova, N.N.; Orlov, A.M.; Berge, J.; Falk-Petersen, S. Tiny but Fatty: Lipids and Fatty Acids in the Daubed Shanny (Leptoclinus maculatus), a Small Fish in Svalbard Waters. Biomolecules 2020, 10, 368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irigoien, X.; Klevjer, T.A.; Røstad, A.; Martinez, U.; Boyra, G.; Acuña, J.L.; Bode, A.; Echevarria, F.; Gonzalez-Gordillo, J.I.; Hernandez-Leon, S.; et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 2014, 5, 3271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fennell, S.; Rose, G. Oceanographic influences on deep scattering layers across the North Atlantic. Deep Sea Res. Part I Oceanogr. Res. Pap. 2015, 105, 132–141. [Google Scholar] [CrossRef]
- Siegelman-Charbit, L.; Planque, B. Abundant mesopelagic fauna at oceanic high latitudes. Mar. Ecol. Prog. Ser. 2016, 546, 277–282. [Google Scholar] [CrossRef] [Green Version]
- Aksnes, D.L.; Røstad, A.; Kaartvedt, S.; Martinez, U.; Duarte, C.M.; Irigoien, X. Light penetration structures the deep acoustic scattering layers in the global ocean. Sci. Adv. 2017, 3, e1602468. [Google Scholar] [CrossRef] [Green Version]
- Etter, R.J.; Mullineaux, L.S. Deep-sea communities. In Marine Community Ecology, Sinauer Associates Bertness; Bertness, M.D., Gaines, S.D., Hay, M.E., Eds.; Sunderlands, Inc.: Sunderland, MA, USA, 2001; pp. 367–393. [Google Scholar]
- Gibson, R.N.; Barnes, M.; Atkinson, R.J.A. A riot of species in an environmental calm: The paradox of the species-rich deep-sea floor. Oceanogr. Mar. Biol. Annu. Rev. 2002, 40, 311–342. [Google Scholar]
- Hidalgo, M.; Browman, H.I. Developing the knowledge base needed to sustainably manage mesopelagic resources. ICES J. Mar. Sci. 2019, 76, 609–615. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Wu, Y.; Chen, Z.; Zhang, G.; Zhang, J.; Zheng, S.; Kattner, G. Trophic interactions of mesopelagic fishes in the South China Sea illustrated by stable isotopes and fatty acids. Front. Mar. Sci. 2019, 5, 522. [Google Scholar] [CrossRef]
- Zhirkov, I.A. Biogeography. General and Private: Land, Sea and Continental Waters; Association of Scientific Publications KMK: Moskow, Russia, 2018; p. 568. [Google Scholar]
- Aumont, O.; Maury, O.; Lefort, S.; Bopp, L. Evaluating the potential impacts of the diurnal vertical migration by marine organisms on marine biogeochemistry. Glob. Biogeochem. Cycles 2018, 32, 1622–1643. [Google Scholar] [CrossRef]
- Özdemir, N.S.; Parrish, C.C.; Parzanini, C.; Mercier, A. Neutral and polar lipid fatty acids in five families of demersal and pelagic fish from the deep Northwest Atlantic. ICES J. Mar. Sci. 2019, 76, 1807–1815. [Google Scholar] [CrossRef]
- Olivar, M.P.; Bode, A.; Lopez-Perez, C.; Hulley, P.A.; Hernandez-Leon, S. Trophic position of lanternfishes (Pisces: Myctophidae) of the tropical and equatorial Atlantic estimated using stable isotopes. ICES J. Mar. Sci. 2019, 76, 649–661. [Google Scholar] [CrossRef]
- Dagorn, L.; Bach, P.; Josse, E. Movement patterns of large bigeye tuna (Thunnus obesus) in the open ocean, determined using ultrasonic telemetry. Mar. Biol. 2000, 136, 361–371. [Google Scholar] [CrossRef]
- Naito, Y.; Costa, D.P.; Adachi, T.; Robinson, P.W.; Fowler, M.; Takahashi, A. Unravelling the mysteries of a mesopelagic diet: A large apex predator specializes on small prey. Funct. Ecol. 2013, 27, 710–717. [Google Scholar] [CrossRef]
- Shuntov, V.P.; Radchenko, V.I.; Dulepova, E.P.; Temnykh, O.S. Biological resources of the Russian Far East economic zone: Structure of pelagic and benthic communities, current status, long-term trends. Izv. TINRO 1997, 122, 3–15. [Google Scholar]
- Shuntov, V.P. TINRO Ecosystem Studies of Biological Resources of the Far Eastern Seas; TINRO-Center: Vladivostok, Russia, 1995; pp. 25–78. [Google Scholar]
- Tokranov, A.M.; Orlov, A.M.; Sheiko, B.A. Commercial Fishes of the Continental Slope of the Kamchatka Waters; Kamchat-Press: Petropavlovsk-Kamchatsky, Russia, 2005; p. 52. [Google Scholar]
- Lapin, V.I.; Shatunovskii, M.I. Features of the composition, physiological and ecological significance of fish lipids. Biol. Bull. Rev. 1981, 92, 380–394. [Google Scholar]
- Kreps, E.M. Lipids of Cellular Membranes. Evolution of Brain Lipids. Adaptive Function of Lipids; Nauka: St. Petersburg, Russia, 1981; p. 339. [Google Scholar]
- Ashjian, C.J.; Campbell, R.G.; Welch, H.E.; Butler, M.; Van Keuren, D. Annual cycle in abundance, distribution, and size in relation to hydrography of important copepod species in the western Arctic Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 2003, 50, 1235–1261. [Google Scholar] [CrossRef]
- Petursdottir, H.; Gislason, A.; Falk-Petersen, S. Lipid classes and fatty acid composition of muscle, liver and skull oil in deep-sea redfish Sebastes mentella over the Reykjanes Ridge. J. Fish Biol. 2008, 73, 2485–2496. [Google Scholar] [CrossRef]
- Petursdottir, H.; Gislason, A.; Falk-Petersen, S.; Hop, H.; Svavarsson, J. Trophic interaction of the pelagic ecosystem over the Reykjanes Ridge as evaluated by fatty acid and stable isotope analyses. Deep-Sea Res. Part II 2008, 55, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Lands, W.E.M. Human life: Caught in the food web. In Lipids in Aquatic Ecosystems; Arts, M.T., Brett, M.T., Kainz, M.J., Eds.; Springer: Berlin/Heidelberg, Germany; Dordrecht, The Netherlands; London, UK; New York, NY, USA, 2009; pp. 327–354. [Google Scholar]
- Heinz, E. Biosynthesis of polyunsaturated fatty acids. In Lipid Metabolism in Plants; Moore, T.S., Ed.; CRC: Boca Raton, FL, USA, 1993; pp. 34–89. [Google Scholar]
- Luczynska, J.; Paszczyk, B.; Nowosad, J.; Luczynski, M.J. Mercury, fatty acids content and lipid quality indexes in muscles of freshwater and marine fish on the Polish market. Risk assessment of fish consumption. Int. J. Environ. Res. Public Health 2017, 14, 1120. [Google Scholar] [CrossRef]
- Yang, Z.H.; Emma-Okon, B.; Remaley, A.T. Dietary marine-derived long-chain monounsaturated fatty acids and cardiovascular disease risk: A mini review. Lipids Health Dis. 2016, 15, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adrianov, A.V. Deep-sea biological resources of the World Ocean. Zool. Invertebr. New Century 2018, 1, 13. [Google Scholar]
- Sutton, T.T.; Sigurðsson, T. Vertical and horizontal distribution of mesopelagic fishes along a transect across the northern Mid-Atlantic ridge. ICES CM 2008, 100, 16. [Google Scholar]
- Dolgov, A.V. Annotated list of fish-like vertebrates and fish of the Kara Sea. J. Ichthyol. 2013, 53, 914–922. [Google Scholar] [CrossRef]
- Krovnin, A.S.; Melnikov, S.P.; Kivva, K.K.; Artemenkov, D.V.; Moury, G.P. Influence of variability of oceanological conditions on redfish in the North Atlantic pelagial. Tr. VNIRO 2017, 169, 51–63. [Google Scholar]
- Working Group on International Deep Pelagic Ecosystem Surveys. Manual for the International Deep Pelagic Ecosystem Survey in the Irminger Sea and Adjacent Waters; Series of ICES Survey Protocols SISP 11—IDEEPS VI; Working Group on International Deep Pelagic Ecosystem Surveys: Copenhagen, Denmark, 2015; p. 49. [Google Scholar]
- Barsukov, V.V.; Litvinenko, N.I.; Serebryakov, V.P. Manual for the identification of redfish species of the North Atlantic and adjacent areas. AtlantNIRO. Can. Transl. Fish. Aquat. Sci. 1984, 5168, 25. [Google Scholar]
- Sutton, T.T.; Hulley, P.A.; Wienerroither, R.; Zaera-Perez, D.; Paxton, J.R. Identification Guide to the Mesopelagic Fishes of the Central and South East Atlantic Ocean; FAO Species Identification Guide for Fishery Purposes; FAO: Rome, Italy, 2020; p. 346. [Google Scholar]
- Folch, J.; Lees, M.; Sloan-Syanley, G.H. A simple method for the isolation and purification of total lipids from animal tissue (for brain, liver and muscle). J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Olsen, R.E.; Henderson, R.J. The rapid analysis of neutral and polar marine lipids using double development HPTLC and scanning densitometry. J. Exp. Mar. Biol. Ecol. 1989, 129, 189–197. [Google Scholar] [CrossRef]
- Hellwig, J. Defining Parameters for A Reproducible TLC-separation of Phospholipids Using ADC 2. Ph.D Thesis, University of Applied Sciences Northwestern Switzerland (FHNW), Windisch, Switzerland, 2005. [Google Scholar]
- Shitikov, V.K.; Mastitsky, S.E. Classification, Regression, Data Mining Algorithms Using R. 2017. Available online: https://github.com/ranalytics/data-mining (accessed on 15 May 2022).
- Kabakoff, R. R in Action: Data Analysis and Graphics with R; Volkova, P.A., Translator; DMK Press: Moscow, Russia, 2014; p. 588. [Google Scholar]
- IMR. Mesopelagic Initiative: Unleashing New Marine Resources for a Growing Human Population. Available online: https://www.hi.no/filarkiv/2017/rad-bestander_og_ressurser-mesopelagic_initiative-unleashing_new_marine_resources_for_a_growing_human_population.pdf/nb-no (accessed on 20 May 2022).
- FAO 2020. The Mesopelagic Fish Guide: Shedding Light on 550 Fish Species in one of the Largest Ecosystems On Earth. EAF—Nansen Programme. Available online: http://www.fao.org/in-action/eaf-nansen/news-events/detail-events/en/c/1311820/ (accessed on 20 May 2022).
- Choy, C.A.; Popp, B.N.; Hannides, C.C.; Drazen, J.C. Trophic structure and food resources of epipelagic and mesopelagic fishes in the North Pacific Subtropical Gyre ecosystem inferred from nitrogen isotopic compositions. Limnol. Oceanogr. 2015, 60, 1156–1171. [Google Scholar] [CrossRef]
- Jónasdóttir, S.H.; Visser, A.W.; Richardson, K.; Heath, M.R. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. Proc. Natl. Acad. Sci. USA 2015, 112, 12122–12126. [Google Scholar] [CrossRef] [Green Version]
- Cavallaro, M.; Ammendolia, G.; Andaloro, F.; Battaglia, P. First record of the mesopelagic fish Diaphus dumerilii (Bleeker, 1856) in the Mediterranean Sea. Mar. Biodivers. 2017, 47, 585–588. [Google Scholar] [CrossRef]
- Gjøsæter, J.; Kawaguchi, K. A Review of the World Resources of Mesopelagic Fish; FAO Fisheries Technical Paper; FAO: Rome, Italy, 1980. [Google Scholar]
- Choy, C.A.; Portner, E.; Iwane, M.; Drazen, J.C. Diets of five important predatory mesopelagic fishes of the central North Pacific. Mar. Ecol. Prog. Ser. 2013, 492, 169–184. [Google Scholar] [CrossRef] [Green Version]
- Olaso, I.; Velasco, F.; Sánchez, F.; Serrano, A.; Rodríguez-Cabello, C.; Cendrero, O. Trophic relations of lesser-spotted catshark (Scyliorhinus canicula) and blackmouth catshark (Galeus melastomus) in the Cantabrian Sea. J. Northwest Atl. Fish. Sci. 2005, 35, 481–494. [Google Scholar] [CrossRef]
- Petry, M.V.; Fonseca, V.S.D.S.; Scherer, A.L. Analysis of stomach contents from the black-browed albatross, Thalassarche melanophris, on the Coast of Rio Grande do Sul, Southern Brazil. Polar Biol. 2007, 30, 321–325. [Google Scholar] [CrossRef]
- Goetsch, C.; Conners, M.G.; Budge, S.M.; Mitani, Y.; Walker, W.A.; Bromaghin, J.F.; Simmons, S.E.; Reichmuth, C.; Costa, D. Energy-rich mesopelagic fishes revealed as a critical prey resource for a deep-diving predator using quantitative fatty acid signature analysis. Front. Mar. Sci. 2018, 5, 430. [Google Scholar] [CrossRef]
- Giménez, J.; Marçalo, A.; García-Polo, M.; García-Barón, I.; Castillo, J.J.; Fernández-Maldonado, C.; Saavedra, C.; Santos, M.B.; de Stephanis, R. Feeding ecology of Mediterranean common dolphins: The importance of mesopelagic fish in the diet of an endangered subpopulation. Mar. Mammal Sci. 2018, 34, 136–154. [Google Scholar] [CrossRef]
- Pusineri, C.; Chancollon, O.; Ringelstein, J.; Ridoux, V. Feeding niche segregation among the Northeast Atlantic community of oceanic top predators. Mar. Ecol. Prog. Ser. 2008, 361, 21–34. [Google Scholar] [CrossRef]
- Karl, H.; Numata, J.; Lahrssen-Wiederholt, M. Variability of fat, water and protein content in the flesh of beaked redfish (Sebastes mentella) and Greenland halibut (Reinhardtius hippoglossoides) from arctic fishing grounds. J. Consum. Prot. Food Saf. 2018, 13, 383–389. [Google Scholar] [CrossRef]
- Lea, M.A.; Nichols, P.D.; Wilson, G. Fatty acid composition of lipid-rich myctophids and mackerel icefish (Champsocephalus gunnari)–Southern Ocean food-web implications. Polar Biol. 2002, 25, 843–854. [Google Scholar] [CrossRef] [Green Version]
- Russ, T.S.; Lindbergh, G.W. Modern ideas about the natural system of living fish. J. Ichthyol. 1971, 11, 380–407. [Google Scholar]
- Sargent, J.R. Marine wax esters. Sci. Progr. 1978, 65, 437–458. [Google Scholar] [CrossRef]
- Sidorov, V.S. Ecological Biochemistry of Fish; Nauka: St. Petersburg, Russia, 1983; p. 240. [Google Scholar]
- Neighbors, M.A. Triacylglycerols and wax esters in the lipids of deep midwater teleost fishes of the Southern California Bright. Mar. Biol. 1988, 98, 15–22. [Google Scholar] [CrossRef]
- Shchepkina, A.M.; Trusevich, V.V.; Pavlovskaya, T.Y. Peculiarities of lipid composition in some representatives of the mass species of tropical zooplancton from the Atlantic and Indian Ocean. Ecol. Sea 1991, 38, 84–88. [Google Scholar]
- Somero, G.N. Adaptation to high hydrostatic pressure. Annu. Rev. Physiol. 1992, 54, 557–577. [Google Scholar] [CrossRef]
- Saito, H.; Murata, M. The high content of monoene fatty acids in the lipids of some midwater fishes: Family Myctophidae. Lipids 1996, 31, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Phleger, C.F.; Nelson, M.M.; Mooney, B.D.; Nichols, P.D. Wax esters versus triacylglycerols in myctophid fishes from the Southern Ocean. Antarct. Sci. 1999, 11, 436–444. [Google Scholar] [CrossRef]
- Hochachka, P.W.; Somero, G.N. Biochemical Adaptation: Mechanism and Process in Physiological Evolution; Oxford University Press: Oxford, UK, 2002; p. 466. [Google Scholar]
- Tocher, D.R. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish. Sci. 2003, 11, 107–184. [Google Scholar] [CrossRef]
- Perevozchikov, A.P. Sterols and their transport in animal development. Russ. J. Dev. Biol. 2008, 39, 131–150. [Google Scholar] [CrossRef]
- Connan, M.; Mayzaud, P.; Duhamel, G.; Bonnevie, B.T.; Cherel, Y. Fatty acid signature analysis documents the diet of five myctophid fish from the Southern Ocean. Mar. Biol. 2010, 157, 2303–2316. [Google Scholar] [CrossRef]
- Romanov, V.I. Modern Representations and System of Pisciformes and Fishes of the World Fines; Publishing House of Tomsk State University: Tomsk, Russia, 2019; p. 310. [Google Scholar]
- Klevjer, T.A.; Torres, D.J.; Kaartvedt, S. Distribution and diel vertical movements of mesopelagic scattering layers in the Red Sea. Mar. Biol. 2012, 159, 1833–1841. [Google Scholar] [CrossRef] [Green Version]
- Sweetman, C.J.; Sutton, T.T.; Vecchione, M.; Latour, R.J. Diet composition of Bathylagus euryops (Osmeriformes: Bathylagidae) along the northern Mid-Atlantic Ridge. Deep Sea Res. Part I Oceanogr. Res. Pap. 2014, 92, 107–114. [Google Scholar] [CrossRef]
- Catul, V.; Gauns, M.; Karuppasamy, P.K. A review on mesopelagic fishes belonging to family Myctophidae. Rev. Fish Biol. Fish. 2011, 21, 339–354. [Google Scholar] [CrossRef]
- Choy, C.A.; Davison, P.C.; Drazen, J.C.; Flynn, A.; Gier, E.J.; Hoffman, J.C.; McClain-Counts, J.P.; Miller, T.W.; Popp, B.N.; Ross, S.W.; et al. Global trophic position comparison of two dominant mesopelagic fish families (Myctophidae, Stomiidae) using amino acid nitrogen isotopic analyses. PLoS ONE 2012, 7, e50133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sargent, J.R.; Falk-Petersen, S. The lipid biochemistry of calanoid copepods. Hydrobiologia 1988, 167–168, 101–114. [Google Scholar] [CrossRef]
- Scott, C.L.; Kwasniewski, S.; Falk-Petersen, S.; Sargent, J.R. Species differences, origins andfunctions of fatty alcohols and fatty acids in the wax esters and phospholipids of Calanus hyperboreus, C. glacialis and C. finmarchicus from Arctic waters. Mar. Ecol. Prog. Ser. 2002, 235, 127–134. [Google Scholar] [CrossRef]
- Dolgov, V.A.; Rolsky, A.Y.; Popov, V.I. Feeding of redfish Sebastes mentella in the Irminger Sea—What do the data on feeding show? In Proceedings of the ICES Annual Science Conference, Gdansk, Poland, 19–23 September 2011.
- Voronin, V.P.; Nemova, N.N.; Ruokolainen, T.R.; Artemenkov, D.V.; Rolskii, A.Y.; Orlov, A.M.; Murzina, S.A. Into the Deep: New Data on the Lipid and Fatty Acid Profile of Redfish Sebastes mentella Inhabiting Different Depths in the Irminger Sea. Biomolecules 2021, 11, 704. [Google Scholar] [CrossRef]
- Lee, R.F.; Hirota, J.; Barnett, A.M. Distribution and importance of wax esters in marine copepods and other zooplankton. Deep Sea Res. Oceanogr. Abstr. 1971, 18, 1147–1165. [Google Scholar] [CrossRef]
- Nevenzel, J.C. Occurrence, function and biosynthesis of wax esters in marine organisms. Lipids 1970, 5, 308–319. [Google Scholar] [CrossRef]
- Salvanes, A.G.V.; Kristofersen, J.B. Mesopelagic Fishes; Academic Press: Cambridge, MA, USA, 2001; pp. 1711–1717. [Google Scholar]
- FishBase. Available online: https://www.fishbase.se/search.php (accessed on 15 May 2022).
- Gartner Jr, J.V.; Musick, J.A. Feeding habits of the deep-sea fish, Scopelogadus beanii (Pisces: Melamphaide), in the western North Atlantic. Deep Sea Res. Part A Oceanogr. Res. Pap. 1989, 36, 1457–1469. [Google Scholar] [CrossRef]
- Colman, J.; Rem, K.-G. Visual Biochemistry. Per. with German Language, 3rd ed.; Mir, BIONOM, Laboratory of Knowledge: Moscow, Russia, 2009; p. 469. [Google Scholar]
- Sandel, E.; Nixon, O.; Lutzky, S.; Ginsbourg, B.; Tandler, A.; Uni, Z.; Koven, W. The effectof dietary phosphatidylcholine/phosphatidylinositol ratio on malformation in larvae andjuvenile gilthead sea bream (Sparus aurata). Aquaculture 2010, 304, 42–48. [Google Scholar] [CrossRef]
- Merris, M.; Kraeft, J.; Tint, G.S.; Lenard, J. Long-term effects of sterol depletion in C. elegans: Sterol content of synchronized wild-type and mutant populations. J. Lipid Res. 2004, 45, 2044–2051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurzchalia, T.V.; Ward, S. Why do worms need cholesterol? Nat. Cell Biol. 2003, 5, 684–688. [Google Scholar] [CrossRef] [PubMed]
- Bellés, X.; Martín, D.; Piulachs, M.D. The mevalonate pathway and the synthesis of juvenile hormone in insects. Annu. Rev. Entomol. 2005, 50, 181–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemova, N.N.; Nefyodova, Z.A.; Murzina, S.A. Lipid patterns early in Atlantic salmon, Salmo salar L., ontogeny. Trans. KarRC RAS 2014, 5, 44–52. [Google Scholar]
- Tillman, T.S.; Cascio, M. Effects of membrane lipids on ion channel structure and function. Cell Biochem. Biophys. 2003, 38, 161–190. [Google Scholar] [CrossRef]
- Rabinovich, A.L.; Kornilov, V.V.; Balabaev, N.K.; Leermakers, F.A.M.; Filippov, A.V. Properties of unsaturated phospholipid bilayers: Effect of cholesterol. Biochem. Suppl. Ser. A Membr. Cell Biol. 2007, 1, 343–357. [Google Scholar] [CrossRef]
- Joensen, H.; Grahl-Nielsen, O. Discrimination of Sebastes viviparus, Sebastes marinus and Sebastes mentella from Faroe Islands by chemometry of the fatty acid profile in heart and gill tissues and in the skull oil. Comp. Biochem. Physiol. Part B 2000, 126, 69–79. [Google Scholar] [CrossRef]
- Kostetsky, E.Y.; Velansky, P.V.; Sanina, N.M. Phase transitions of phospholipids as a criterion for assessing the capacity for thermal adaptation in fish. Russ. J. Mar. Biol. 2013, 39, 214–222. [Google Scholar] [CrossRef]
- Daleke, D.L. Regulation of transbilayer plasma membrane phospholipid asymmetry. J. Lipid Res. 2003, 44, 233–242. [Google Scholar] [CrossRef] [Green Version]
- Boldyrev, A.A.; Kyayvaryainen, E.I.; Ilyukha, V.A. Biomembranology: A Textbook; KarRC RAS: Petrozavodsk, Russia, 2006; p. 226. [Google Scholar]
- Makarova, I.I.; Golovko, M.Y. Asymmetry of the source of secondary messengers—Phosphatidylinositol of the cerebral cortex of rats with an increase in geomagnetic activity. In Proceedings of the Actual Problems of Functional Interhemispheric Asymmetry, Moscow, Russia, 13–14 December 2001; pp. 103–104. [Google Scholar]
- Dobrynina, V.I. Biological Chemistry; Medicine: Moskow, Russia, 1976; p. 503. [Google Scholar]
- Osadchaya, L.M.; Galkina, O.V.; Eshchenko, N.D. Effect of Corazole on the Activity of Na+ -K+ ATP—The Basics and the Intensity of Lipid Peroxidation in Neurons and Neuroglia: Biochemical and Molecular-Biological Foundations of Physiological Functions; Publishing House of St. Petersburg State University: St. Petersburg, Russia, 2004; Volume 37, pp. 220–226. [Google Scholar]
- Berdichevets, I.N.; Tyazhelova, T.V.; Shimshilashvili, K.R.; Rogaev, E.I. Lysophosphatidic acid is a lipid mediator with wide range of biological activities. Biosynthetic pathways and mechanism of action. Biochemistry 2010, 75, 1088–1097. [Google Scholar] [CrossRef]
- Iverson, S.J. Tracing aquatic food webs using fatty acids: From qualitative indicators to quantitative determination. In Lipids in Aquatic Ecosystems, 3rd ed.; Arts, M.T., Brett, M.T., Kainz, M., Eds.; Springer: New York, NY, USA, 2009; pp. 281–308. [Google Scholar]
- Saito, H.; Murata, M. Origin of the monoene fats in the lipid of midwater fishes: Relationship between the lipids of myctophids and those of their prey. Mar. Ecol. Prog. Ser. 1998, 168, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Murzina, S.A.; Nefedova, Z.A.; Falk-Petersen, S.; Hop, H.; Ryokolainen, T.R.; Ottesen, C.A.M.; Ripatti, P.O.; Berge, J.; Nemova, N.N. Lipids in the daubed shanny (Teleostei: Leptoclinus maculatus) in Svalbard waters. Polar Biol. 2013, 36, 1619–1631. [Google Scholar] [CrossRef]
- Lee, R.F. Lipid composition of the copepod Calanus hyperboreas from the ArcticOcean. Changes with depth and season. Mar. Biol. 1974, 26, 313–318. [Google Scholar] [CrossRef]
- Falk-Petersen, S.; Mayzaud, P.; Kattner, G.; Sargent, J.R. Lipids and life strategy of Arctic Calanus. Mar. Biol. Res. 2009, 5, 18–39. [Google Scholar] [CrossRef] [Green Version]
- Auel, H.; Harjes, M.; Da Rocha, R.; Stübing, D.; Hagen, W. Lipid biomarkers indicate different ecological niches and trophic relationships of the Arctic hyperiid amphipods Themisto abyssorum and T. libellula. Polar Biol. 2002, 25, 374–383. [Google Scholar] [CrossRef]
- Murzina, S.A.; Nefedova, Z.A.; Veselov, A.E.; Ripatti, P.O.; Nemova, N.N.; Pavlov, D.S. Changes in fatty acid composition during embryogenesis and in young age groups (0+) of Atlantic Salmon Salmo Salar L.: The role of rheotactic behavior and lipid composition of fry in the formation of phenotypic groups of Salmon in large arctic rivers. In Salmon: Biology, Ecological Impacts and Economic Importance, 2nd ed.; Woo, P.T.K., Noakes, D.J., Eds.; Nova Science Publishers: New York, NY, USA, 2014; pp. 47–65. [Google Scholar]
- Shulman, G.E.; Yuneva, T.V. Role of docosahexaenoic acid in adaptations fishes (review). Hydrobiol. J. 1990, 26, 43–51. [Google Scholar]
- Kanazawa, A. Effects of docosahexaenoic acid and phospholipids on stress tolerance of fish. Aquaculture 1997, 155, 129–134. [Google Scholar] [CrossRef]
- Murzina, S.A. The Role of Lipids and their Fatty Acid Components in Biochemical Adaptations of the Spotted Lumpen Leptoclinus maculatus F. Spitsbergen. Ph.D. Thesis, Karelian State Pedagogical Academy, Petrozavodsk, Russia, 2010; p. 184. [Google Scholar]
- Isanta Navarro, J.; Fromherz, M.; Dietz, M.; Zeis, B.; Schwarzenberger, A.; Martin-Creuzburg, D. Dietary polyunsaturated fatty acid supply improves Daphnia performance at fluctuating temperatures, simulating diel vertical migration. Freshw. Biol. 2019, 64, 1859–1866. [Google Scholar] [CrossRef]
- Rabinovich, A.L.; Ripatti, P.O. Polyunsaturated carbon chins of lipids: Structure, properties, functions. Biol. Bull. Rev. 1994, 114, 581–594. [Google Scholar]
- Sargent, J.R.; Tocher, D.R.; Bell, J.G. The lipids. In Fish Nutrition; Elsevier: Amsterdam, The Netherlands, 2003; pp. 181–257. [Google Scholar]
- Sargent, J.R.; Bell, J.G.; Bell, M.V.; Henderson, R.J.; Tocher, D.R. Dietary origins and functions of long-chain (n-3) polyunsaturated fatty acids in marine fish. J. Mar. Biotechnol. 1995, 3, 26–28. [Google Scholar]
- Sergeeva, M.G.; Varfolomeeva, A.T. Arachidonic Acid Cascade; Public Education: Moscow, Russia, 2006; p. 256. [Google Scholar]
- Suhr, S.B.; Pond, D.W.; Gooday, A.J.; Smith, C.R. Selective feeding by benthic foraminifera on phytodetritus on the western Antarctic Peninsula shelf: Evidence from fatty acid biomarker analysis. Mar. Ecol. Prog. Ser 2003, 262, 153–162. [Google Scholar] [CrossRef]
- Hudson, I.R.; Pond, D.W.; Billett, D.S.M.; Tyler, P.A.; Lampitt, R.S.; Wolff, G.A. Temporal variations in fatty acid composition of deep-sea holothurians: Evidence of bentho-pelagic coupling. Mar. Ecol. Prog. Ser 2004, 281, 109–120. [Google Scholar] [CrossRef]
- Dalsgaard, J.; St. John, M.; Kattner, G.; Muller-Navarra, D.; Hagen, W. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 2003, 46, 225–340. [Google Scholar]
- Graeve, M.; Kattner, G.; Wiencke, C.; Karsten, U. Fatty acid composition of Arctic and Antarctic macroalgae: Indicator of phylogenetic and trophic relationships. Mar. Ecol. Prog. Ser. 2002, 231, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Gershanovich, A.D. Lipid mobilization during early development of turgeons. In Proceedings of the First International Symposium on Sturgeon, Bordeaux, France, 3–6 October 1989; pp. 41–52. [Google Scholar]
- Murzina, S.A.; Nefedova, Z.A.; Pekkoeva, S.N.; Veselov, A.E.; Baryshev, I.A.; Ripatti, P.O.; Nemova, N.N. Content of fatty acids in forage objects of juveniles of salmonids from rivers of the Lake Onega basin. Inland Water Biol. 2019, 12, 96–103. [Google Scholar] [CrossRef]
- Phleger, C.F.; Nelson, M.M.; Mooney, B.; Nichols, P.D. Lipids of Antarctic salps and their commensal hyperiid amphipods. Polar Biol. 2000, 23, 329–337. [Google Scholar] [CrossRef]
- Schots, P.C.; Pedersen, A.M.; Eilertsen, K.E.; Olsen, R.L.; Larsen, T.S. Possible health effects of a wax ester rich marine oil. Front. Pharmacol. 2020, 11, 961. [Google Scholar] [CrossRef]
- Arts, M.T.; Kohler, C.C. Health and conditions in fish: The influence of lipids on membrane competency and immune response. In Lipids in Aquatic Ecosystems; Arts, M.T., Brett, M.T., Kainz, M.J., Eds.; Springer: Berlin/Heidelberg, Germany; Dordrecht, The Netherlands; London, UK; New York, NY, USA, 2009; pp. 237–257. [Google Scholar]
- Dyall, S.C. Long-chain omega-3 fatty acids and the brain: A review of the independent and shared effects of EPA, DPA and DHA. Front. Aging Neurosci. 2015, 7, 52. [Google Scholar] [CrossRef] [Green Version]
- Østbye, T.K.K.; Berge, G.M.; Nilsson, A.; Romarheim, O.H.; Bou, M.; Ruyter, B. The long-chain monounsaturated cetoleic acid improves the efficiency of the n-3 fatty acid metabolic pathway in Atlantic salmon and human HepG2 cells. Br. J. Nutr. 2019, 122, 755–768. [Google Scholar] [CrossRef] [Green Version]
- Stark, A.H.; Crawford, M.A.; Reifen, R. Update on alpha-linolenic acid. Nutr. Rev. 2008, 66, 326–332. [Google Scholar] [CrossRef]
- Baierle, M.; Vencato, P.H.; Oldenburg, L.; Bordignon, S.; Zibetti, M.; Trentini, C.M.; Duarte, M.M.M.F.; Veit, J.C.; Somacal, S.; Emanuelli, T.; et al. Fatty acid status and its relationship to cognitive decline and homocysteine levels in the elderly. Nutrients 2014, 6, 3624–3640. [Google Scholar] [CrossRef] [Green Version]
- Ponomarenco, A.I.; Tyrtyshnaia, A.A.; Pislyagin, E.A.; Dyuizen, I.V.; Sultanov, R.M.; Manzhulo, I.V. N-docosahexaenoylethanolamine reduces neuroinflammation and cognitive impairment after mild traumatic brain injury in rats. Sci. Rep. 2021, 11, 756. [Google Scholar] [CrossRef]
- Kuklev, D.V.; Kogteva, G.S.; Latyshev, N.A.; Bezuglov, V.V. Oxidation of Octadecapentaenoic (18:5(n-3)) acid with soya 15-Lipoxygenase. Russ. J. Biorgan. Chem. 1995, 21, 651–653. [Google Scholar]
- Archakov, A.I.; Sel’tsovskiĭ, A.P.; Lisov, V.I.; Tsyganov, D.I.; Kniazhev, V.A.; Ipatova, O.M.; Torkhovskaia, T.I. Phosphogliv: Mechanism of therapeutic action and clinical efficacy. Vopr. Meditsinskoi Khimii 2002, 48, 139–153. [Google Scholar]
- Kabara, J.J.; Swieczkowski, D.M.; Conley, A.J.; Truant, J.P. Fatty acids and derivatives as antimicrobial agents. Antimicrob. Agents Chemother. 1972, 2, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Desbois, A.P.; Smith, V.J. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 2010, 85, 1629–1642. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.-T.; Chen, J.-W.; Rathod, J.; Jiang, Y.-Z.; Tsai, P.-J.; Hung, Y.-P.; Ko, W.-C.; Paredes-Sabja, D.; Huang, I.-H. Lauric acid is an inhibitor of Clostridium difficile growth in vitro and reduces inflammation in a mouse infection model. Front. Microbiol. 2018, 8, 2635. [Google Scholar] [CrossRef] [Green Version]
- Logue, J.A.; De Vries, A.L.; Fodor, E.; Cossins, A.R. Lipid compositional correlates of temperature-adaptive interspecific differences in membrane physical structure. J. Exp. Biol. 2000, 203, 2105–2115. [Google Scholar] [CrossRef]
Area | Irminger Sea | Tropic Seamount | Irminger Sea | Tropic Seamount |
---|---|---|---|---|
Fish species | Lampanyctus macdonaldi | Lampanyctus alatus | Serrivomer beanii | |
Lipid classes | ||||
PL | 2.92 ± 0.14 | 0.77 ± 0.09 * | 1.74 ± 0.36 | 0.64 ± 0.17 * |
MAG | 0.43 ± 0.02 | 0.12 ± 0.02 * | 0.42 ± 0.12 | 0.15 ± 0.03 * |
DAG | 0.4 ± 0.03 | 0.28 ± 0.04 * | 0.46 ± 0.12 | 0.3 ± 0.07 |
TAG | 10.6 ± 0.44 | 1.76 ± 0.3 * | 3.21 ± 0.78 | 0.86 ± 0.14 |
Chol | 2.35 ± 0.08 | 1 ± 0.12 * | 1.52 ± 0.25 | 0.86 ± 0.25 |
Chol esters | 8.04 ± 0.36 | 1.6 ± 0.25 * | 3.35 ± 0.55 | 1.39 ± 0.44 |
Waxes | 12.22 ± 0.54 | 0.93 ± 0.15 * | 1.11 ± 0.11 | 0.71 ± 0.26 |
NEFA | 0.81 ± 0.13 | 0.4 ± 0.06 * | 0.52 ± 0.1 | 0.25 ± 0.06 * |
Area | Irminger Sea | Tropic Seamount | Irminger Sea | Tropic Seamount |
---|---|---|---|---|
Fish species | Lampanyctus macdonaldi | Lampanyctus alatus | Serrivomer beanii | |
PL fractions | ||||
PC | 2.19 ± 0.1 | 0.53 ± 0.07 * | 1.28 ± 0.21 | 0.42 ± 0.09 * |
PEA | 0.39 ± 0.04 | 0.16 ± 0.02 * | 0.32 ± 0.07 | 0.15 ± 0.05 |
PI | 0.02 ± 0 | 0.01 ± 0 | 0.01 ± 0 | 0.02 ± 0.01 |
PS | 0.05 ± 0 | 0.03 ± 0 * | 0.03 ± 0.01 | 0.03 ± 0.01 |
LysoPC | 0.14 ± 0.03 | 0.05 ± 0.03 * | 0.17 ± 0.05 | 0.01 ± 0.01 * |
SM | 0.01 ± 0 | 0 ± 0 * | 0 ± 0 | 0 ± 0 |
Area | Irminger Sea | Tropic Seamount | Irminger Sea | Tropic Seamount |
---|---|---|---|---|
Fish species | Lampanyctus macdonaldi | Lampanyctus alatus | Serrivomer beanii | |
Fatty acids | ||||
14:0 | 0.78 ± 0.06 | 1.71 ± 0.12 * | 3.33 ± 0.44 | 1.83 ± 0.34 * |
15:0 | 0.08 ± 0.01 | 0.56 ± 0.03 * | 0.43 ± 0.03 | 0.55 ± 0.12 |
16:0 | 3.74 ± 0.25 | 19 ± 0.32 * | 16 ± 0.54 | 16.88 ± 3.48 |
17:0 | 0.04 ± 0 | 0.8 ± 0.05 * | 0.51 ± 0.05 | 0.61 ± 0.14 |
18:0 | 0.6 ± 0.04 | 5.71 ± 0.25 * | 4.25 ± 0.27 | 5.83 ± 1.72 |
20:0 | 0.68 ± 0.04 | 1.58 ± 0.19 * | 1.17 ± 0.35 | 1.19 ± 0.34 |
24:0 | 0.08 ± 0.03 | 0.77 ± 0.08 * | 0.23 ± 0.09 | 0.21 ± 0.08 |
16:1 (n-9) | 0.1 ± 0.01 | 0.46 ± 0.02 * | 0.42 ± 0.02 | 0.38 ± 0.08 |
16:1 (n-7) | 3.2 ± 0.13 | 3.07 ± 0.32 | 4.77 ± 0.83 | 4.32 ± 0.6 |
17:1 (n-7) | 0.27 ± 0.01 | 0.78 ± 0.04 * | 0.19 ± 0.07 | 0.75 ± 0.13 * |
18:1 (n-9) | 13.16 ± 0.34 | 17.67 ± 0.81 * | 17.02 ± 0.69 | 18.61 ± 1.8 |
18:1 (n-7) | 3.12 ± 0.1 | 2.07 ± 0.12 * | 2.64 ± 0.23 | 2.61 ± 0.25 |
18:1 (n-5) | 0.31 ± 0.02 | 0.11 ± 0.01 * | 0.3 ± 0.01 | 0.19 ± 0.05 * |
20:1 (n-11) | 1.44 ± 0.08 | 0.17 ± 0.02 * | 1.19 ± 0.12 | 0.41 ± 0.18 * |
20:1 (n-9) | 13.82 ± 0.36 | 1.41 ± 0.13 * | 6.74 ± 0.58 | 3.42 ± 2.23 |
22:1 (n-11) | 9.27 ± 0.57 | 0.52 ± 0.17 * | 5.49 ± 0.74 | 1.52 ± 1.15 * |
22:1 (n-9) | 1.96 ± 0.63 | 0.1 ± 0.01 * | 1.77 ± 0.49 | 2.26 ± 2.14 |
22:1 (n-7) | 5.88 ± 0.5 | 0.09 ± 0 * | 0.15 ± 0.05 | 0.4 ± 0.32 |
10:0 | 0.99 ± 0.06 | 0.52 ± 0.13 * | 0.24 ± 0.04 | 0.36 ± 0.27 |
18:2 (n-6) | 0.78 ± 0.03 | 0.91 ± 0.04 * | 1.02 ± 0.05 | 1 ± 0.11 |
18:3 (n-6) | 0.05 ± 0.01 | 0.07 ± 0.03 | 0.04 ± 0 | 0.02 ± 0 |
20:2 (n-6) | 0.29 ± 0.01 | 0.23 ± 0.01 * | 0.21 ± 0.02 | 0.16 ± 0.03 |
20:3 (n-6) | 0.35 ± 0.01 | 0.18 ± 0.01 * | 0.12 ± 0.01 | 0.22 ± 0.03 * |
20:4 (n-6) | 0.19 ± 0.01 | 3.8 ± 1.74 * | 1.14 ± 0.12 | 1.97 ± 0.55 |
22:5 (n-6) | 0.08 ± 0.01 | 1.09 ± 0.08 * | 0.23 ± 0.02 | 0.78 ± 0.19 * |
16:4 (n-4) | 5.32 ± 0.32 | 0.32 ± 0.03 * | - | - |
18:2 (n-4) | 0.04 ± 0 | 0.12 ± 0.01 * | 0.06 ± 0.01 | 1.27 ± 1.17 * |
18:3 (n-4) | 0.07 ± 0.01 | 0.07 ± 0.02 | 0.13 ± 0.01 | 0.09 ± 0.02 * |
18:4 (n-4) | 0.29 ± 0.06 | 0.02 ± 0 * | 0.18 ± 0.08 | 0.04 ± 0.01 |
16:2 (n-3) | 0.1 ± 0.01 | 0.38 ± 0.02 * | 0.2 ± 0.02 | 1.62 ± 1.25 * |
16:4 (n-3) | 0.32 ± 0.06 | 0.03 ± 0 * | - | - |
18:2 (n-3) | 0.04 ± 0 | 0.18 ± 0.01 * | 0.14 ± 0.01 | 0.19 ± 0.03 |
18:3 (n-3) | 0.18 ± 0.02 | 0.46 ± 0.04 * | 0.18 ± 0.03 | 0.22 ± 0.03 |
18:5 (n-3) | 1.8 ± 0.09 | 0.01 ± 0 * | - | - |
20:4 (n-3) | 0.8 ± 0.07 | 0.68 ± 0.08 | 0.42 ± 0.03 | 0.66 ± 0.07 * |
20:5 (n-3) | 2.68 ± 0.15 | 6.11 ± 0.29 * | 7.44 ± 1.23 | 4.82 ± 0.8 |
22:5 (n-3) | 0.48 ± 0.04 | 0.81 ± 0.03 * | 1.39 ± 0.17 | 1.02 ± 0.23 |
22:6 (n-3) | 3.9 ± 0.17 | 25.66 ± 1.62 * | 17.71 ± 1.36 | 17.61 ± 4.47 |
22:1 (n-11)Alk | 12.12 ± 0.58 | - | - | - |
SFA | 5.99 ± 0.35 | 30.13 ± 0.56 * | 25.91 ± 0.93 | 27.11 ± 5.68 |
MUFA | 53.19 ± 0.51 | 26.74 ± 0.97 * | 41.28 ± 2.52 | 35.25 ± 4.6 * |
SCFA | 1 ± 0.06 | 0.61 ± 0.13 * | 0.33 ± 0.04 | 0.47 ± 0.25 |
(n-9) PUFA | 1.44 ± 0.09 | 0.28 ± 0.02 * | 0.59 ± 0.04 | 0.34 ± 0.09 * |
(n-7) PUFA | 0.04 ± 0 | 0.11 ± 0.01 * | 0.13 ± 0.01 | 0.1 ± 0.01 * |
(n-6) PUFA | 2.24 ± 0.05 | 6.35 ± 1.67 * | 3 ± 0.14 | 4.38 ± 0.65 |
(n-4) PUFA | 5.86 ± 0.32 | 0.71 ± 0.04 * | 0.5 ± 0.1 | 0.41 ± 0.05 |
(n-3) PUFA | 10.75 ± 0.34 | 34.87 ± 1.75 * | 28.2 ± 2.28 | 25.08 ± 5.65 |
PUFA | 27.69 ± 0.82 | 42.52 ± 1 * | 32.47 ± 2.37 | 31.47 ± 5.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voronin, V.P.; Artemenkov, D.V.; Orlov, A.M.; Murzina, S.A. Lipids and Fatty Acids in Some Mesopelagic Fish Species: General Characteristics and Peculiarities of Adaptive Response to Deep-Water Habitat. J. Mar. Sci. Eng. 2022, 10, 949. https://doi.org/10.3390/jmse10070949
Voronin VP, Artemenkov DV, Orlov AM, Murzina SA. Lipids and Fatty Acids in Some Mesopelagic Fish Species: General Characteristics and Peculiarities of Adaptive Response to Deep-Water Habitat. Journal of Marine Science and Engineering. 2022; 10(7):949. https://doi.org/10.3390/jmse10070949
Chicago/Turabian StyleVoronin, Viktor P., Dmitrii V. Artemenkov, Alexei M. Orlov, and Svetlana A. Murzina. 2022. "Lipids and Fatty Acids in Some Mesopelagic Fish Species: General Characteristics and Peculiarities of Adaptive Response to Deep-Water Habitat" Journal of Marine Science and Engineering 10, no. 7: 949. https://doi.org/10.3390/jmse10070949
APA StyleVoronin, V. P., Artemenkov, D. V., Orlov, A. M., & Murzina, S. A. (2022). Lipids and Fatty Acids in Some Mesopelagic Fish Species: General Characteristics and Peculiarities of Adaptive Response to Deep-Water Habitat. Journal of Marine Science and Engineering, 10(7), 949. https://doi.org/10.3390/jmse10070949