Robust Composite Dynamic Event-Triggered Control for Multiple USVs with DLLOS Guidance
Abstract
:1. Introduction
2. Problem for Formulation and Preliminaries
2.1. Nonlinear Mathematical Model of USV
2.2. RBF NN Approximation
3. DLLOS Guidance Principle
4. Robust Composite Dynamic Event-Triggered Controller
4.1. Design of the Dynamic Event-Triggered Meachnisam
4.2. The Control Design for USVs
4.3. Stability Analysis
5. Numerical Simulation
5.1. The Simulation with the DLLOS Guidance
5.2. The Comparative Simulation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fossen, T.I.; Pettersen, K.Y. On Uniform Semiglobal Exponential Stability (USGES) of Proportional Line-of-Sight Guidance Laws. Automatica 2014, 50, 2912–2917. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Ki Ahn, C. Hyperbolic-Tangent LOS Guidance-Based Finite-Time Path Following of Underactuated Marine Vehicles. IEEE Trans. Ind. Electron. 2020, 67, 8566–8575. [Google Scholar] [CrossRef]
- Liu, L.; Wang, D.; Peng, Z. ESO-Based Line-of-Sight Guidance Law for Path Following of Underactuated Marine Surface Vehicles with Exact Sideslip Compensation. IEEE J. Ocean. Eng. 2017, 42, 477–487. [Google Scholar] [CrossRef]
- Lekkas, A.M.; Fossen, T.I. Integral LOS Path Following for Curved Paths Based on a Monotone Cubic Hermite Spline Parametrization. IEEE Trans. Control Syst. Technol. 2014, 22, 2287–2301. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Q.; Wu, X. Uniformly Globally Asymptotically Stable Path Following with Integral Gain-Variable Guidance Law for Ships. Control Theory Appl. 2015, 32, 850–858. [Google Scholar]
- Zheng, Z.; Sun, L.; Xie, L. Error-Constrained LOS Guidance Path Following of a Surface Vessel with Actuator Saturation and Faults. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 1749–1761. [Google Scholar] [CrossRef]
- Zhang, G.; Li, J.; Li, B.; Zhang, X. Improved Integral LOS Guidance and Path-Following Control for an Unmanned Robot Sailboat via the Robust Neural Damping Technique. J. Navig. 2019, 72, 1378–1398. [Google Scholar] [CrossRef]
- Liu, L.; Wang, D.; Peng, Z.; Wang, H. Predictor-Based LOS Guidance Law for Path Following of Underactuated Marine Surface Vehicles with Sideslip Compensation. Ocean. Eng. 2016, 124, 340–348. [Google Scholar] [CrossRef]
- Yu, C.; Xiang, X.; Lapierre, L.; Zhang, Q. Nonlinear guidance and fuzzy control for three-dimensional path following of an underactuated autonomous underwater vehicle. Ocean. Eng. 2017, 146, 457–467. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Wang, J.; Wang, D.; Han, Q.L. An Overview of Recent Advances in Coordinated Control of Multiple Autonomous Surface Vehicles. IEEE Trans. Ind. Inform. 2021, 17, 732–745. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, X. A novel DVS guidance principle and robust adaptive path-following control for underactuated ships using low frequency gain-learning. ISA Trans. 2015, 56, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, Y.; Tong, S. Neural-Network-Based Adaptive Event-Triggered Consensus Control of Non-Strict Feedback Nonlinear Systems. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 1750–1764. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, G. Event-Triggered Adaptive Control of a Class of Nonlinear Systems. ISA Trans. 2019, 94, 10–16. [Google Scholar] [CrossRef]
- Yu, K.; Li, Y. Fuzzy Adaptive Event-Triggered Output Feedback Control for Nonlinear Systems with Tracking Error Constrained and Unknown Dead-Zone. Int. J. Syst. Sci. 2021, 52, 2918–2933. [Google Scholar] [CrossRef]
- Xing, L.; Wen, C.; Liu, Z.; Su, H.; Cai, J. Adaptive Compensation for Actuator Failures with Event-Triggered Input. Automatica 2017, 85, 129–136. [Google Scholar] [CrossRef]
- Li, Y.; Yang, G. Model-Based Adaptive Event-Triggered Control of Strict-Feedback Nonlinear Systems. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 1033–1046. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wen, C.; Huang, J.; Zhou, J. Adaptive Consensus of Uncertain Nonlinear Systems with Event-Triggered Communication and Intermittent Actuator Faults. Automatica 2020, 111, 108667. [Google Scholar] [CrossRef]
- Li, J.; Zhang, G.; Huang, C.; Zhang, W. Event-Triggered Control for Unmanned Sailboat with Actuator Failures. Syst. Eng. Electron. 2021, 43, 1–10. [Google Scholar]
- Ma, Y.; Nie, Z.; Yu, Y.; Hu, S.; Peng, Z. Event-Triggered Fuzzy Control of Networked Nonlinear Underactuated Unmanned Surface Vehicle. Ocean. Eng. 2020, 213, 107540. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, S.; Li, J.; Zhang, X. LVS Guidance Principle and Adaptive Neural Fault-Tolerant Formation Control for Underactuated Vehicles with the Event-Triggered Input. Ocean. Eng. 2021, 229, 108927. [Google Scholar] [CrossRef]
- Jiao, J.; Wang, G. Event-triggered Trajectory Tracking Control Approach for Full Actuated Surface Vessel. Neurocomputing 2016, 182, 267–273. [Google Scholar] [CrossRef]
- Zhu, G.; Ma, Y.; Li, Z.; Malekian, R.; Sotelo, M. Event-Triggered Adaptive Neural Fault-Tolerant Control of Underactuated MSVs with Input Saturation. IEEE Trans. Intell. Transp. Syst. 2021, 24, 1–13. [Google Scholar] [CrossRef]
- Wang, L.; Chen, C.L. Philip. Reduced-Order Observed-Based Dynamic Event-Triggered Adaptive NN Control for Stochastic Nonlinear Systems Subject to Unknown Input Saturation. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 1678–1690. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tong, S. Fuzzy Adaptive Control Design Strategy of Nonlinear Switched Large-Scale Systems. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 2209–2219. [Google Scholar] [CrossRef]
- Li, T.; Wang, D.; Feng, G.; Tong, S. A DSC Approach to Robust Adaptive NN Tracking Control for Strict-Feedback Nonlinear Systems. IEEE Trans. Syst. Man Cybern. Syst. 2010, 40, 915–928. [Google Scholar]
- Zhang, G.; Zhang, X. Concise Robust Adaptive Path-Following Control of Underactuated Ships Using DSC and MLP. IEEE J. Ocean. Eng. 2014, 39, 685–694. [Google Scholar] [CrossRef]
- Xu, B.; Shou, Y. Composite Learning Control of MIMO Systems with Applications. IEEE Trans. Ind. Electron. 2018, 65, 6414–6425. [Google Scholar] [CrossRef]
- Li, Y.; Tong, S.; Li, T. Hybrid Fuzzy Adaptive Output Feedback Control Design for Uncertain MIMO Nonlinear Systems with Time-Varying Delays and Input Saturation. IEEE Trans. Fuzzy Syst. 2016, 24, 841–854. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, G.; Lu, Y.; Zhang, W. Leader-Follower Formation Control of Underactuated Surface Vehicles Based on Sliding Mode Control and Parameter Estimation. ISA Trans. 2018, 72, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Zhang, X.; Zhang, G. Improved Decentralized Finite-Time Formation Control of Underactuated USVs via a Novel Disturbance Observer. Ocean Eng. 2019, 174, 117–124. [Google Scholar] [CrossRef]
- Liu, C.; Li, C.; Li, W. Computationally Efficient MPC for Path Following of Underactuated Marine Vessels Using Projection Neural Network. Neural Comput. Appl. 2020, 32, 7455–7464. [Google Scholar] [CrossRef]
- Fossion, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control; John Wiley: Hoboken, NJ, USA, 2011; pp. 112–124. [Google Scholar]
- Do, K.D. Practical Control of Underactuated Ships. Ocean. Eng. 2010, 37, 1111–1119. [Google Scholar] [CrossRef]
- Do, K.D.; Jiang, Z.; Pan, J. Robust Adaptive Path Following Control of Underactuated Ships. Automatica 2004, 40, 929–944. [Google Scholar] [CrossRef]
Variables | Interpretation | Variables | Interpretation |
---|---|---|---|
Ship position states | Virtual control laws | ||
Ship speed states | Low-pass filters | ||
Actuator gains | Speed controller | ||
Control orders | Robust neural damping terms | ||
Event-triggered inputs | Immediate control laws | ||
Event-triggered measurement errors | SPEM-based prediction errors | ||
Event-triggered parameters | Adaptive learning parameters |
Terms | Values | Terms | Values |
---|---|---|---|
120 × 103 kg | 43 × 102 kg | ||
177.9 × 103 kg | 29.4 × 103 kg | ||
636 × 105 kg | 160 × 104 kg | ||
215 × 102 kg | 21.5 × 102 kg | ||
147 × 103 kg | 14.7 × 103 kg | ||
802 × 104 kg | 80.2 × 104 kg |
Indexes | The Proposed Scheme | The Compared Scheme |
---|---|---|
The number of required adaptive laws | 2 | 16 |
The total number of the triggers | 375 | 584 |
The computational burden of the computer | 481,280 kb | 601,088 kb |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Liu, S.; Li, B.; Zhang, X. Robust Composite Dynamic Event-Triggered Control for Multiple USVs with DLLOS Guidance. J. Mar. Sci. Eng. 2022, 10, 227. https://doi.org/10.3390/jmse10020227
Zhang G, Liu S, Li B, Zhang X. Robust Composite Dynamic Event-Triggered Control for Multiple USVs with DLLOS Guidance. Journal of Marine Science and Engineering. 2022; 10(2):227. https://doi.org/10.3390/jmse10020227
Chicago/Turabian StyleZhang, Guoqing, Shang Liu, Bo Li, and Xianku Zhang. 2022. "Robust Composite Dynamic Event-Triggered Control for Multiple USVs with DLLOS Guidance" Journal of Marine Science and Engineering 10, no. 2: 227. https://doi.org/10.3390/jmse10020227
APA StyleZhang, G., Liu, S., Li, B., & Zhang, X. (2022). Robust Composite Dynamic Event-Triggered Control for Multiple USVs with DLLOS Guidance. Journal of Marine Science and Engineering, 10(2), 227. https://doi.org/10.3390/jmse10020227