Improving Operational Ocean Models for the Spanish Port Authorities: Assessment of the SAMOA Coastal Forecasting Service Upgrades
Abstract
:1. Introduction
- (i)
- Enhancing the ocean model set-up.
- (ii)
- Updating the atmospheric forcings and the methodology to introduce their effect on the solution.
- (iii)
- Testing a new nesting methodology by benefiting from a new Copernicus IBI-MFC regional 3D hourly forecast product.
2. The Operational Context: The PdE SAMOA Coastal Forecast Service and Its Second Development Phase (SAMOA-2)
3. Methodology: Model Sensitivity Tests for Improving the SAMOA Circulation Forecast Services
- (i)
- Existence of some systematic biases in passive tracers, such as the temperature and salinity fields.
- (ii)
- Some inconsistencies between SAMOA coastal modelled circulation patterns, compared with those exhibited by the CMEMS IBI-MFC parent solution.
- (i)
- To update SAMOA atmospheric forcing data (experiment termed as SAM_INI, hereafter).
- (ii)
- To improve the ROMS model set-up, with special attention to the open boundary condition treatment; joint with the computation of surface ocean-atmosphere fluxes through a new bulk formulation (SAM_ADV test experiment). Finally also,
- (iii)
- To test a new nesting methodology taking advantage of the availability of a Copernicus regional 3D IBI hourly forecast product (SAM_H3D). This product allows enhancement of the temporal frequency (from daily to hourly resolution) of the data imposed at boundaries. Moreover, specific physics upgrade was implemented in this configuration experiment.
3.1. Upgrade of the Atmospheric Forcing: The Initial SAMOA-2 Model Configuration (SAM_INI)
3.2. Upgrade of the Open Boundary Condition (OBC) Scheme and Bulk Fluxes: The Current Operational SAMOA Set-Up (SAM_ADV)
- (i)
- To improve consistency between the parent solution (IBI-MFC) and the SAMOAs forecasts, via Open Boundary Conditions (OBCs) exchanges.
- (ii)
- To improve of the SST solution through two synergistic approaches: first, improving the circulation fields; second, substituting with bulk formulas (COARE 3.0, Fairall et al., 2003 [33]) the SAMOA-1 treatment of the atmospheric forcings.
- (i)
- Implicit Chapman for the free-surface.
- (ii)
- Flather conditions for the barotropic currents (Flather, 1976 [34]).
- (iii)
- Clamped conditions for the total velocities and passive tracers.
- (i)
- Explicit Chapman for the free-surface (Chapman, 1985 [35]).
- (ii)
- (iii)
- Radiation with nudging for total velocities and passive tracers.
3.3. Use of a Higher Temporal Frequency Imposed Data at the Boundary and Upgrade of the Model Physics: The Forthcoming SAMOA Operational Set-Up (SAM_H3D)
- (i)
- A new scheme for the advection term for the passive tracers (HSIMT-TVD, Wu and Zhu, 2010 [38]), based in the latest versions of the ROMS code.
- (ii)
- A reduction of the wind-stresses due to the effect of surface currents.
- (iii)
- An update of the COARE 3.0 bulk-formula to the COARE 3.5 (Edson et al., 2013 [39]).
3.4. Evaluation Criteria and Error Metrics
- (i)
- How each system handles the intra-daily cycles related to the atmospheric conditions (with special focus on surface heat fluxes or wind stresses)?
- (ii)
- How each system simulates tidal-induced currents?
4. Results
4.1. Impacts in SAMOA Solutions Related to Changes in the OBC Treatment and the Use of a Bulk Formula to Deal with Atmospheric Forcing (SAM_ADV vs. SAM_INI)
- (i)
- Bias drop from 0.20 °C (SAM_INI) to −0.03 °C (SAM_ADV), even moderately better than IBI_PHY (0.07 °C).
- (ii)
- Correlations were close to 0.8 for all three models.
- (iii)
- IBI_PHY had lower RMS (0.44 °C) than SAM_INI (0.6 °C) and SAM_ADV (0.5 °C)
- (iv)
- COE for IBI_PHY (0.29) and SAM_ADV (0.21) were similar, substantially higher than SAM_INI (0.07).
4.2. Impact in the SAMOA Solutions Related to Changes in the Physics and in the Temporal Frequency of the Imposed Data along Boundaries (SAM_H3D vs. SAM_ADV)
5. Discussion
- (i)
- Inclusion of low frequency astronomical constituents, such as the solar semi-annual (Ssa) and solar annual (Sa) constituents. For these two specific systems, low-frequency constituents have an equivalent order of magnitude than higher frequency harmonics: for instance, in Tarragona, the sum of the amplitudes of the M2 (3.97 cm) and K1 (3.71 cm) are close to the SA value (7.21 cm) (Pérez-Gómez, 2014 [42]). Low-frequency constituents require long-term observations for its correct estimation; and this remains a main shortcoming for their inclusion in operational models.
- (ii)
- The non-tidal residual term is not properly modelled in IBI_PHY at specific synoptic conditions, due to no inclusion of the whole Mediterranean basin subinertial transport. The IBI_PHY storm-surge solution for the recent storm Gloria was analysed in Pérez-Gómez et al., 2021 [52], then identifying a persistent underestimation of the positive surge. Such underestimation was mainly related to the fact that IBI system does not include barotropic mass-transport from the Eastern Mediterranean subbasin towards the Western Mediterranean one. Correction for this misbalance in the MSLP-driven transports between the Mediterranean sub-basins is in the IBI-MFC roadmap, and it is expected to be overcome in forthcoming IBI_PHY operational releases.
6. Conclusions
6.1. Assessment of the SAMOA Coastal Forecasting Service Upgrades
- (i)
- The SAM_INI configuration, analogous to the one used in SAMOA-1, but substituting the former AEMET HIRLAM atmospheric forcing by the new HARMONIE 2.5 km forcing data.
- (ii)
- The SAM_ADV set-up, focused on upgrading the open boundary condition scheme treatment and the computation of surface atmosphere-ocean fluxes through the COARE 3.0 bulk formula.
- (iii)
- The SAM_H3D set-up, in which it is proposed (a) the use of the hourly-3D IBI-MFC forecast dataset, (b) the update of the bulk formula for surface fluxes (COARE 3.5), (c) the use of a new advection scheme (HSIMT-TVD) for passive tracers and (d) the reduction of the wind-stresses due to the effect of surface currents.
- (i)
- The three proposed SAMOA tests improve notably the simulation of sea level with respect to the IBI_PHY parent solution, especially at meso- and macro-tidal environments. The SAMOA higher spatial resolution allows to better capture of the harbour geometry and coastal surroundings.
- (ii)
- The use of the COARE bulk formula (introduced in the SAM_ADV set-up) improved sea surface temperature (SST) metrics respect to SAM_INI; but SAM_H3D outperforms SAM_ADV and the skill is close to the IBI_PHY solution. This SAM_H3D improvement in SST can be explained by (a) improvements in the surface fluxes physics, (b) the use of HSIMT-TVD for passive tracers and especially (c) the overall improvement of the surface circulation fields.
- (iii)
- This improvement of the circulation fields arises from two factors: (a) the SAM_H3D nesting ensures mass and momentum conservation from the IBI_PHY parent solution (hourly updated) to the SAMOA child grids along boundaries; and (b) SAM_H3D benefits from the high-resolution HARMONIE forcing. These two factors allow proper modelling of joint tidal and wind-induced currents. Consequently, local effects such as in-land wind-jets (case of Tarragona HF radar), and those influenced by topographic gradients exhibit good metrics in SAM_H3D, even slightly better than in IBI_PHY. At the Gran Canaria case, SAM_H3D is the model solution that shows more resemblance with the spatial signature from surface HF radar. However, the Almería case also highlights how the SAM_H3D nesting scheme can propagate errors or spurious circulation features from IBI_PHY into the SAMOA solution.
- (iv)
- Finally, this contribution summarizes the impact of the incremental model upgrades performed in the SAMOA operational circulation system since 2018. Indeed, two of the SAMOA model set-ups here shown (SAM_INI and SAM_ADV) have been the base for the last two operational SAMOA releases (launched in October 2018 and October 2019, respectively). The SAM_ADV model configuration is the current SAMOA operational set-up, but it is expected to be upgraded in 2022 by the also here tested SAM_H3D one. This contribution demonstrates that the proposed SAM_H3D configuration enhances the current SAMOA solution, especially in terms of surface currents and SST.
6.2. Recommendations for Coastal Forecasting Services and Future SAMOA Perspectives
- (i)
- To improve the modelling of air-sea interaction processes, with focus on surface stresses and heat fluxes.
- (ii)
- To expand the coastal domains, with the aim of generating intrinsic solutions that are less dependent on limitations from the parent solution (such as its inability to reproduce accurately certain topographic gradients, due to its coarser horizontal resolution).
- (iii)
- To include wave-driven effects such as (a) the Stokes drift interaction with the currents, (b) wave-induced mixing parameterizations and (c) wind drag coefficients formulas based on the sea-state.
- (iv)
- To include low-frequency astronomical tide constituents. These low-frequency harmonics are especially relevant in those SAMOA systems located at the Western Mediterranean sub-basin.
- (v)
- To verify and to correct (if needed) the subinertial transport at specific SAMOA systems, then enhancing the forecast skill under certain synoptic conditions.
- (vi)
- To couple the SAMOA systems with operational coastal run-off discharge systems.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADCP | Acoustic Doppler Current Profiler |
AEMET | Agencia Estatal de Meteorología de España (Spanish Met Office) |
CMA | Cuadro de Mando Ambiental (Environmental Control Panel, see Section 2) |
CMEMS | Copernicus Marine Service |
COARE | Coupled Ocean-Atmosphere Response Experiment |
COE | Coefficient of Efficiency (see Section 3.4, Equation (1)) |
CORE | Coordinated Ocean-Ice Reference Experiment |
CST | Coastal buoy from the REDCOS network (Table 3, Table 4 and Table 5) |
CTD | Conductivity, Temperature and Depth |
ECMWF | European Centre for Medium-Range Weather Forecasts |
ECMWF-IFS | European Centre for Medium-Range Weather Forecasts—Integrated Forecast System |
ESEOO | Establecimiento de un Sistema Español de Oceanografía Operacional (Project) |
EXT | Deep-water buoy from the REDEXT network (Table 3, Table 4 and Table 5) |
EuroGOOS | European Global Ocean Observing System |
EU | European Union |
HARMONIE | HIRLAM-ALADIN Research on Mesoscale Operational NWP in Euromed |
HF-Radar | High Frequency Radar |
HIRLAM | High Resolution Limited Area Model |
HSIMT-TVD | High-Order Spatial Interpolation at the Middle Temporal level coupled with a Total Variation Diminishing limiter |
IBI-MFC | Iberian-Biscay-Ireland—Monitoring and Forecasting Centre |
IBI_PHY | IBI-MFC Circulation Forecasting System |
IBI-WAV | IBI-MFC Wave Forecasting System |
NARVAL | North Atlantic Regional VALidation |
NRT | Near-Real Time |
OBC | Open Boundary Condition |
PdE | Puertos del Estado (Spanish State Ports, public enterprise for port management) |
REDEXT | Deep-water Buoy Monitoring Network from Puertos del Estado |
REDCOS | Coastal Buoy Monitoring Network from Puertos del Estado |
REDMAR | Tidal Station Monitoring Network from Puertos del Estado |
RMS | Root-Mean Square Error |
ROMS | Regional Ocean Modeling System |
SAM_INI | SAMOA initial set-up (see Section 3.1 and Table 1) |
SAM_ADV | SAMOA advanced set-up (current release, see Section 3.2 and Table 1) |
SAM_H3D | SAMOA H3D set-up (forthcoming release, see Section 3.3 and Table 1) |
SAMOA | Sistema de Apoyo Meteorológico y Oceanográfico a las Autoridades Portuarias (System of Meteorological and Oceanographic Support for Port Authorities) |
SAMPA | Sistema de Apoyo Meteorológico y Oceanográfico al Puerto de Algeciras (System of Meteorological and Oceanographic Support for Algeciras Harbour) |
SC_S | Surface current speed (Table 3, Table 4 and Table 5) |
SC_D | Surface current direction (Table 3, Table 4 and Table 5) |
SLev | Sea Level (Table 3, Table 4 and Table 5) |
SSS | Sea Surface Salinity |
SST | Sea Surface Temperature |
TGS | Tide Gauge Station from the REDMAR network (Table 3, Table 4 and Table 5) |
WAM | WAve Model |
References
- European Global Observing Systems (EuroGOOS). Available online: http://eurogoos.eu/ (accessed on 18 January 2022).
- Schiller, A.; Mourre, B.; Drillet, Y.; Brassington, G. An overview of operational oceanography. In New Frontiers in Operational Oceanography; Chassignet, E., Pascual, A., Tintoré, J., Verron, J., Eds.; GODAE OceanView: Madrid, Spain, 2018; pp. 1–26. [Google Scholar] [CrossRef] [Green Version]
- Davidson, F.; Alvera-Azcárate, A.; Barth, A.; Brassington, G.B.; Chassignet, E.P.; Clementi, E.; De Mey-Frémaux, P.; Divakaran, P.; Harris, C.; Hernandez, F.; et al. Synergies in Operational Oceanography: The Intrinsic Need for Sustained Ocean Observations. Front. Mar. Sci. 2019, 6, 450. [Google Scholar] [CrossRef] [Green Version]
- De Mey-Frémaux, P.; Ayoub, N.; Barth, A.; Brewin, R.; Charria, G.; Campuzano, F.; Ciavatta, S.; Cirano, M.; Edwards, C.A.; Federico, I.; et al. Model-Observations Synergy in the Coastal Ocean. Front. Mar. Sci. 2019, 6, 436. [Google Scholar] [CrossRef] [Green Version]
- EU EuroStat. EuroStat Explaining Statistics: Maritime Ports Freight and Passenger Statistics. 2017. Available online: http://ec.europa.eu/eurostat/statistics-explained/index.php/Maritime_ports_freight_and_passenger_statistics (accessed on 18 January 2022).
- Álvarez Fanjul, E.; Sotillo, M.G.; Pérez, B.; García-Valdecasas, J.M.; Pérez, S.; Lorente, P.; Rodríguez-Dapena, A.; Martínez, I.; Luna, Y.; Padorno, E.; et al. Operational oceanography at the service of the ports. In New Frontiers in Operational Oceanography; Chassignet, E., Pascual, A., Tintoré, J., Verron, J., Eds.; GODAE OceanView: Madrid, Spain, 2018; pp. 729–736. [Google Scholar] [CrossRef] [Green Version]
- Sotillo, M.G.; Cerralbo, P.; Lorente, P.; Grifoll, M.; Espino, M.; Sanchez-Arcilla, A.; Álvarez-Fanjul, E. Coastal ocean forecasting in Spanish ports: The SAMOA operational service. J. Oper. Oceanogr. 2019, 13, 37–54. [Google Scholar] [CrossRef]
- Lellouche, J.-M.; Greiner, E.; Le Galloudec, O.; Garric, G.; Regnier, C. Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1/12° high-resolution system. Ocean Sci. 2018, 14, 1093–1126. [Google Scholar] [CrossRef] [Green Version]
- Lellouche, J.-M.; Le Galloudec, O.; Drévillon, M.; Régnier, C.; Greiner, E.; Garric, G.; Ferry, N.; Desportes, C.; Testut, C.-E.; Bricaud, C.; et al. Evaluation of global monitoring and forecasting systems at Mercator Océan. Ocean Sci. 2013, 9, 57–81. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Lin, P.; Zheng, W.; Luan, Y.; Ma, J.; Ding, M.; Mo, H.; Wan, L.; Ling, T. A global eddy-resolving ocean forecast system in China—LICOM Forecast System (LFS). J. Oper. Oceanogr. 2021, 14, 2781–2799. [Google Scholar] [CrossRef]
- Bell Michael, J.; Lefebvre, M.; Le Traon, P.Y.; Smith, N.; Wilmer-Becker, K. GODAE The Global Ocean Data Assimilation Experiment. Oceanography 2009, 22, 14–21. [Google Scholar] [CrossRef]
- Bell, M.J.; Schiller, A.; Le Traon, P.-Y.; Smith, N.R.; Dombrowsky, E.; Wilmer-Becker, K. An introduction to GODAE OceanView. J. Oper. Oceanogr. 2015, 8 (Suppl. 1), s2–s11. [Google Scholar] [CrossRef]
- Tonani, M.; Balmaseda, M.; Bertino, L.; Blockley, E.; Brassington, G.; Davidson, F.; Drillet, Y.; Hogan, P.; Kuragano, T.; Lee, T.; et al. Status and future of global and regional ocean prediction systems. J. Oper. Oceanogr. 2015, 8 (Suppl. 2), s201–s220. [Google Scholar] [CrossRef] [Green Version]
- Copernicus Marine Environmental Monitoring Service (CMEMS). Available online: http://marine.copernicus.eu/ (accessed on 18 January 2022).
- Le Traon, P.Y.; Reppucci, A.; Alvarez Fanjul, E.; Aouf, L.; Behrens, A.; Belmonte, M.; Bentamy, A.; Bertino, L.; Brando, V.E.; Kreiner, M.B.; et al. From observation to information and users: The Copernicus Marine service perspective. Front. Mar. Sci. 2019, 6, 234. [Google Scholar] [CrossRef] [Green Version]
- Capet, A.; Fernández, V.; She, J.; Dabrowski, T.; Umgiesser, G.; Staneva, J.; Mészáros, L.; Campuzano, F.; Ursella, L.; Nolan, G.; et al. Operational Modeling Capacity in European Seas—An EuroGOOS Perspective and Recommendations for Improvement. Front. Mar. Sci. 2020, 7, 129. [Google Scholar] [CrossRef] [Green Version]
- Sotillo, M.G.; Cailleau, S.; Lorente, P.; LeVier, B.; Aznar, R.; Reffray, G.; Amo-Baladrón, A.; Chanut, J.; Benkiran, M.; Alvarez-Fanjul, E. The MyOcean IBI Ocean Forecast and Reanalysis Systems: Operational products and roadmap to the future Copernicus Service. J. Oper. Oceanogr. 2015, 8, 63–79. [Google Scholar] [CrossRef]
- Aznar, R.; Sotillo, M.G.; Cailleau, S.; Lorente, P.; Levier, B.; Amo-Baladrón, A.; Reffray, G.; Álvarez-Fanjul, E. Strengths and weaknesses of the CMEMS forecasted and reanalyzed solutions for the Iberia–Biscay–Ireland (IBI) waters. J. Mar. Syst. 2016, 159, 1–14. [Google Scholar] [CrossRef]
- Kourafalou, V.H.; De Mey, P.; Staneva, J.; Ayoub, N.; Barth, A.; Chao, Y.; Cirano, M.; Fiechter, J.; Herzfeld, M.; Kurapov, A.; et al. Coastal Ocean Forecasting: Science foundation and user benefits. J. Oper. Oceanogr. 2015, 8 (Suppl. 1), s147–s167. [Google Scholar] [CrossRef]
- Sotillo, M.G.; Álvarez-Fanjul, E.; Castanedo, S.; Abascal, A.J.; Menendez, J.; Emelianov, M.; Olivella, R.; García-Ladona, E.; Ruiz-Villarreal, M.; Conde, J.; et al. Towards an operational system for oil-spill forecast over Spanish waters: Initial developments and implementation test. Mar. Pollut. Bull. 2008, 56, 686–703. [Google Scholar] [CrossRef]
- Sánchez-Garrido, J.C.; García-Lafuente, J.; Álvarez-Fanjul, E.; Sotillo, M.G.; de los Santos, F.J. What does cause the collapse of the Western Alboran Gyre? Results of an operational ocean model. Prog. Oceanogr. 2013, 116, 142–153. [Google Scholar] [CrossRef]
- Sotillo, M.G.; Amo-Baladrón, A.; Padorno, E.; Garcia-Ladona, E.; Orfila, A.; Rodríguez-Rubio, P.; Conti, D.; Jiménez Madrid, J.A.; de los Santos, F.J.; Álvarez Fanjul, E. How is the Surface Atlantic water inflow through the Gibraltar Strait forecasted? A lagrangian validation of operational oceanographic services in the Alboran Sea and the Western Mediterranean. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2016, 133, 100–117. [Google Scholar] [CrossRef] [Green Version]
- PdE Opendap Catalogue. Available online: https://opendap.puertos.es/thredds/catalog.html (accessed on 18 January 2022).
- PdE PORTUS Ocean Monitoring & Forecasting System. Available online: https://portus.puertos.es/ (accessed on 18 January 2022).
- De Dominicis, M.; Pinardi, N.; Zodiatis, G.; Lardner, R. MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term forecasting–Part 1: Theory. Geosci. Model Dev. 2013, 6, 1851–1869. [Google Scholar] [CrossRef] [Green Version]
- European Union. Directive (EU) 2019/883 of the European Parliament and of the Council of 17 April 2019 on port reception facilities for the delivery of waste from ships, amending Directive 2010/65/EU and repealing Directive 2000/59/EC. Rom. J. Intell. Prop. L. 2019, 151, 116–142. [Google Scholar]
- Shchepetkin, A.; McWilliams, J.C. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. 2005, 9, 347–404. [Google Scholar] [CrossRef]
- ROMS Model Website. Available online: http://www.myroms.org/ (accessed on 18 January 2022).
- Ryan, A.G.; Regnier, C.; Divakaran, P.; Spindler, T.; Mehra, A.; Smith, G.C.; Davidson, F.; Hernandez, F.; Maksymczuk, J.; Liu, Y. GODAE OceanView Class 4 forecast verification framework: Global ocean inter-comparison. J. Oper. Oceanogr. 2015, 8 (Suppl. 1), s98–s111. [Google Scholar] [CrossRef]
- Lorente, P.; Sotillo, M.G.; Amo-Baladrón, A.; Aznar, R.; Levier, B.; Aouf, L.; Dabrowski, T.; Pascual, A.; Reffray, G.; Dalphinet, A.; et al. The NARVAL Software Toolbox in Support of Ocean Models Skill Assessment at Regional and Coastal Scales. In Computational Science—ICCS 2019, Proceedings of the 19th International Conference, Faro, Portugal, 12–14 June 2019; Springer: Cham, Switzerland, 2019; Part IV. [Google Scholar] [CrossRef]
- Bengtsson, L.; Andrae, U.; Aspelien, T.; Batrak, Y.; Calvo, J.; De Rooy, W.; Gleeson, E.; Hansen-Sass, B.; Homleid, M.; Hortal, M.; et al. The HARMONIE-AROME model configuration in the ALADIN-HIRLAM NWP system. Mon. Weather Rev. 2017, 145, 1919–1935. [Google Scholar] [CrossRef]
- ECMWF, Evolution of the IFS Cycle. 2019. Available online: https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model (accessed on 9 June 2021).
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Flather, R.A. A tidal model of the northwest European continental shelf. Mem. Soc. R. Sci. Liege 1976, 6, 141–164. [Google Scholar]
- Chapman, D.C. Numerical Treatment of Cross-Shelf Open Boundaries in a Barotropic Coastal Ocean Model. J. Phys. Oceanogr. 1985, 15, 1060–1075. [Google Scholar] [CrossRef] [Green Version]
- Mason, E.; Molemaker, J.; Shchepetkin, A.; Colas, F.; McWilliams, J.C.; Sangrà, P. Procedures for offline grid nesting in regional ocean models. Ocean Model. 2010, 35, 1–15. [Google Scholar] [CrossRef]
- Marchesiello, P.; McWilliams, J.C.; Shchepetkin, A.F. Open boundary conditions for long-term integration of regional oceanic models. Ocean Model. 2001, 3, 1–20. [Google Scholar] [CrossRef]
- Wu, H.; Zhu, J. Advection scheme with 3rd high-order spatial interpolation at the middle temporal level and its application to saltwater intrusion in the Changjiang Estuary. Ocean Model. 2010, 33, 33–51. [Google Scholar] [CrossRef]
- Edson, J.B.; Jampana, V.; Weller, R.A.; Bigorre, S.P.; Plueddemann, A.J.; Fairall, C.; Miller, S.D.; Mahrt, L.; Vickers, D.; Hersbach, H. On the Exchange of Momentum over the Open Ocean. J. Phys. Oceanogr. 2013, 43, 1589–1610. [Google Scholar] [CrossRef] [Green Version]
- Álvarez Fanjul, E.; de Alfonso, M.; Ruiz, M.I.; López, J.D.; Rodriguez, I. Real time monitoring of Spanish coastal waters: The deep water network. In Elsevier Oceanography Series; Elsevier: Amsterdam, The Netherlands, 2003; Volume 69, pp. 398–402. [Google Scholar]
- Alfonso, M.; Lopez, J.D.; Alvarez, E.; Ruiz, M.I. Real time buoy data quality control and exploitation. In Proceedings of the The Fifth COPRI International Conference on Ocean Wave Measurement and Analysis (WAVES), Madrid, Spain, 3–7 July 2005; Coasts, Oceans, Ports, and Rivers Institute, American Society of Civil Engineers: Madrid, Spain, 2005. [Google Scholar]
- Pérez Gómez, B. Design and Implementation of an Operational Sea Level Monitoring and Forecasting System for the Spanish Coast. Ph.D. Thesis, Cantabria University, Santander, Spain, 2014; 242p. [Google Scholar]
- Roarty, H.; Cook, T.; Hazard, L.; Doug, G.; Harlan, J.; Cosoli, S.; Wyatt, L.; Álvarez-Fanjul, E.; Terrill, E.; Otero, M.; et al. The Global High Frequency Radar Network. Front. Mar. Sci. 2019, 6, 164. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe, G.J. Evaluating the use of ‘goodness-of-fit’ measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe, G.J. A refined index of model performance: A rejoinder. Int. J. Climatol. 2013, 33, 1053–1056. [Google Scholar] [CrossRef]
- Murphy, A.H. Skill Scores Based on the Mean Square Error and Their Relationships to the Correlation Coefficient. Mon. Weather Rev. 1988, 116, 2417–2424. [Google Scholar] [CrossRef]
- Sotillo, M.G.; Mourre, B.; Mestres, M.; Lorente, P.; Aznar, R.; García-León, M.; Liste, M.; Santana, A.; Espino, M.; Álvarez-Fanjul, E. Evaluation of the operational CMEMS and coastal downstream ocean forecasting services during the storm Gloria (January 2020). Front. Mar. Sci. 2021, 8, 300. [Google Scholar] [CrossRef]
- Grifoll, M.; Navarro, J.; Pallares, E.; Ràfols, L.; Espino, M.; Palomares, A. Ocean–atmosphere–wave characterisation of a wind jet (Ebro shelf, NW Mediterranean Sea). Nonlinear Processes Geophys. 2016, 23, 143–158. [Google Scholar] [CrossRef] [Green Version]
- Large, W.G.; Yeager, S.G. Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies, NCAR Technical Note. Natl. Cent. Atmos. Res. 2004, 11, 324–336. [Google Scholar]
- Brodeau, L.; Barnier, B.; Gulev, S.K.; Woods, C. Climatologically significant effects of some approximations in the bulk parameterizations of turbulent air–sea fluxes. J. Phys. Oceanogr. 2017, 47, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, C.; Lemarié, F.; Blayo, E. Sensitivity analysis and metamodels for the bulk parametrization of turbulent air–sea fluxes. Q. J. R. Meteorol. Soc. 2018, 144, 658–669. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Gómez, B.; García-León, M.; García-Valdecasas, J.; Clementi, E.; Aranda, C.M.; Pérez-Rubio, S.; Masina, S.; Coppini, G.; Molina-Sánchez, R.; Muñoz-Cubillo, A.; et al. Understanding Sea Level Processes During Western Mediterranean Storm Gloria. Front. Mar. Sci. 2021, 8, 647437. [Google Scholar] [CrossRef]
- WAMDI Group. The WAM model—A third generation ocean wave prediction model. J. Phys. Oceanogr. 1988, 18, 1775–1810. [Google Scholar] [CrossRef] [Green Version]
- Lorente, P.; Lin-Ye, J.; García-León, M.; Reyes, E.; Fernandes, M.; Sotillo, M.G.; Espino, M.; Ruiz, M.I.; Gracia, V.; Perez, S.; et al. On the Performance of High Frequency Radar in the Western Mediterranean During the Record-Breaking Storm Gloria. Front. Mar. Sci. 2021, 8, 205. [Google Scholar] [CrossRef]
- Sotillo, M.G.; Campuzano, F.; Guihou, K.; Lorente, P.; Olmedo, E.; Matulka, A.; Santos, F.; Amo-Baladrón, A.; Novellino, A. River Freshwater Contribution in Operational Ocean Models along the European Atlantic Façade: Impact of a New River Discharge Forcing Data on the CMEMS IBI Regional Model Solution. J. Mar. Sci. Eng. 2021, 9, 401. [Google Scholar] [CrossRef]
Feature | SAM_INI | SAM_ADV | SAM_H3D |
---|---|---|---|
SAMOA-1 model set-up (as in Sotillo et al. [7]) | ✔ | ✔ | ✔ |
Use of 2.5 km HARMONIE Atmospheric Forcing | ✔ | ✔ | ✔ |
Use of the COARE bulk formulae to compute surface fluxes | ✖ | ✔ | ✔ |
Changes in the treatment of Open Boundary Conditions | ✖ | ✔ | ✔ |
Use of the new hourly-3D CMEMS IBI-MFC product | ✖ | ✖ | ✔ |
Use of new advection scheme for passive tracers and improved surface fluxes physics | ✖ | ✖ | ✔ |
Entry into Service (Operational Release) | October 2018 | October 2019 | To be in 2022 |
SAMOA Domain (Figure 2) | Deep Water Buoy (EXT) | Coastal Water Buoy (CST) | Tidal Gauge Station (TGS) | Radar HF |
---|---|---|---|---|
Barcelona (BCN) | ✖ | (2.20° E, 41.32° N; 68 m; SST) | (2.17° E, 41.34° N; SLev) | ✖ |
Tarragona (TAR) | (1.47° E, 40.69° N; 688 m; SST, SSS, SC_S, SC_D) | (1.19° E, 41.07° N; 15 m; SST) | (1.21° E, 41.08° N; SLev) | (3 × 3 km; SC_S, SC_D) |
Bilbao (BIL) | (3.04° W, 43.64° N; 580 m; SST, SSS, SC_S, SC_D) | (3.13° W, 43.40° N; 53 m; SST) | (3.05° W, 43.35° N; SLev) | ✖ |
Almería (ALM) | (2.34° W, 36.57° N; 536 m; SST, SSS, SC_S, SC_D) | ✖ | (2.48° W, 36.83° N; SLev) | ✖ |
Ferrol (FER) | ✖ | (8.56° W, 43.35° N; 60 m; SST) | (8.33° W, 43.46° N; SLev) | ✖ |
Vigo (VIG) | ✖ | ✖ | (8.73° W, 42.24° N; SLev) | ✖ |
La Gomera (GOM) | ✖ | ✖ | (17.11° W, 28.09° N; SLev) | ✖ |
Gran Canaria (GCA) | ✖ | (15.39° W, 28.05° N; 30 m; SST) | (15.41° W, 28.14° N; SLev) | (0.75 × 0.75 km; SC_S, SC_D) |
La Palma (PAL) | ✖ | ✖ | (17.77° W, 28.68° N; SLev) | ✖ |
Tenerife (TEN) | ✖ | (16.23° W, 28.46° N; 56 m; SST) | (16.24° W, 28.48° N; SLev) | ✖ |
Variable | Domain | Type | N | Bias (INI/ADV/IBI) | Correlation (INI/ADV/IBI) | RMS (INI/ADV/IBI) | COE (INI/ADV/IBI) |
---|---|---|---|---|---|---|---|
SST (°C) | BCN | CST | 811 | −0.21/−0.36/0.02 | 0.90/0.93/0.93 | 0.76/0.68/0.62 | 0.61/0.59/0.67 |
TAR | EXT | 1289 | −0.11/−0.19/0.03 | 0.63/0.7/0.72 | 0.41/0.39/0.29 | −0.27/−0.27/0.14 | |
CST | 847 | −0.48/−0.6/−0.67 | 0.82/0.84/0.79 | 0.28/0.26/0.3 | −0.25/−0.54/−0.73 | ||
BIL | EXT | 864 | −0.09/−0.14/0.09 | 0.96/0.95/0.96 | 0.34/0.34/0.35 | 0.69/0.68/0.67 | |
CST | 1343 | 0.24/−0.09/0.25 | 0.91/0.92/0.93 | 0.6/0.43/0.47 | 0.45/0.66/0.54 | ||
ALM | EXT | 1493 | 0.7/0.62/0.72 | 0.73/0.77/0.81 | 0.88/0.79/0.73 | 0.02/0.18/0.13 | |
FER | CST | 722 | 0.42/0.14/0.38 | 0.64/0.71/0.84 | 1.19/0.84/0.54 | −0.39/−0.08/0.17 | |
GCA | CST | 717 | 0.15/−0.23/−0.26 | 0.91/0.9/0.92 | 0.31/0.31/0.29 | 0.57/0.55/0.51 | |
TEN | CST | 1224 | 1.17/0.54/0.11 | 0.54/0.83/0.88 | 0.69/0.44/0.38 | −0.77/0.11/0.53 | |
AVERAGE | 0.20/−0.03/0.07 | 0.78/0.84/0.86 | 0.61/0.50/0.44 | 0.07/0.21/0.29 | |||
SSS (PSU) | TAR | EXT | 1289 | −0.08/−0.06/−0.07 | 0.09/0.01/0.05 | 0.12/0.13/0.1 | −1.91/−2.16/−1.6 |
BIL | EXT | 864 | 0.16/0.14/0.16 | 0.14/0.16/0.17 | 0.54/0.54/0.54 | −0.47/−0.36/−0.51 | |
ALM | EXT | 1493 | 0.06/0.1/0.06 | −0.09/−0.12/−0.1 | 0.3/0.3/0.3 | −0.27/−0.34/−0.27 | |
AVERAGE | 0.05/0.06/0.05 | 0.05/0.02/0.04 | 0.32/0.32/0.31 | −0.88/−0.95/−0.79 | |||
SC_S (m/s) | TAR | EXT | 1289 | 0.16/0.2/0.15 | 0.13/0.11/0.08 | 0.13/0.14/0.12 | −2.14/−2.79/−1.96 |
BIL | EXT | 864 | 0.06/0.07/0.04 | 0.13/0.15/0.08 | 0.13/0.13/0.12 | −0.3/−0.35/−0.18 | |
ALM | EXT | 1493 | −0.05/−0.08/−0.12 | 0.05/0.08/−0.05 | 0.17/0.16/0.17 | −0.29/−0.33/−0.5 | |
AVERAGE | 0.06/0.06/0.02 | 0.10/0.11/0.04 | 0.14/0.14/0.14 | −0.91/−1.16/−0.88 | |||
SC_D (°) | TAR | EXT | 1289 | 3/8/3 | −0.01/−0.06/−0.01 | 129/131/129 | −0.06/−0.09/−0.06 |
BIL | EXT | 864 | 81/84/88 | 0.21/0.2/0.23 | 136/136/134 | −0.08/−0.08/−0.08 | |
ALM | EXT | 1493 | 86/93/83 | 0.12/0.19/0.04 | 124/116/122 | −0.91/−0.92/−0.94 | |
AVERAGE | 57/62/58 | 0.11/0.11/0.09 | 130/128/128 | −0.35/−0.36/−0.36 | |||
SLev (m) | BCN | TGS | 865 | Not applicable | 0.93/0.92/0.96 | 0.03/0.03/0.02 | 0.51/0.5/0.61 |
TAR | TGS | 837 | 0.89/0.91/0.9 | 0.05/0.04/0.05 | 0.43/0.51/0.44 | ||
BIL | TGS | 955 | 0.99/0.99/0.97 | 0.09/0.09/0.26 | 0.92/0.92/0.74 | ||
ALM | TGS | 744 | 0.87/0.86/0.84 | 0.05/0.05/0.05 | 0.51/0.48/0.46 | ||
FER | TGS | 1272 | 0.99/0.99/0.96 | 0.07/0.07/0.26 | 0.92/0.92/0.72 | ||
VIG | TGS | 812 | 0.99/0.99/0.96 | 0.07/0.07/0.23 | 0.93/0.94/0.73 | ||
GOM | TGS | 1268 | 0.99/0.99/0.96 | 0.05/0.04/0.13 | 0.91/0.93/0.72 | ||
GCA | TGS | 720 | 0.99/0.99/0.97 | 0.05/0.06/0.13 | 0.91/0.91/0.77 | ||
PAL | TGS | 560 | 0.99/0.99/0.97 | 0.04/0.04/0.13 | 0.93/0.93/0.76 | ||
AVERAGE | 0.96/0.96/0.94 | 0.06/0.05/0.14 | 0.77/0.78/0.66 |
Variable | Domain | Type | N | Bias (ADV/H3D/IBI) | Correlation (ADV/H3D/IBI) | RMS (ADV/H3D/IBI) | COE (ADV/H3D/IBI) |
---|---|---|---|---|---|---|---|
SST (°C) | BCN | CST | 7709 | −0.26/−0.14/0.1 | 0.97/0.99/0.99 | 1.07/0.74/0.65 | 0.81/0.86/0.88 |
TAR | EXT | 8336 | −0.24/−0.06/0.19 | 0.99/0.99/0.99 | 0.73/0.75/0.57 | 0.88/0.89/0.89 | |
CST | 7763 | −0.6/−0.28/0.2 | 0.94/0.98/0.98 | 1.49/0.89/0.81 | 0.73/0.83/0.86 | ||
BIL | EXT | 6696 | −0.38/−0.32/0.08 | 0.98/0.99/0.99 | 0.78/0.53/0.41 | 0.83/0.88/0.91 | |
CST | 6835 | −0.61/−0.31/−0.22 | 0.96/0.99/0.99 | 1.06/0.63/0.59 | 0.7/0.83/0.84 | ||
ALM | EXT | 7683 | −0.22/−0.02/0.05 | 0.96/0.95/0.95 | 1.05/1.12/1.15 | 0.77/0.76/0.76 | |
GCA | CST | 8403 | −0.31/−0.02/−0.15 | 0.95/0.97/0.97 | 0.59/0.4/0.38 | 0.6/0.76/0.76 | |
AVERAGE | −0.37/−0.16/0.04 | 0.96/0.98/0.98 | 0.97/0.72/0.65 | 0.76/0.83/0.84 | |||
SSS (PSU) | TAR | EXT | 8333 | −0.13/−0.14/−0.18 | 0.54/0.49/0.43 | 0.23/0.24/0.28 | −0.18/−0.26/−0.49 |
BIL | EXT | 5229 | 0.16/0.21/0.14 | 0.6/0.58/0.58 | 0.3/0.3/0.31 | 0.16/0.09/0.15 | |
ALM | EXT | 7670 | −0.16/−0.17/−0.16 | 0.2/0.16/0.21 | 0.51/0.52/0.51 | −0.09/−0.12/−0.08 | |
AVERAGE | −0.04/−0.03/−0.07 | 0.45/0.41/0.41 | 0.35/0.35/0.37 | −0.04/−0.10/−0.14 | |||
SC_S (m/s) | TAR | EXT | 8336 | 0.06/0.08/0.05 | 0.36/0.34/0.35 | 0.16/0.18/0.17 | −0.29/−0.45/−0.29 |
BIL | EXT | 5858 | −0.06/−0.03/−0.07 | 0.19/0.15/0.15 | 0.14/0.15/0.14 | −0.2/−0.22/−0.19 | |
ALM | EXT | 7619 | 0.14/0.17/0.11 | 0.06/−0.02/0.02 | 0.25/0.27/0.24 | −0.67/−0.91/−0.56 | |
AVERAGE | 0.05/0.07/0.03 | 0.20/0.16/0.17 | 0.18/0.20/0.18 | −0.39/−0.53/−0.35 | |||
SC_D (°) | TAR | EXT | 8336 | 6/−0.1/6 | 0.2/0.15/0.22 | 97/99/93 | −0.1/−0.12/−0.05 |
BIL | EXT | 5858 | 9/−3/6 | 0.28/0.31/0.31 | 125/123/122 | 0.08/0.11/0.11 | |
ALM | EXT | 7619 | −35/−29/−32 | 0.06/0.07/0.06 | 138/139/134 | −0.19/−0.18/−0.15 | |
AVERAGE | −7/−11/−7 | 0.18/0.18/0.20 | 120/120/116 | −0.07/−0.06/−0.03 | |||
SLev (m) | BCN | TGS | 8487 | Not applicable | 0.85/0.84/0.92 | 0.06/0.06/0.04 | 0.44/0.43/0.59 |
TAR | TGS | 8423 | 0.89/0.88/0.92 | 0.05/0.05/0.04 | 0.52/0.5/0.6 | ||
BIL | TGS | 8394 | 0.99/0.99/0.97 | 0.13/0.16/0.27 | 0.9/0.89/0.74 | ||
ALM | TGS | 8475 | 0.88/0.87/0.88 | 0.06/0.06/0.06 | 0.52/0.52/0.53 | ||
GCA | TGS | 8481 | 0.99/0.99/0.98 | 0.08/0.09/0.12 | 0.87/0.86/0.8 | ||
AVERAGE | 0.92/0.91/0.93 | 0.08/0.08/0.11 | 0.65/0.64/0.65 |
Variable | Dom | Pnt | N | Bias (ADV/H3D/IBI) | Correlation (ADV/H3D/IBI) | RMS (ADV/H3D/IBI) |
---|---|---|---|---|---|---|
SC_S (m/s) | TAR | P1 | 7457 | 0.02/0.05/−0.01 | 0.27/0.30/0.20 | 0.12/0.12/0.11 |
P2 | 7696 | 0.01/0.02/−0.01 | 0.42/0.41/0.28 | 0.11/0.12/0.11 | ||
P3 | 7561 | 0.02/0.03/0.01 | 0.32/0.37/0.25 | 0.12/0.12/0.11 | ||
P4 | 6466 | 0.02/0.05/0.01 | 0.40/0.40/0.27 | 0.12/0.12/0.11 | ||
P5 | 7158 | 0.06/0.08/0.06 | 0.33/0.32/0.26 | 0.14/0.14/0.15 | ||
AVERAGE | 0.03/0.05/0.01 | 0.35/0.36/0.25 | 0.12/0.12/0.12 | |||
GCA | P1 | 7639 | 0.12/0.06/0.04 | 0.03/0.19/0.28 | 0.18/0.14/0.11 | |
P2 | 7669 | 0.06/0.09/0.05 | 0.19/0.2/0.26 | 0.15/0.14/0.12 | ||
P3 | 7681 | 0.08/0.05/0.04 | 0.02/0.24/0.30 | 0.18/0.13/0.11 | ||
P4 | 7660 | 0.11/0.1/0.06 | 0.16/0.24/0.28 | 0.17/0.15/0.12 | ||
P5 | 7914 | 0.06/0.06/0.01 | 0.29/0.41/0.41 | 0.17/0.15/0.13 | ||
AVERAGE | 0.09/0.07/0.04 | 0.14/0.26/0.31 | 0.17/0.14/0.12 | |||
SC_D (°) | TAR | P1 | 7457 | −4/−4/−3 | 0.21/0.28/0.25 | 105/100/102 |
P2 | 7696 | 2/6/3 | 0.38/0.40/0.47 | 89/89/84 | ||
P3 | 7561 | 17/16/24 | 0.22/0.24/0.31 | 108/108/104 | ||
P4 | 6466 | 30/22/20 | 0.29/0.28/0.26 | 108/105/104 | ||
P5 | 7158 | 21/19/18 | 0.16/0.22/0.20 | 107/101/101 | ||
AVERAGE | 13/12/12 | 0.25/0.28/0.30 | 103/101/99 | |||
GCA | P1 | 7639 | −30/−12/−16 | 0.07/0.20/0.18 | 97/91/97 | |
P2 | 7669 | −6/4/2 | 0.16/0.34/0.37 | 81/68/73 | ||
P3 | 7681 | −26/−7/−13 | 0.09/0.22/0.20 | 94/89/96 | ||
P4 | 7660 | −2/3/1 | 0.14/0.36/0.32 | 74/67/77 | ||
P5 | 7914 | 7/5/3 | 0.12/0.37/0.28 | 62/56/69 | ||
AVERAGE | −11/−1/−5 | 0.12/0.30/0.27 | 82/74/82 |
SAMOA System | Sea Level | Surface Currents | SST | SSS |
---|---|---|---|---|
Barcelona (BCN) | (S/W) | - | (W/S) | - |
Tarragona (TAR) | (I/I) | (S/S) | (W/W) | (S/S) |
Bilbao (BIL) | (S/I *) | (S/S) | (I/S) | (I/I) |
Ferrol (FER) | (S/I *) | - | (I */W) | - |
Vigo (VIG) | (S/I) | - | - | - |
Almería (ALM) | (S/I) | (S/W) | (I */I) | (S/S) |
Gran Canaria (GCA) | (S/I *) | - | (I */W) | - |
La Gomera (GOM) | (I/I) | - | - | - |
St. Cruz Palma (PAL) | (S/I *) | - | - | - |
Tenerife (TEN) | - | - | (I */W) | - |
SAMOA System | Sea Level | Surface Currents | SST | SSS |
---|---|---|---|---|
Barcelona (BCN) | (S/W) | - | (I */S) | - |
Tarragona (TAR) | (S/W) | (I/I) | (I */I) | (S/I *) |
Bilbao (BIL) | (S/I *) | (S/S) | (I */S) | (W/W) |
Almería (ALM) | (S/S) | (S/W) | (I/S) | (W/W) |
Gran Canaria (GCA) | (S/I *) | (I */I) | (I */I) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-León, M.; Sotillo, M.G.; Mestres, M.; Espino, M.; Fanjul, E.Á. Improving Operational Ocean Models for the Spanish Port Authorities: Assessment of the SAMOA Coastal Forecasting Service Upgrades. J. Mar. Sci. Eng. 2022, 10, 149. https://doi.org/10.3390/jmse10020149
García-León M, Sotillo MG, Mestres M, Espino M, Fanjul EÁ. Improving Operational Ocean Models for the Spanish Port Authorities: Assessment of the SAMOA Coastal Forecasting Service Upgrades. Journal of Marine Science and Engineering. 2022; 10(2):149. https://doi.org/10.3390/jmse10020149
Chicago/Turabian StyleGarcía-León, Manuel, Marcos G. Sotillo, Marc Mestres, Manuel Espino, and Enrique Álvarez Fanjul. 2022. "Improving Operational Ocean Models for the Spanish Port Authorities: Assessment of the SAMOA Coastal Forecasting Service Upgrades" Journal of Marine Science and Engineering 10, no. 2: 149. https://doi.org/10.3390/jmse10020149
APA StyleGarcía-León, M., Sotillo, M. G., Mestres, M., Espino, M., & Fanjul, E. Á. (2022). Improving Operational Ocean Models for the Spanish Port Authorities: Assessment of the SAMOA Coastal Forecasting Service Upgrades. Journal of Marine Science and Engineering, 10(2), 149. https://doi.org/10.3390/jmse10020149