Measuring Organization of Large Surficial Clasts in Heterogeneous Gravel Beach Sediments
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Conceptual Framework for Quantifying Organization in Heterogenous Gravel Beaches
3.2. Granulometric Analyses
3.3. Field Geomorphology and Photogrammetry
3.4. Processing and Analysis of Photogrammetric Data
3.5. Inferential Statistics
4. Results
4.1. Field and Laboratory Results
4.2. Derivation of the Organization Metric
4.3. Validation of the Organization Metric
4.4. Relationship between OM and Clast Angle
5. Case Study: Use of OM to Quantify the Long-Term Impact of Beach Washing
- Mz in surficial sediments at unwashed sites should be finer than at O/P washed sites because flushing associated with HP/HW washing would have removed much of the fine fraction.
- The proportion of gravel/cobble therefore should be greater, and the proportion of finer sediments would be lesser, than at unwashed sites.
- Mz in the surficial 5-cm horizon should be coarser than in deeper horizons due to that same flushing of fine sediments; and
- The proportion of silt/clay should be lower at all horizons at O/P washed sites than at unwashed sites.
- 5.
- Because washing should not affect the large clasts, abar should be similar.
- 6.
- zbar and σz should be greater than at unwashed sites.
- 7.
- OM should be lower than at unwashed sites.
6. Discussion
6.1. Utility of an Improved Organization Metric
6.2. New Insights into Sedimentologic Structure of Heterogenous Gravel Beaches in Prince William Sound
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wentworth, C.K.A. A scale of grade and class terms of clastic sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Hayes, M.O.; Michel, J.; Noe, D.C. Factors controlling initial deposition and long-term fate of spilled oil on gravel beaches. In Proceedings of the International Oil Spill Conference, San Diego, CA, USA, 1 March 1991; American Petroleum Institute, Allen Press: Lawrence, Kanas, 1991; Volume 1991, pp. 453–460. [Google Scholar] [CrossRef]
- Jennings, R.; Shulmeister, J. A field based classification scheme for gravel beaches. Mar. Geol. 2002, 186, 211–228. [Google Scholar] [CrossRef]
- Mason, T.; Coates, T.T. Sediment transport processes on mixed beaches: A review for shoreline management. J. Coast. Res. 2001, 17, 645–657. Available online: https://www.jstor.org/stable/4300216 (accessed on 7 April 2022).
- Hayes, M.O.; Michel, J.; Betenbaugh, D.V. The intermittently exposed, coarse-grained gravel beaches of Prince William Sound, Alaska: Comparison with open-ocean gravel beaches. J. Coast. Res. 2010, 26, 4–30. [Google Scholar] [CrossRef]
- Isla, F.I. Overpassing and armouring phenomena on gravel beaches. Mar. Geol. 1993, 110, 369–376. [Google Scholar] [CrossRef]
- Kirk, R.M. Mixed sand and gravel beaches: Morphology, processes and sediments. Prog. Phys. Geogr. 1980, 4, 189–210. [Google Scholar] [CrossRef]
- Horn, D.P.; Walton, S.M. Spatial and temporal variations of sediment size on a mixed sand and gravel beach. Sediment. Geol. 2007, 202, 509–528. [Google Scholar] [CrossRef]
- Van Wellen, E.; Chadwick, A.J.; Mason, T. A review and assessment of longshore sediment transport equations for coarse-grained beaches. Coast. Eng. 2000, 40, 243–275. [Google Scholar] [CrossRef]
- Hein, C.J.; FitzGerald, D.M.; Buynevich, I.V.; Van Heteren, S.; Kelley, J.T. Evolution of paraglacial coasts in response to changes in fluvial sediment supply. Geol. Soc. Lond. Spec. Publ. 2014, 388, 247–280. [Google Scholar] [CrossRef]
- Carter, R.W.; Rihan, C.L. Shell and pebble pavements on beaches: Examples from the north coast of Ireland. Catena 1978, 5, 365–374. [Google Scholar] [CrossRef]
- White, W.R.; Day, T.J. Transport of graded gravel bed material. In Gravel-Bed Rivers: Fluvial Processes, Engineering and Management; Hey, R.D., Bathurst, J.C., Thorne, C.R., Eds.; John Wiley and Sons: New York, NY, USA, 1982; pp. 181–223. [Google Scholar]
- Carter, R.W.G.; Orford, J.D. Coarse clastic barrier beaches: A discussion of the distinctive dynamic and morpho-sedimentary characteristics. Mar. Geol. 1984, 60, 377–389. [Google Scholar] [CrossRef]
- Petrov, V.A. The differentiation of material on gravel beaches. Oceanology 1989, 29, 208–212. [Google Scholar]
- Hayes, M.O.; Michel, J. Factors determining the long-term persistence of Exxon Valdez oil in gravel beaches. Mar. Poll. Bull. 1999, 38, 92–101. [Google Scholar] [CrossRef]
- Lees, D.C.; Driskell, W.B. Investigations on Shallow Subtidal Habitats and Assemblages in Lower Cook Inlet; University of Alaska Institute of Marine Sciences, Fairbanks, National Oceanic and Atmospheric Administration, Outer Continental Shelf Environmental Assessment Program: Juneau, AK, USA, 1980; p. 115, +Appendices A-P. QH541.5. S3 L44, University of Alaska Fairbanks. [Google Scholar]
- Speight, M.R.; Henderson, P.A. Marine Ecology: Concepts and Applications; John Wiley & Sons: Oxford, UK, 2013; p. 276. [Google Scholar]
- Lees, D.C.; Driskell, W.B. Assessment of Bivalve Recovery on Treated Mixed-Soft Beaches in Prince William Sound; Dep’t of Commerce, National Oceanic & Atmospheric Administration, National Marine Fisheries Service, Office of Oil Spill Damage & Restoration and Exxon Valdez Oil Spill Trustee Council: Anchorage, AK, USA, 2007; p. 121, GC1552.P75E993 2004, RP04057, ARLIS. [Google Scholar]
- Nikora, V.I.; Goring, D.G.; Biggs, B.J.F. On gravel-bed roughness characterization. Water Resour. Res. 1998, 34, 517–527. [Google Scholar] [CrossRef]
- Aberle, J.; Nikora, V. Statistical properties of armored gravel bed surfaces. Water Resour. Res. 2006, 42, 1–11. [Google Scholar] [CrossRef]
- Wilson, F.H.; Hults, C.P. Geology of the Prince William Sound and Kenai Peninsula region, Alaska. In Scientific Investigations Map 3110; U.S. Geol. Survey: Reston, VA, USA, 2012. [Google Scholar]
- Wang, X.; Chao, Y.; Zhang, H.; Farrara, J.; Li, Z.; Jin, X.; Park, K.; Colas, F.; McWilliams, J.C.; Paternostro, C.; et al. Modeling tides and their influence on the circulation in Prince William Sound, Alaska. Cont. Shelf Res. 2013, 63, S126–S137. [Google Scholar] [CrossRef]
- Hayes, M.O.; Michel, J. A primer for response to oil spills on gravel beaches. In Proceedings of the 2001 Intern’l Oil Spill Conference, Washington, DC, USA, 1 March 2001; American Petroleum Institute, Allen Press: Lawrence, Kanas, 2001; pp. 1275–1279. [Google Scholar] [CrossRef]
- Riehle, J.R.; Fleming, M.D.; Molnia, B.F.; Dover, J.H.; Kelley, J.S.; Miller, M.L.; Nokleberg, W.J.; Plafker, G.; Till, A.B. Digital Shaded-Relief Image of Alaska; US Geological Survey: Washington, DC, USA, 1997; Volume 92, p. C4004. [Google Scholar]
- Plafker, G. Tectonics of the March 27, 1964, Alaska Earthquake; US Geological Survey Profess. Papers; US Gov’t Print. Off.: Washington, DC, USA, 1969. [Google Scholar]
- Neff, J.M.; Owens, E.H.; Stoker, S.W.; McCormick, D.M. Shoreline oiling conditions in Prince William Sound following the Exxon Valdez oil spill. In Exxon Valdez Oil Spill: Fate and Effects in Alaskan Waters; Wells, P.G., Butler, J.N., Hughes, J.S., Eds.; ASTM International: West Conshohocken, PA, USA, 1995; pp. 312–346. [Google Scholar] [CrossRef]
- Owens, E.H. Shoreline conditions following the “Exxon Valdez” oil spill as of fall 1990. In Proceedings of the 14th Arctic and Marine Oil Spill Programme (AMOP) Technical Seminar, Environment Canada, Ottawa, ON, Canada, 12–14 June 1991; Woodward-Clyde: San Francisco, CA, USA; pp. 579–606. [Google Scholar]
- Alaska Department of Natural Resources (ADNR). Shoreline Oiling-PWS Fall/89-Spring/90; ADNR Alaska State Geospatial Clearinghouse: Anchorage, AK, USA, 1996. Available online: http://dnr.alaska.gov/mdfiles/evos_oiling_pws_1989_1990.html (accessed on 7 April 2022).
- Wolman, M.G. A method of sampling coarse river-bed material. Trans. Am. Geophys. Union 1954, 35, 951–956. [Google Scholar] [CrossRef]
- Hey, R.D.; Thorne, C.R. Accuracy of surface samples from gravel bed material. J. Hydrol. Eng. 1983, 109, 842–851. [Google Scholar] [CrossRef]
- Smith, M.W. Roughness in the Earth Sciences. Earth-Sci. Rev. 2014, 136, 202–225. [Google Scholar] [CrossRef]
- Marion, A.; Tait, S.J.; McEwan, I.K. Analysis of small-scale gravel bed topography during armoring. Water Resour. Res. 2003, 39, 1334. [Google Scholar] [CrossRef]
- Folk, R.L.; Ward, W.C. Brazos River bar: A study in the significance of grain size parameters. J. Sed. Petrol. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Lees, D.C.; Hein, C.J.; FitzGerald, D.M.; Carruthers, E.A. Re-Assessment of Bivalve Recovery on Washed Heterogeneous Beaches in Prince William Sound–Draft Report; Dep’t of Commerce, NOAA, National Marine Fisheries Service, Office of Oil Spill Damage & Restoration and Exxon Valdez Oil Spill Trustee Council: Anchorage, AK, USA, 2013; p. 150. [Google Scholar]
- Blank, S.; Seiter, C.; Bruce, P. Resampling Stats in Excel, 2nd ed.; Resampling Stats, Inc.: Arlington, VA, USA, 2001; p. 172. [Google Scholar]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Prentice Hall, Inc.: Englewood Cliffs, NJ, USA, 2010; p. 944. [Google Scholar]
- Mearns, A.J. Exxon Valdez Shoreline Treatment and Operations: Implications for Response, Assessment, Monitoring, and Research. In Proceedings of the Exxon Valdez Oil Spill Symposium, Anchorage, AK, USA, 24 March 1989; Rice, S.D., Spies, R.B., Wolfe, D.A., Wright, B.A., Eds.; Amer, Fish. Soc.: Anchorage, AK, USA, 1996; pp. 309–328, ISBN 0-913235-95-4. [Google Scholar]
- Alaska Department of Environmental Conservation (ADEC). Impact Maps and Summary Reports of Shoreline Surveys of the Valdez Spill Site: Prince William Sound, 11 September–19 October 1989; Final Report; ADEC Oil Spill Response Center: Valdez, AK, USA, 1989. [Google Scholar]
- Naden, P. An erosion criterion for gravel-bed rivers. Earth Surf. Proc. Land. 1987, 12, 83–93. [Google Scholar] [CrossRef]
- Brasington, J.; Vericat, D.; Rychkov, I. Modeling river bed morphology, roughness, and surface sedimentology using high resolution terrestrial laser scanning. Water Resour. Res. 2012, 48, 11519. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.H.; Wang, C.K. Multiscale geostatistical estimation of gravel-bed roughness from terrestrial and airborne laser scanning. IEEE Geosci. Remote Sens. Lett. 2012, 9, 1084–1088. [Google Scholar] [CrossRef]
- Qin, J.; Ng, S.L. Estimation of effective roughness for water-worked gravel surfaces. J. Hydraul. Eng. 2012, 138, 923–934. [Google Scholar] [CrossRef]
- Butler, J.; Lane, S.; Chandler, J. Characterization of the structure of river-bed gravels using two-dimensional fractal analysis. J. Int. Assoc. Math. Geol. 2001, 33, 301–330. [Google Scholar] [CrossRef]
- Newell, R.C.; Seiderer, L.; Hitchcock, D.R. The impact of dredging works in coastal waters: A review of the sensitivity to disturbances and subsequent recovery of biological resources in the seabed. Oceanogr. Mar. Biol. Annu. Rev. 1998, 36, 809–818. [Google Scholar]
- Collie, J.S.; Escanero, G.A.; Valentine, P. Effects of bottom fishing on the benthic megafauna of Georges Bank. Mar. Ecol. Prog. Ser. 1997, 155, 159–172. [Google Scholar] [CrossRef] [Green Version]
- Holme, N. The bottom fauna of the English Channel. J. Mar. Biol. Assoc. U. K. 1961, 41, 397–461. [Google Scholar] [CrossRef] [Green Version]
- Holme, N. The bottom fauna of the English Channel. Part II. J. Mar. Biol. Assoc. U. K. 1966, 46, 401–493. [Google Scholar] [CrossRef]
- Bullock, J.; Aronson, J.; Newton, A.; Pywell, R.; Benayas, J. Restoration of ecosystem services and biodiversity: Conflicts and opportunities. Trends Ecol. Evol. 2011, 26, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Fegley, S.; Michel, J. Estimates of losses and recovery of ecosystem services for oiled beaches lack clarity and ecological realism. Ecosphere 2021, 12, e03763. [Google Scholar] [CrossRef]
- Hodge, R.; Brasington, J.; Richards, K. In-situ characterization of grain-scale fluvial morphology using Terrestrial Laser Scanning. Earth Surf. Proc. Land. 2009, 34, 954–968. [Google Scholar] [CrossRef]
- Matsumoto, H.; Young, A. Automated cobble mapping using ground-based mobile LiDAR and machine learning on a southern California beach. Remote Sens. 2018, 10, 1253. [Google Scholar] [CrossRef] [Green Version]
- Middelburg, B. Application of Structure from Motion and a Hand-Held Lidar System to Monitor Erosion at Outcrops. MSc Thesis, Report GIRS-2018-22. Wageningen University and Research Centre, Wageningen, The Netherlands, 2018; p. 39. [Google Scholar]
- Pearson, E.; Smith, M.W.; Klaar, M.J.; Brown, L.E. Can high resolution 3D topographic surveys provide reliable grain size estimates in gravel bed rivers? Geomorphology 2017, 293, 143–155. [Google Scholar] [CrossRef]
- Hey, R.D. Flow-resistance in gravel-bed rivers. J. Hydrol. Eng. 1979, 105, 365–379. [Google Scholar] [CrossRef]
- Bluck, B.J. Sedimentation of beach gravels: Examples from South Wales. J. Sed. Petrol. 1967, 37, 128–156. [Google Scholar] [CrossRef]
- NRC (National Research Council), Committee on the Alaska Earthquake of the Division of Earth Sciences. The Great Alaska Earthquake of 1964: Oceanography and Coastal Engineering; Nat’l Acad. Sci.: Washington, DC, USA, 1972; ISBN 0309016053. [Google Scholar]
Term | Definition | Units |
---|---|---|
a | Longest axis (length) of an individual surficial clast | cm |
b | Intermediate axis (width) of an individual surficial clast | cm |
c | Shortest axis (thickness) of an individual surficial clast | cm |
abar | Mean length of a-axis (longest axis, corresponding to clast length) of measured larger clasts in the surficial fabric in a given photoplot (based on Wolman Pebble Counts). | cm |
amax | Maximum length of a-axis among all measured clasts in the surficial fabric in a given photoplot (based on Wolman counts) | cm |
bbar | Mean length of b-axis (intermediate axis, corresponding to clast width) of all measured clasts in the surficial fabric in a given photoplot (based on Wolman counts) | cm |
cbar | Mean length of c-axis (short axis, corresponding to clast depth) of all measured clasts in the surficial fabric in a given photoplot (based on Wolman counts) | cm |
DTM | Digital Terrain Model, in this case depicting a three-dimensional (3-D) surface elevation matrix based on photogrammetry | None |
Mz | Mean grain size of bulk sediment sample, calculated as (D16 + D50 + D84)/3, where D16, D50, D84 represent the diameter, in phi, of 16, 50, and 84% of the cumulative frequency of the grain sizes in a sample as granulometric measurements. | Phi or mm |
σz | Standard deviation of all z values for each DTM; provides an indication of the variability in z values | cm |
x | Location of a grid cell along the x-axis of the 3-D matrix in a given DTM | mm |
y | Location of a grid cell point along the y-axis of the 3-D matrix in a given DTM | mm |
z | Height measurement (i.e., elevation above an arbitrary zero plane) of a 1-mm2 grid cell within the 3-D matrix of a given DTM | mm |
zbar | Mean elevation of all grid cells in the 3-D matrix for each DTM; describes the variability of z for each photoplot | cm |
Photoplot Designation | Treatment Status | Approximate Tidal Elevation (m MLLW) | abar (cm) | zbar (cm) | σz (cm) | OM |
---|---|---|---|---|---|---|
DI66 | Washed (observed) | 0.03 | 5.7 | 4.69 | 1.1 | 5.24 |
DI67A | Washed (observed) | −0.3 | 14.7 | 3.09 | 1.79 | 8.19 |
DI67B | Washed (observed) | 0.61 | 17.6 | 13.09 | 6.09 | 2.89 |
IN32 | Washed (observed) | 0.43 | 19.3 | 4.79 | 1.38 | 14.06 |
KN103A | Washed (presumed) | 0.34 | 5.6 | 3.75 | 0.82 | 6.77 |
KN103B | Washed (presumed) | 0.09 | 7.6 | 3.48 | 1.17 | 6.52 |
KN104-1 | Washed (presumed) | −0.18 | 8 | 3.05 | 1.03 | 7.75 |
KN104-2 | Washed (presumed) | −0.18 | 8.7 | 3.6 | 1.68 | 5.20 |
KN118-1 | Washed (presumed) | 0.21 | 4.8 | 2.95 | 0.83 | 5.77 |
KN118-2 | Washed (presumed) | 0.21 | 5.3 | 5.05 | 0.84 | 6.37 |
KN106A-1 | Washed (presumed) | −0.09 | 7.4 | 2.55 | 1.13 | 6.52 |
KN106A-2 | Washed (presumed) | −0.09 | 9.6 | 3.87 | 1.41 | 6.81 |
KN106B-1 | Washed (presumed) | −0.15 | 10.5 | 3.11 | 1.59 | 6.60 |
KN106B-2 | Washed (presumed) | −0.15 | 8 | 2.25 | 0.69 | 11.53 |
KN502-1 | Washed (presumed) | 0.21 | 10.5 | 2.76 | 1.26 | 8.37 |
KN502-2 | Washed (presumed) | 0.21 | 11 | 3.83 | 1.43 | 7.67 |
KN130-1 | Washed (presumed) | −0.52 | 6.7 | 3.61 | 1.37 | 4.88 |
KN130-2 | Washed (presumed) | −0.52 | 9.6 | 6.86 | 4.21 | 2.27 |
KN131A-1 | Washed (presumed) | 0.3 | 5.2 | 2 | 0.98 | 5.25 |
KN131A-2 | Washed (presumed) | 0.3 | 7.6 | 6.36 | 2.7 | 2.81 |
KN131B-1 | Washed (presumed) | −0.64 | 6.8 | 5.91 | 1.43 | 4.75 |
KN131B-2 | Washed (presumed) | −0.64 | 5.4 | 2.97 | 1.13 | 4.81 |
KN133-1 | Washed (presumed) | 0 | 8.3 | 6.6 | 2.2 | 3.78 |
KN133-2 | Washed (presumed) | 0 | 7.9 | 3.94 | 1.54 | 5.11 |
KN507 | Unwashed | −0.21 | 7 | 3.58 | 1.24 | 6.20 |
CH9 | Washed (presumed) | −0.15 | 6.9 | 4.16 | 1.47 | 4.66 |
KN5-1 | Washed (presumed) | 0.43 | 16 | 9.98 | 3.05 | 5.25 |
KN5-2 | Washed (presumed) | 0.43 | 10.9 | 4.3 | 1.87 | 5.84 |
KN208-1 | Unwashed | −0.06 | 5.7 | 2.35 | 0.99 | 5.78 |
KN208-2 | Unwashed | −0.06 | 8.7 | 4.15 | 1.73 | 5.03 |
KN553 | Unwashed | 0.94 | 9.4 | 3.06 | 1.17 | 8.05 |
CH7A-1 | Unwashed | −0.15 | 7.1 | 3.37 | 0.7 | 10.21 |
CH7A-2- | Unwashed | −0.15 | 11.6 | 2.98 | 0.94 | 12.37 |
CH7B-1 | Unwashed | −0.4 | 16.6 | 7.19 | 2.53 | 6.54 |
CH7B-2 | Unwashed | −0.4 | 12.6 | 3.72 | 1.2 | 10.54 |
KN554A | Unwashed | −0.21 | 10.6 | 5.05 | 1.67 | 6.33 |
KN554B-1 | Unwashed | 0 | 12.9 | 4.58 | 1.44 | 8.97 |
KN554B-2 | Unwashed | 0 | 7 | 2.56 | 0.72 | 9.69 |
SL1-1 | Unwashed | 0.24 | 7.5 | 2.87 | 0.87 | 8.62 |
SL1-2 | Unwashed | 0.24 | 9.8 | 4.31 | 1.68 | 5.83 |
KN575-1 | Unwashed | 0.6 | 6.3 | 2.23 | 0.93 | 6.75 |
KN575-2 | Unwashed | 0.6 | 9.5 | 5.24 | 1.58 | 5.97 |
FL4A | Washed (presumed) | −0.3 | 11.1 | 6.18 | 3.26 | 3.39 |
FL4B-1 | Washed (presumed) | 0.06 | 12 | 6.7 | 2.09 | 5.74 |
FL4B-2 | Washed (presumed) | 0.06 | 4.8 | 4.87 | 0.52 | 9.26 |
FL3A-1 | Unwashed | −0.3 | 6.3 | 5.37 | 0.79 | 7.87 |
FL3A-2 | Unwashed | −0.3 | 8.2 | 3.94 | 1.15 | 7.13 |
FL3B-1 | Unwashed | −0.55 | 11.2 | 6.06 | 1.59 | 7.09 |
FL3B-2 | Unwashed | −0.55 | 6.6 | 5.11 | 1.1 | 5.94 |
FL3C-1 | Unwashed | 0.27 | 9.9 | 5.85 | 1.17 | 8.44 |
FL3C-2 | Unwashed | 0.27 | 11 | 5.75 | 2.28 | 4.82 |
EV16-1 | Washed (presumed) | 0.18 | 8.3 | 4.24 | 1.02 | 8.12 |
EV16-2 | Washed (presumed) | 0.18 | 10.9 | 6.65 | 1.6 | 6.85 |
EV21-1 | Washed (observed) | 0.09 | 5.5 | 1.66 | 0.56 | 9.79 |
EV21-2 | Washed (observed) | 0.09 | 5.3 | 2.1 | 0.61 | 8.62 |
EV8-1 | Unwashed | −0.03 | 6.9 | 3.65 | 0.81 | 8.56 |
EV8-2 | Unwashed | −0.03 | 6.7 | 4.71 | 1.02 | 6.51 |
EV70-1 | Unwashed | 0.21 | 10.4 | 3.76 | 1.3 | 8.00 |
EV70-2 | Unwashed | 0.21 | 11.5 | 7.88 | 1.93 | 5.97 |
LA16-1 | Washed (observed) | 0.03 | 13.5 | 6.7 | 1.73 | 7.78 |
LA16-2 | Washed (observed) | 0.03 | 12.4 | 5.34 | 1.96 | 6.35 |
LA18-1 | Washed (observed) | 0.08 | 12 | 4.68 | 2.31 | 4.14 |
LA18-2 | Washed (observed) | 0.08 | 6.6 | 3.45 | 1.06 | 11.30 |
Mean ± variance | 0.03 ± 0.34 a,* | 9.2 ± 0.4 b | 4.51 ± 0.25 b | 1.51 ± 0.11 b | 6.89 ± 2.30 a |
Variable | Upper | Middle | Lower | p, 2-Tailed Resampling ANOVA |
---|---|---|---|---|
Mz (mm) | 14.57 ± 10.09 | 9.88 ± 6.73 | 10.71 ± 8.07 | 0.024 |
Gravel (%) | 79.8 ± 11.4 | 72.9 ± 12.3 | 73.2 ± 17.9 | 0.040 |
Sand (%) | 17.2 ± 9.9 | 23.1 ± 9.9 | 20.1 ± 11.2 | 0.081 |
Silt/Clay (%) | 3.0 ± 3.1 | 4.0 ± 6.0 | 6.7 ± 14.9 | 0.191 |
Plot Clast Size | Coarse abar (cm) | Fine |
---|---|---|
Mean ± S.E. | 10.2 ± 0.6 | 7.9 ± 0.5 |
p * (coarse v. fine) | <<0.0001 | |
OM | ||
Mean ± S.E. | 6.3 ± 0.5 | 7.3 ± 0.4 |
p * (coarse v. fine) | 0.014 |
Variable/Site | KN208-1 | KN208-2 | KN5-1 | KN5-2 | Mean ± S.D. |
---|---|---|---|---|---|
abar (cm) | 5.71 | 8.69 | 16.00 | 10.89 | 10.32 ± 4.34 |
Pre-disturbance zbar (cm) | 2.35 | 4.15 | 9.98 | 4.30 | 5.19 ± 3.31 |
Post-disturbance zbar (cm) | 5.26 | 8.04 | 10.54 | 8.27 | 8.03 ± 2.16 |
% Change in zbar | 124% | 94% | 6% | 92% | 79% ± 51 |
Pre-disturbance σz (cm) | 0.99 | 1.73 | 3.05 | 1.87 | 1.91 ± 0.85 |
Post-disturbance σz (cm) | 1.63 | 3.49 | 3.95 | 2.10 | 2.79 ± 1.10 |
% Change in σz | 65% | 102% | 30% | 13% | 52% ± 40 |
Pre-disturbance OM | 5.78 | 5.03 | 5.84 | 5.25 | 1.91 ± 0.85 |
Post-disturbance OM | 3.50 | 2.49 | 5.17 | 4.07 | 2.79 ± 1.10 |
% Change OM | 39% | 50% | 11% | 22% | 31% ± 17 |
Variable | Upper | Middle | Lower | 2-Tailed Resampling ANOVA |
---|---|---|---|---|
Mz (mm) | ||||
Unwashed | 9.00 ± 0.95 | 9.72 ± 1.55 | 7.87 ± 1.14 | 0.35 |
Observed/presumed washed | 18.21 ± 2.40 | 10.07 ± 1.55 | 12.43 ± 1.99 | 0.014 |
Difference (p) * | 0.0076 | 0.49 | 0.05 | |
Gravel (%) | ||||
Unwashed | 73.9 ± 2.3 | 70.3 ± 4.3 | 63.6 ± 6.7 | 0.16 |
Observed/presumed washed | 83.0 ± 2.36 | 72.5 ± 2.8 | 75.4 ± 3.4 | 0.036 |
Difference (p) * | 0.004 | 0.88 | 0.25 | |
Sand (%) | ||||
Unwashed | 23.6 ± 3.7 | 21.0 ± 1.7 | 18.5 ± 2.1 | 0.22 |
Observed/presumed washed | 15.6 ± 2.3 | 24.7 ± 2.4 | 20.9 ± 2.8 | 0.061 |
Difference (p) * | 0.06 | 0.28 | 0.80 | |
Silt/Clay (%) | ||||
Unwashed | 10.4 ± 4.7 | 7.5 ± 2.3 | 11.5 ± 5.4 | 0.16 |
Observed/presumed washed | 1.4 ± 0.2 | 2.8 ± 0.9 | 3.7 ± 1.9 | 0.40 |
Difference (p) * | <0.0001 | 0.11 | 0.08 | 0.40 |
Variable | abar (cm) | zbar (cm) | σz (cm) | OM (abar/σz) |
---|---|---|---|---|
Unwashed (UW) | 9.24 ± 0.53 | 4.37 ± 2.92 | 1.30 ± 0.10 | 7.47 ± 1.87 |
Observed/Presumed Washed (O/PW) | 9.17 ± 0.57 | 4.82 ± 3.90 | 1.63 ± 0.17 | 6.56 ± 2.49 |
Hypothesis | O/PW = UW | O/PW > UW | O/PW > UW | O/PW > UW |
p | 0.94 b | 0.22 a | 0.073 b | 0.06 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lees, D.C.; Hein, C.J.; FitzGerald, D.M. Measuring Organization of Large Surficial Clasts in Heterogeneous Gravel Beach Sediments. J. Mar. Sci. Eng. 2022, 10, 525. https://doi.org/10.3390/jmse10040525
Lees DC, Hein CJ, FitzGerald DM. Measuring Organization of Large Surficial Clasts in Heterogeneous Gravel Beach Sediments. Journal of Marine Science and Engineering. 2022; 10(4):525. https://doi.org/10.3390/jmse10040525
Chicago/Turabian StyleLees, Dennis C., Christopher J. Hein, and Duncan M. FitzGerald. 2022. "Measuring Organization of Large Surficial Clasts in Heterogeneous Gravel Beach Sediments" Journal of Marine Science and Engineering 10, no. 4: 525. https://doi.org/10.3390/jmse10040525