Following the Sand Grains
Abstract
:1. Introduction
- Disruption to navigation caused by channel shoaling, leading to more frequent artificial dredging;
- Increased rates of inlet migration at unstructured inlets, especially at smaller inlets;
- Changes to the rates and dynamics associated with natural inlet sediment bypassing;
- Greater movement of sand onto flood-tidal deltas (F-T-D) and into backbarrier bays and channels.
2. Data Base
3. Physical Setting
- The Merrimack River Inlet ebb-tidal delta is oriented asymmetrically to the south, and contains ebb-oriented sandwave crests that gradually rotate to the southeast [54];
- Sediments within the Merrimack River Inlet ebb-tidal delta fine quickly to the north of the inlet and gradually to the south, indicating preferential southerly transport of coarser grains (Figure 3a) [55]. This trend continues to the south among beach and dune-toe sands, which fine consistently (except where influenced by tidal inlets) from northern Plum Island, across Castle Neck, and to Coffins Beach to the southeast (Figure 3b) [56];
- The 10 and 20 m depth contours offshore of the Merrimack barrier chain demonstrate seaward excursion from the Merrimack River Inlet to the Cape Ann peninsula due to decreasing grain size and preferential sand deposition (Figure 4a);
- Holocene sediments gradually thicken to the south, away from the mouth of the Merrimack River and toward Castle Neck, Coffins Beach, and Cape Ann (Figure 4b);
4. Inlet Sediment Bypassing and Sand Delivery to Castle Neck
4.1. Sand Source
4.2. Sand Compartments
4.2.1. Sandy Point
4.2.2. Spit Platform and Main-Ebb Channel
4.2.3. Beach Protuberance
4.2.4. Southern Spit
5. Essex Inlet and Bay Sedimentation Patterns
5.1. Essex Inlet
5.2. Inner Essex Bay Flood-Tidal Delta
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FitzGerald, D.M.; Fenster, M.S.; Argow, B.A.; Buynevich, I.V. Coastal Impacts Due to Sea-Level Rise. Annu. Rev. Earth Planet. Sci. 2008, 36, 601–647. [Google Scholar] [CrossRef] [Green Version]
- Cazenave, A.; Le Cozannet, G. Sea level rise and its coastal impacts. Earth’s Futur. 2013, 2, 15–34. [Google Scholar] [CrossRef]
- Oppenheimer, M.; Glavovic, B.C.; Hinkel, J.; van de Wal, R.; Magnan, A.K.; Abd-Elgawad, A.; Cai, R.; Cifuentes-Jara, M.; Deconto, R.M.; Ghosh, T.; et al. Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Jacobs, J.M.; Cattaneo, L.R.; Sweet, W.; Mansfield, T. Recent and Future Outlooks for Nuisance Flooding Impacts on Roadways on the U.S. East Coast. Transp. Res. Rec. J. Transp. Res. Board 2018, 2672, 1–10. [Google Scholar] [CrossRef]
- Roberts, F.A., III. After Hurricane Ida Destroyed 1 in 4 Grand Isle Buildings, Demolition is on ’Path to Recovery’ Times-Picayune. 2021. Available online: https://www.nola.com/news/environment/article_921438d2-52cc-11ec-9fa7-1ff714e37988.html (accessed on 1 February 2022).
- Mogul, R. Philippines’ Typhoon Rai Death Toll Rises Further as Areas Remain Cut Off from Help. CNN. 2021. Available online: https://www.cnn.com/2021/12/21/asia/typhoon-rai-philippines-deaths-intl-hnk/index.html (accessed on 1 February 2022).
- Kulp, S.A.; Strauss, B.H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 2019, 10, 4844. [Google Scholar] [CrossRef] [Green Version]
- Climate Central. Report: Flooded Future: Global Vulnerability to Sea Level Rise Worse than Previously Understood; Princeton, NJ, USA, 2019; pp. 1–10. Available online: https://www.climatecentral.org/news/report-flooded-future-global-vulnerability-to-sea-level-rise-worse-than-previously-understood (accessed on 1 February 2022).
- Kossin, J.P.; Knapp, K.R.; Olander, T.L.; Velden, C.S. Global increase in major tropical cyclone exceedance probability over the past four decades. Proc. Natl. Acad. Sci. USA 2020, 117, 11975–11980. [Google Scholar] [CrossRef]
- Villarini, G.; Vecchi, G. Projected Increases in North Atlantic Tropical Cyclone Intensity from CMIP5 Models. J. Clim. 2013, 26, 3231–3240. [Google Scholar] [CrossRef]
- Emanuel, K.A. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA 2013, 110, 12219–12224. [Google Scholar] [CrossRef] [Green Version]
- Knutson, T.R. Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J. Clim. 2015, 28, 7203–7224. [Google Scholar] [CrossRef] [Green Version]
- Vecchi, G.A.; Knutson, T.R. On estimates of historical North Atlantic topical cyclone activity. J. Clim. 2008, 21, 3580–3600. [Google Scholar] [CrossRef]
- Bengtsson, L.; Hodges, K.I.; Roeckner, E. Storm Tracks and Climate Change. J. Clim. 2006, 19, 3518–3543. [Google Scholar] [CrossRef] [Green Version]
- Garner, A.J.; Mann, M.E.; Emanuel, K.A.; Kopp, R.E.; Lin, N.; Alley, R.B.; Horton, B.P.; DeConto, R.M.; Donnelly, J.P.; Pollard, D. Impact of climate change on New York City’s coastal flood hazard: Increasing flood heights from the preindustrial to 2300 CE. Proc. Natl. Acad. Sci. USA 2017, 114, 11861–11866. [Google Scholar] [CrossRef] [Green Version]
- Kossin, J.P. A global slowdown of tropical-cyclone translation speed. Nature 2018, 558, 104–107. [Google Scholar] [CrossRef]
- Miner, M.D.; Kulp, M.A.; Fitzgerald, D.M.; Georgiou, I.Y. Hurricane-associated ebb-tidal delta sediment dynamics. Geology 2009, 37, 851–854. [Google Scholar] [CrossRef]
- Woods Hole Group. Great marsh Resiliency Project Wave Analysis and Numerical Modeling; Woods Hole Group: Falmouth, UK, 2017; p. 43. [Google Scholar]
- Jarrett, J.T. Tidal Prism—Inlet Area Relationships. GITI Report No. 3; US Army Corps of Engineers, Waterways Experiment Station: Vicksburg, MS, USA, 1976; 54. [Google Scholar]
- O’Brien, M.P. Estuary Tidal Prisms Related to Entrance Areas. Civ. Eng. 1931, 1, 737–738. [Google Scholar]
- O’Brien, M.P. Equilibrium Flow Areas of Inlets on Sandy Coasts. J. Waterw. Harb. Div. Am. Soc. Civ. Eng. 1969, 95, 43–52. [Google Scholar] [CrossRef]
- Oertel, G.F. Sediment transport of estuary entrance shoals and the formation of swash platforms. J. Sediment. Res. 1972, 42, 858–863. [Google Scholar]
- Hine, A.C. Bedform distribution and migration patterns on tidal deltas in the Chatham Harbor Estuary, Cape Cod, Massachusetts; Cronin, L.E., Ed.; Academic Press: New York, NY, USA, 1975; Volume 2, pp. 235–252. [Google Scholar]
- FitzGerald, D.M.; Nummedal, D.; Kana, T.W. Sand circulation pattern of Price Inlet. In Proceedings of the 15th Conference on Coastal Engineering, Honolulu, HI, USA, 29 January 1976; pp. 1868–1880. [Google Scholar]
- Nummedal, D.; Penland, S. Sediment Dispersal in Norderneyer Seegat, West Germany. In Holocene Marine Sedimentation in the North Sea Basin; Blackwell Publishing Ltd.: Oxford, UK, 1981; Volume 5, pp. 187–210. [Google Scholar] [CrossRef]
- Sha, L. Sand transport patterns in the ebb-tidal delta off Texel Inlet, Wadden Sea, The Netherlands. Mar. Geol. 1989, 86, 137–154. [Google Scholar] [CrossRef]
- Ridderinkhof, W.; De Swart, H.E.; Van Der Vegt, M.; Hoekstra, P. Modeling the growth and migration of sandy shoals on ebb-tidal deltas. J. Geophys. Res. Earth Surf. 2016, 121, 1351–1372. [Google Scholar] [CrossRef] [Green Version]
- Elias, E.P.L.; van der Spek, A.J.F. Dynamic preservation of Texel Inlet, the Netherlands: Understanding the interaction of an ebb-tidal delta with its adjacent coast. Geol. En Mijnb. 2017, 96, 293–317. [Google Scholar] [CrossRef] [Green Version]
- Bruun, P.; Gerritsen, F. Natural By-Passing of Sand at Coastal Inlets. J. Waterw. Harb. Div. 1959, 85, 75–107. [Google Scholar] [CrossRef]
- FitzGerald, D.M. Sediment Bypassing at Mixed Energy Tidal Inlets. In Proceedings of the 18th International Conference on Coastal Engineering 1982, Boston, MA, USA, 29 January 1982; pp. 1094–1118. [Google Scholar]
- FitzGerald, D.M.; Kraus, N.C.; Hands, E.B. Natural Mechanisms of Sediment Bypassing at Tidal Inlets, ERDC/CHL-IV-A, U.S. Army Engineer Research and Development Center, Vicksburg, MS. 2001, p. 11. Available online: https://erdc-library.erdc.dren.mil/jspui/bitstream/11681/1934/1/CHETN-IV-30.pdf (accessed on 1 May 2022).
- Mass, G.I.S.; Massachusetts Coastal Zone Management. Mass Coastal Erosion Viewer. 2021. Available online: https://www.arcgis.com/apps/MapSeries/index.html?appid=80fc0c7ef5e443a8a5bc58096d2b3dc0 (accessed on 1 February 2022).
- Sakib, M.M.; Hughes, Z.; FitzGerald, D.M.; Georgiou, I.Y. Impact of Storm-induced Sediment Transport and Depositional Processes in Essex Tidal Inlet and Backbarrier Bay System. In Proceedings of the American Geophysical Union 2021 Fall Meeting, New Orleans, LA, USA, 15 December 2021. [Google Scholar]
- Loh, W.-Y. Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 14–23. [Google Scholar] [CrossRef]
- BEEODA (Boston Education in Earth Observation Data Analysis), 2020. GitHub Repository. Available online: https://github.com/beeoda (accessed on 1 February 2022).
- Planet Labs PBC. Planet Application Program Interface: In Space for Life on Earth, San Francisco, CA. 2018. Available online: https://api.planet.com (accessed on 1 February 2022).
- Jensen, J.R. Normalized difference vegetation index. In Introductory Digital Image Processing; Prentice-Hall: Hoboken, NJ, USA, 1986; Volume 17, p. 379. [Google Scholar]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Badjana, H.M.; Olofsson, P.; Woodcock, C.E.; Helmschrot, J.; Wala, K.; Akpagana, K. Mapping and estimating land change between 2001 and 2013 in aheterogeneous landscape in West Africa: Loss of forestlands and capacity building opportunities. Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 15–23. [Google Scholar]
- Lesser, G.; Roelvink, J.; van Kester, J.; Stelling, G. Development and validation of a three-dimensional morphological model. Coast. Eng. 2004, 51, 883–915. [Google Scholar] [CrossRef]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res. Oceans 1999, 104, 7649–7666. [Google Scholar] [CrossRef] [Green Version]
- USACE. North Atlantic Coast Comprehensive Study: Resilient Adaptation to Increasing Risk. 2015. Available online: https://www.nad.usace.army.mil/Portals/40/docs/NACCS/NACCS_main_report.pdf (accessed on 31 January 2015).
- Hayes, M.O. Barrier island morphologys a functionof tidal and wave regime. In Barrier Islands from the Gulf of St. Lawrence to the Gulf of Mexico; Leatherman, S.P., Ed.; Academic Press: New York, NY, USA, 1979; pp. 1–28. [Google Scholar]
- Hein, C.J.; FitzGerald, D.M.; Carruthers, E.A.; Stone, B.D.; Gontz, A.M.; Barnhardt, W.A. Refining the model of bar-rier island formation along a paraglacial coast in the Gulf of Maine. Mar. Geol. 2012, 307–310, 40–57. [Google Scholar] [CrossRef]
- FitzGerald, D.M.; van Heteren, S. Classification of paraglacial barrier systems: Coastal New England, USA. Sedimentology 1999, 46, 1083–1108. [Google Scholar] [CrossRef]
- FitzGerald, D.M. Origin and stability if tidal inlets in Massachusetts. In Formation and Evolution of Multiple Tidal Inlet Systems; Aubrey, D.J., Giese, G.S., Eds.; AGU: Washington, DC, USA, 1993; pp. 1–61. [Google Scholar]
- NOAA. Tide Levels. 2021. Available online: https://tidesandcurrents.noaa.gov/waterlevels.html?id=8443970&units=metric&bdate=20171226&edate=20180104&timezone=GMT&datum=MLLW&interval=6&action= (accessed on 1 February 2022).
- Vallino, J.J.; Hopkinson, C.S., Jr. Estimation of dispersion and characteristic mixing times in Plum Island Sound estuary. Estuar. Coast. Shelf Sci. 1998, 46, 333–350. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.B.; FitzGerald, D.M. Sediment transport patterns at the Essex River Inlet ebb tidal delta, Massachusetts, USA. J. Coast. Res. 1994, 10, 752–774. [Google Scholar]
- NOAA. Climate Normals for Boston Airport. 2013 normals.txt. Retrieved 2013-03-24. Available online: Ftp://ftp.ncdc.noaa.gov/pub/data/normals/1981-2010/products/station/USW00014739 (accessed on 1 February 2022).
- Li, H.; Brown, M.; Beck, T.; Frey, A.; Rosati, J.; Habel, M.; Winkelman, J.; O'Donnell, E.; Watts, I. Merrimack Estuary and Newburyport Harbor Sediment Management Studies; USACE Research and Development Center: Vicksburg, MS, USA, 2018; 129. [Google Scholar]
- FitzGerald, D.M.; Buynevich, I.; Davis, R.; Fenster, M. New England tidal inlets with special reference to riverine-associated inlet systems. Geomorphology 2002, 48, 179–208. [Google Scholar] [CrossRef]
- FitzGerald, D.M.; Rosen, P.S.; van Heteren, S. New England Barriers. In Geology of Holocene Barrier Island Systemsin; Davis, R.A., Ed.; Springer: Berlin, Germany, 1994; Chapter 8; pp. 305–394. [Google Scholar]
- Hein, C.J.; Fallon, A.R.; Rosen, P.; Hoagland, P.; Georgiou, I.Y.; Fitzgerald, D.M.; Morris, M.; Baker, S.; Marino, G.B.; Fitzsimons, G. Shoreline Dynamics Along a Developed River Mouth Barrier Island: Multi-Decadal Cycles of Erosion and Event-Driven Mitigation. Front. Earth Sci. 2019, 7, 103. [Google Scholar] [CrossRef]
- Dougherty, A.J. Deciphering the Origin and Evolution of a Paraglacial Barrier, Castle Neck, Massachusetts, Unpub. Master’s Thesis, Department of Earth Sciences, Boston University, Boston, MA, USA, 2002; p. 128. [Google Scholar]
- Barnhardt, W.A. (Ed.) Coastal Change along the Shore of Northeastern South Carolina—The South Carolina Coastal Erosion Study U.S. Geological Survey Circular 1339, 2009. p. 77. Available online: https://pubs.usgs.gov/circ/circ1339/ (accessed on 1 May 2022).
- Hein, C.J.; FitzGerald, D.M.; Barnhardt, W.A.; Stone, B.D. Onshore-offshore surficial geologic map of the Newburyport East and northern half of the Ipswich Quadrangles, Massachusetts, Massachusetts Geological Survey. In Geologic Map; GM 13-01, 3 sheets, ed.; Massachusetts Geological Survey: Amherst, MA, USA, 2013. [Google Scholar]
- Oldale, R.N.; Wommack, L.E.; Whitney, A.B. Evidence for a Postglacial Low Relative Sea-Level Stand in the Drowned Delta of the Merrimack River, Western Gulf of Maine. Quat. Res. 1983, 19, 325–336. [Google Scholar] [CrossRef]
- Hein, C.J.; FitzGerald, D.M.; Buynevich, I.V.; Van Heteren, S.; Kelley, J.T. Evolution of paraglacial coasts in response to changes in fluvial sediment supply. Geol. Soc. Lond. Spec. Publ. 2014, 388, 247–280. [Google Scholar] [CrossRef]
- WHG. Upper North Shore Dredge Purchase Feasibility Study Evaluating Alternatives to Support the Need for Dredging Services on the Upper North Shore of Massachusetts. Prepared for Merrimack Valley Planning Commission. 30 June 2019. Available online: https://www.townofnewbury.org/sites/g/files/vyhlif951/f/uploads/mvpc_north_shore_dredge_report_draft_7_8_2019.pdf (accessed on 1 May 2022).
- Fitzgerald, D.M.; Buynevich, I.V.; Fenster, M.S.; Kelley, J.T.; Belknap, D.F. Coarse-Grained Sediment Transport in Northern New England Estuaries: A Synthesis. In Coastal Systems and Continental Margins; Springer Science and Business Media LLC: Berlin, Germany, 2007; Volume 8, pp. 195–213. [Google Scholar]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Moore, M.V.; Pace, M.L.; Mather, J.R.; Murdoch, P.S.; Howarth, R.W.; Folt, C.L.; Chen, C.Y.; Hemond, H.F.; Flebbe, P.A.; Driscoll, C.T. Potential effects of climate change on freshwater ecosystems of the New England/Mid-Atlantic region. Hydrol. Processes 1997, 11, 925–947. [Google Scholar] [CrossRef]
- FitzGerald, D.M.; Hubbard, D.K.; Nummedal, D. Shoreline changes associated with tidal inlets along the South Carolina Coast. In Proceedings of the Coastal Zone’78, San Francisco, CA, USA, 14–16 March 1978; American Society of Civil Engineers: New York, NY, USA, 1978; pp. 1973–1994. [Google Scholar]
- Hein, C.J.; Fitzsimons, G.G.; Fitzgerald, D.M.; Fallon, A.R. Records of Migration and Ebb-Delta Breaching at Historic and Ancient Tidal Inlets along a River-Fed Paraglacial Barrier Island. J. Coast. Res. 2016, 75, 228–232. [Google Scholar] [CrossRef]
- FitzGerald, D.M. Shoreline erosional-depositional processes associated with tidal inlets. In Hydrodynamics and Sediment Dynamics of Tidal Inlets; Aubrey, D.G., Weishar, L., Eds.; Springer: New York, NY, USA, 1988; pp. 269–283. [Google Scholar]
- Fritzen, R.; Lang, V.; Gensini, V.A. Trends and variability of North American cool-season extratropical cyclones 1979–2019. Am. Meteorol. Soc. 2021, 60, 1319–1331. [Google Scholar] [CrossRef]
- FitzGerald, D.M.; Montello, T.M. Backbarrier and inlet sediment response to the breaching of Nauset Spit and formation of New Inlet, Cape Cod, MA. In Formation and Evolution of Multiple Tidal Inlet Systems; Aubrey, D.G., Giese, G.S., Eds.; AGI: Fresno, CA, USA, 1993; pp. 158–185. [Google Scholar]
- Finkelstein, K. Cape formation as a cause of erosion on adjacent shorelines. In Proceedings of the Coastal Zone ’83, San Diego, CA, USA, 14 June 1983; American Society of Civil Engineers: New York, NY, USA, 1983; pp. 620–640. [Google Scholar]
- Fenster, M.S.; Dolan, R.; Smith, J.J. Grain-size distributions and coastal morphodynamics along the southern Maryland and Virginia barrier islands. Sedimentology 2016, 63, 809–823. [Google Scholar] [CrossRef]
- Shawler, J.L.; Hein, C.J.; Obara, C.A.; Robbins, M.G.; Huot, S.; Fenster, M.S. The effect of coastal landform development on decadal-to millennial-scale longshore sediment fluxes: Evidence from the Holocene evolution of the central mid-Atlantic coast, USA. Quat. Sci. Rev. 2021, 267, 107096. [Google Scholar] [CrossRef]
- FitzGerald, D.M.; Penland, S.; Nummedal, D. Control of barrier island shape by inlet sediment bypassing: East Friesian Islands, West Germany. Mar. Geol. 1984, 60, 355–376. [Google Scholar] [CrossRef]
- Torres, J.; Kulp, M.; FitzGerald, D.M.; Georgiou, I.; Lepper, K. Geomorphic and temporal evolution of a Mississippi delta flanking barrier island: Grand Isle, LA. Mar. Geol. 2020, 430, 106341. [Google Scholar] [CrossRef]
- Gaudiano, D.J.; Kana, T.W. Shoal Bypassing in Mixed Energy Inlets: Geomorphic variable and empirical predictions for Nine South Carolina Inlets. J. Coast. Res. 2001, 17, 280–291. [Google Scholar]
- Naumann, M.; Lampe, R.; Hoffmann, G. Coastal evolution of a Holocene barrier spit (Bug peninsula/NW-Rügen) deduced from geological structure and relative sea-level. EG Quat. Sci. J. 2010, 58, 164–173. [Google Scholar] [CrossRef]
Year | Subaerial Spit Area (m2) | Spit Volume (m3 above Mean Sea Level) |
---|---|---|
2011 | 306,000 | 394,000 |
2014 | 212,000 | 296,000 |
2016 | 211,000 | 216,000 |
Approx. Total Volume Change (2011–2016) | −178,000 |
Year | Intertidal Area (m2) | Volume (m3) |
---|---|---|
2010 | 226,000 | 663,000 1, 644,000 1 |
2014 (post-Sandy) | 260,000 | 765,000 |
2016 | 294,000 | 838,000 |
Total Sand Volume Change (2010–2016) | 185,000 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
FitzGerald, D.M.; Hughes, Z.J.; Staro, A.; Hein, C.J.; Sakib, M.M.; Georgiou, I.Y.; Novak, A. Following the Sand Grains. J. Mar. Sci. Eng. 2022, 10, 631. https://doi.org/10.3390/jmse10050631
FitzGerald DM, Hughes ZJ, Staro A, Hein CJ, Sakib MM, Georgiou IY, Novak A. Following the Sand Grains. Journal of Marine Science and Engineering. 2022; 10(5):631. https://doi.org/10.3390/jmse10050631
Chicago/Turabian StyleFitzGerald, Duncan M., Zoe J. Hughes, Alice Staro, Christopher J. Hein, Md Mohiuddin Sakib, Ioannis Y. Georgiou, and Alyssa Novak. 2022. "Following the Sand Grains" Journal of Marine Science and Engineering 10, no. 5: 631. https://doi.org/10.3390/jmse10050631