Nutritional Appraisal and Antidiabetic Activity of a Kind of Mixed Plasma Proteolytic Peptide from Tachpleus tridentatus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of PPPT
2.2. Amino Acid Composition Analysis
2.3. Amino Acid Score (AAS)
FAO/WHO standard model) × 100
2.4. Protein Efficiency Ratio (PER)
2.5. Determination of DPPH Free Radical Scavenging Ability
2.6. Determination of Hydroxyl Radical Scavenging Capacity
2.7. Total Antioxidant Capacity Test
2.8. Inhibitory Activity on α-Glucosidase
2.9. Inhibitory Activity on Lipase
2.10. Establishment of Type II Diabetic Model Mice
2.11. Animal Grouping
2.12. Test of Fasting Serum Insulin (FINS)
2.13. Test of Immune Organ Index
2.14. Test of Mice Fasting Blood Glucose and Oral Glucose Tolerance Test
2.15. Test of TG, TC, HDL-C, and LDL-C Concentration
2.16. Microscopical Observation of the Pancreatic Tissue
2.17. Statistical Analyses
3. Results
3.1. Amino Acid Analysis and Nutritional Evaluation of PPPT
3.2. Antioxidant Activities In Vitro
3.3. Inhibitory Activities against Enzymes In Vitro
3.4. Effect of PPPT on Insulin Levels in Serum from Type II Diabetic Mice
3.5. Effect of PPPT on the Immune Organ Index of Type II Diabetic Mice
3.6. Effect of PPPT on Glucose Tolerance of Type II Diabetic Mice
3.7. Effect of PPPT on TG, TC, LDL-C, and HDL-C of Type II Diabetic Mice
3.8. Effect of PPPT on Repair of Pancreas Histopathological Lesion of Type II Diabetic Mice
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruno, R.M.; Giannini, L.; Dardano, A.; Biancalana, E.; Stefano, T.; Lorenzo, G.; Solini, A. Dapagliflozin preserves renal vasodilating capacity in hypertensive patients with type II diabetes. Artery Res. 2018, 24, 96. [Google Scholar] [CrossRef]
- Xue, T.; Yu, G.; Min, Z.; Mowei, K.; Lihua, Z.; Zengbin, F.; Qitian, S.; Jianqiu, H.; Xiaoyan, L. The association between serum Sestrin2 and the risk of coronary heart disease in patients with type II diabetes mellitus. BMC Cardiovasc. Disord. 2022, 22, 281. [Google Scholar]
- Baisong, Y.; Chunxia, D.; Zhijian, H.; Bing, L. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on renal outcomes in patients with type II diabetes mellitus and chronic kidney disease: A protocol for systematic review and meta-analysis. Medine 2021, 100, e24655. [Google Scholar]
- Rongrong, Z.; Shan, Z.; Liang, X.; Xiaoming, B. Incidence, Morbidity and years Lived With Disability due to type II Diabetes Mellitus in 204 Countries and Territories: Trends From 1990 to 2019. Front. Endocrinol. 2022, 13, 905538. [Google Scholar]
- Mary, M. Type 2 diabetes: Type II diabetes can cause blindness, kidney failure and peripheral neuropathy, and is associated with premature death. Mary MacKinnon reviews this complex major disease and describes new treatments that are due to be licensed in the UK in the coming year. Nurs. Stand. 1999, 14, 39–45. [Google Scholar]
- The International Diabetes Federation. Diabetes Now Affects One in 10 Adults Worldwide [EB/OL]. (2021-11-02) [2021-11-07]. Available online: https://www.idf.org/news/240:diabetes-now-affects-one-in-10-adults-worldwide.html (accessed on 12 July 2021).
- Diabetes Branch of the Chinese Medical Association. Guideline for the prevention and treatment of type II diabetes mellitus in China (2020 edition) (Number one). Chin. J. Pract. Intern. Med. 2021, 41, 668–695. [Google Scholar]
- Menif, E.E.; Offret, C.; Labrie, S. Identification of peptides implicated in antibacterial activity of snow crab hepatopancreas hydrolysates by a bioassay-guided fractionation approach combined with mass spectrometry. Probiot. Antimicrob. Proteins 2018, 10, 1023–1033. [Google Scholar] [CrossRef]
- You, M.; Liao, L.; Hong, S.H.; Park, W.; Kwon, D.I.; Lee, J.; Noh, M.; Oh, D.C.; Oh, K.B.; Shin, J. Lumazine peptides from the marine-derived fungus aspergillus terreus. Mar. Drugs 2015, 13, 1290–1303. [Google Scholar] [CrossRef]
- So, P.B.T.; Rubio, P.; Lirio, S.; Macabeo, A.P.; Hsi-ya, H.; Mary Jho-Anne, T.C.; Villaflores, O.B. In vitro angiotensin I converting enzyme inhibition by a peptide isolated from Chiropsalmus quadrigatus Haeckel (box jellyfish) venom hydrolysate. Toxicon 2016, 119, 77–83. [Google Scholar] [CrossRef]
- Trong, T.; Ngoc, P.; Gregory, F.; John, H.; Ronald, Q. Potent Cytotoxic Peptides from the Australian Marine Sponge Pipestela candelabra. Mar. Drugs 2014, 12, 3399–3415. [Google Scholar] [CrossRef] [Green Version]
- Meiling, Q.; Maolin, T.; Hui, C. Identification and in silico prediction of anticoagulant peptides from the enzymatic hydrolysates of mytilus edulis proteins. Int. J. Mol. Sci. 2018, 19, 2100. [Google Scholar] [CrossRef] [Green Version]
- Jianguo, D.; Jinguang, W.; Gang, J.; Guanghua, H.; Wen, C.; Haiwei, X.; Yan, Z. Analysis of Free Amino acids and Fatty acids in Limulus Limulus Serum. Hubei Agric. Sci. 2007, 46, 606–607. [Google Scholar]
- Nakamura, T.; Furunaka, H.; Miyata, T. Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). J. Biochem. 1988, 263, 16709–16713. [Google Scholar]
- Tamamura, H.; Otaka, A.; Murakami, T. Interaction of an anti-HIV peptide, T22, with gp120 and CD4. Biochem. Biophys. Res. Commun. 1996, 219, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.F.; Ouyang, G.L.; Peng, X.X.; Hong, S.G. Effects of tachyplesin on the regulation of cell cycle in human hepatocarcinoma SMMC-7721 cells. World J. Gastroenterol. 2003, 9, 454–458. [Google Scholar] [CrossRef]
- Chunmei, D.; Jianxi, D.; Xinhuang, K.; Lanzhen, H.; Yanmei, W. Application for a Hydrolysis Method of Tachpleus tridentayus Plasma Protein. Patent No.: CN201610651742. X, 7 January 2020. [Google Scholar]
- Michael, F.; Hans-Werner, L. Hydrolysis and amino acid composition analysis of proteins. J. Chromatogr. A 1998, 826, 109–134. [Google Scholar]
- Abdul-Hamid, A.; Bakar, J.; Bee, G.H. Nutritional quality of spray dried protein hydrolysate from Black Tilapia (Oreochromis mossambicus). Food Chem. 2002, 78, 69–74. [Google Scholar] [CrossRef]
- Alsemeyer, R.H.; Cunningham, A.E.; Happich, M.L. Equations predict PER from amino acid analysis. Food Technol. 1974, 28, 34–38. [Google Scholar]
- Song, Z.; Chaodong, D.; Tian, Y.; Xin, C.; Yuanfa, L.; Shangwei, C.; Yue, Y. Antioxidant activity of selenium-enriched peptides from the protein hydrolysate of cardamine violifolia. J. Food Sci. 2019, 84, 3504–3511. [Google Scholar]
- Jacque-Ann, G.; Ron, H. A comparative study of the hydroxyl radical scavenging capacity of activated sludge and membrane bioreactor wastewater effluents. Water Sci. Technol. 2016, 73, 2067–2073. [Google Scholar]
- Benzie, I.F.; Strain, J.J. The Ferric Reducing Ability of Plasma(FRAP) as a Measure of “Antioxidant Power”: The FRAP assay. Anal Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Jeon, S.Y.; Oh, S.; Kim, E.; Imm, J.Y. α-Glucosidase inhibiton and antiglycation activity of laccase-catalyzed catechin polymers. J. Agric. Food Chem. 2013, 61, 4577–4584. [Google Scholar] [CrossRef] [PubMed]
- Margesin, R.; Feller, G.; Hammerle, M.; Stegner, U.; Schinner, F. A colorimetric method for the determination of lipase activity in soil. Biotechnol. Lett. 2002, 24, 27–33. [Google Scholar] [CrossRef]
- Liangmei, L. Extraction, Hypoglycemic and Hypolipidemic Effects of Bioactive Dietary Fiber from Bamboo Shoot Shell. Master’s Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2016. [Google Scholar]
- FAO/WHO. Energy and Protein Requirements; WHO Tech. Rep. Ser. No. 522; FAO/WHO: Geneva, Switzerland, 1973; p. 38.
- Zhao, F.; Zhuang, P.; Song, C.; Shi, Z.H.; Zhang, L.Z. Amino acid and fatty acid compositions and nutritional quality of muscle in the pomfret, Pampus punctatissimus. Food Chem. 2010, 118, 224–227. [Google Scholar] [CrossRef]
- Kim, G.; Jang, H.; Kim, C. Antioxidant capacity of caseinophosphopeptides prepared from sodium caseinate using Alcalase. Food Chem. 2007, 104, 1359–1365. [Google Scholar] [CrossRef]
- Lihua, X.; Yanping, C.; Zhi, Z. Effects of long-term toxicity test of 24 toxic Chinese herbs on visceral index in rats. Chin. J. Basic Med. Tradit. Chin. Med. 2006, 12, 35–36, 55. [Google Scholar]
- Bhor, V.M.; Raghuram, N.; Sivakami, S. Oxidative damage and altered antioxidant enzyme activities in the small intestine of streptozotocin-induced diabetic rats. Int. J. Biochem. Cell B. 2004, 36, 89–97. [Google Scholar] [CrossRef]
- Kowluru, R. Diabetes-induced elevations in retinal oxidative stress, protein kinase C and nitric oxide are interrelated. Acta Diabetol. 2001, 38, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Fox, R.B. Prevention of granulocyte-mediated oxidant lung injury in rats by a hydroxyl radical scavenger, dimethylthiourea. J. Clin. Investig. 1984, 74, 1456–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, H.; Kawabata, J. 2-Aminoresorcinol is a potent alpha-glucosidase inhibitor. Bioorg. Med. Chem. Lett. 2008, 18, 812–815. [Google Scholar] [CrossRef] [PubMed]
- Salim, B. Review: Diabetes mellitus and its treatment. Int. J. Diabetes Metab. 2005, 13, 111–134. [Google Scholar]
- Huiling, G.; Yanyan, Y.; Weiping, L. Effects of polygona-polysaccharose on blood glucose level and antioxidant activity in diabetic mice induced by alloxan. Acta Univ. Med. Anhui. 2008, 43, 538–540. [Google Scholar]
Amino Acid | Content (g/100 g) | Content (g/100 g) in FAO/WHO Recommended Model | |
---|---|---|---|
Child (2–5 Years) | Adult | ||
Essential amino acids | |||
Threonine | 1.14 | 3.4 | 0.9 |
Valine | 1.68 | 3.5 | 1.3 |
Methionine | 0.85 | ||
Methionine + cystine | 4.27 | 2.5 | 1.7 |
Phenylalanine | 1.11 | ||
Phenylalanine + tyrosine | 1.94 | 6.3 | 1.9 |
Isoleucine | 1.31 | 2.8 | 1.3 |
Leucine | 2.06 | 6.6 | 1.9 |
Lysine | 1.33 | 5.8 | 1.6 |
Tryptophane | - | 1.1 | 0.5 |
Histidine | 2.25 | 1.9 | 1.6 |
Nonessential amino acids | |||
Aspartic acid | 3.10 | ||
Glutamate | 3.41 | ||
Serine | 1.30 | ||
Glycine | 1.11 | ||
Arginine | 1.12 | ||
Alanine | 0.94 | ||
Tyrosine | 0.83 | ||
Cystine | 3.42 | ||
Proline | 0.88 |
Classification | Content (g/100 g) |
---|---|
Nonpolar amino acid | 8.83 |
Polar and neutral amino acid | 4.38 |
Acidic amino acid | 6.51 |
Basic amino acid | 4.7 |
Sulfur-containing amino acid | 4.27 |
Aromatic amino acid | 1.94 |
Index | PPPT |
---|---|
Essential amino acids (E/T)/% | 11.73 |
Amino acid score (AAS) | 24.2 |
First restrictive amino acid and score/% | Lysine (24.2) |
Second restrictive amino acid and score/% | Threonine (28.5) |
Third restrictive amino acid and score/% | Leucine (29.4) |
Fourth restrictive amino acid and score/% | Isoleucine (32.8) |
Protein efficiency ratio (PER)1 | 2.54 |
Protein efficiency ratio (PER)2 | 2.64 |
Protein efficiency ratio (PER)3 | 4.18 |
Groups | Thymus Index (g/kg) | Spleen Index (g/kg) | Liver Index (g/kg) | Kidney Index (g/kg) |
---|---|---|---|---|
Normal group | 2.98 ± 1.38 | 4.22 ± 1.18 | 45.58 ± 3.27 | 13.06 ± 1.35 |
Model group | 0.62 ± 0.14 A | 2.19 ± 0.09 A | 72.83 ± 4.91 A | 21.69 ± 1.06 A |
Medicine group | 2.57 ± 0.11 B | 4.13 ± 1.42 B | 48.15 ± 2.85 AB | 13.87 ± 1.52 B |
PPPT-4 group | 2.21 ± 0.53 aB | 4.07 ± 0.82 B | 50.98 ± 3.37 ABc | 14.25 ± 1.94 B |
PPPT-1 group | 1.10 ± 0.70 ABC | 3.86 ± 0.94 aB | 56.06 ± 4.18 ABC | 19.14 ± 2.04 ABC |
Group | Glucose | Concentration | (mmol/L) | |||
---|---|---|---|---|---|---|
0 min | 15 min | 30 min | 60 min | 90 min | 120 min | |
Normal group | 3.95 ± 0.84 | 8.13 ± 1.07 | 13.54 ± 1.27 | 11.32 ± 1.18 | 5.35 ± 0.93 | 4.05 ± 0.77 |
Model group | 15.70 ± 0.31 A | 23.40 ± 0.99 A | 25.31 ± 1.14 A | 22.90 ± 0.87 A | 21.40 ± 0.82 A | 18.31 ± 0.75 A |
Medicine group | 7.35 ± 0.53 AB | 13.19 ± 2.01 AB | 16.15 ± 1.47 AB | 14.42 ± 1.22 AB | 9.58 ± 1.06 AB | 7.33 ± 0.81 AB |
PPPT-4 group | 9.12 ± 0.65 ABc | 15.5 ± 0.72 ABC | 19.7 ± 1.34 ABC | 18.4 ± 0.82 ABC | 14.24 ± 0.97 ABC | 8.75 ± 1.05 ABc |
PPPT-1 group | 10.8 ± 1.14 ABC | 17.9 ± 0.68 ABC | 21.8 ± 1.05 ABC | 19.6 ± 0.83 ABC | 17.11 ± 0.67 ABC | 11.37 ± 1.20 ABC |
Group | Serum Lipids | Concentration (mmol/L) | ||
---|---|---|---|---|
TG | TC | LDL-C | HDL-C | |
Normal group | 1.13 ± 0.16 | 2.95 ± 0.22 | 0.56 ± 0.07 | 2.50 ± 0.23 |
Model group | 1.79 ± 0.14 A | 4.51 ± 0.17 A | 2.62 ± 0.18 A | 1.62 ± 0.14 A |
Medicine group | 1.25 ± 0.10 B | 3.20 ± 0.26 aB | 1.11 ± 0.09 aB | 2.19 ± 0.31 AB |
PPPT-4 | 1.28 ± 0.12 aB | 3.44 ± 0.34 AB | 1.27 ± 0.11 AB | 1.95 ± 0.15 AB |
PPPT-1 | 1.32 ± 0.15 aB | 3.58 ± 0.24 aB | 1.31 ± 0.10 ABc | 1.87 ± 0.11 Abc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, X.; Zhang, G.; Wu, Y.; Deng, C. Nutritional Appraisal and Antidiabetic Activity of a Kind of Mixed Plasma Proteolytic Peptide from Tachpleus tridentatus. J. Mar. Sci. Eng. 2022, 10, 1502. https://doi.org/10.3390/jmse10101502
Kang X, Zhang G, Wu Y, Deng C. Nutritional Appraisal and Antidiabetic Activity of a Kind of Mixed Plasma Proteolytic Peptide from Tachpleus tridentatus. Journal of Marine Science and Engineering. 2022; 10(10):1502. https://doi.org/10.3390/jmse10101502
Chicago/Turabian StyleKang, Xinhuang, Guoguang Zhang, Yulian Wu, and Chunmei Deng. 2022. "Nutritional Appraisal and Antidiabetic Activity of a Kind of Mixed Plasma Proteolytic Peptide from Tachpleus tridentatus" Journal of Marine Science and Engineering 10, no. 10: 1502. https://doi.org/10.3390/jmse10101502
APA StyleKang, X., Zhang, G., Wu, Y., & Deng, C. (2022). Nutritional Appraisal and Antidiabetic Activity of a Kind of Mixed Plasma Proteolytic Peptide from Tachpleus tridentatus. Journal of Marine Science and Engineering, 10(10), 1502. https://doi.org/10.3390/jmse10101502