Characterization of the Coralligenous Formations from the Marine Protected Area of Karaburun-Sazan, Albania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Macrobenthic Assemblages and Coralligenous Characterization
2.2. Statistical Analysis
3. Results
3.1. Habitat Characterization
3.2. Macrobenthic Assemblage
3.3. Spatial Differences in Community Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ballesteros, E. Mediterranean Coralligenous Assemblages: A Synthesis of Present Knowledge. Oceanogr. Mar. Biol. Annu. Rev. 2006, 44, 123–195. [Google Scholar]
- Cánovas-Molina, A.; Montefalcone, M.; Bavestrello, G.; Cau, A.; Bianchi, C.N.; Morri, C.; Canese, S.; Bo, M. A New Ecological Index for the Status of Mesophotic Macrobenthic Assemblages in the Mediterranean Based on ROV Photography and Video Footage. Cont. Shelf Res. 2016, 121, 13–20. [Google Scholar] [CrossRef]
- UNEP-MAP-RAC/SPA. The Coralligenous in the Mediterranean Sea; Regional Activity Centre for Specially Protected Areas: Tunis, Tunisia, 2003. [Google Scholar]
- Boudouresque, C. Marine Biodiversity in the Mediterranean: Status of Species, Populations and Communities. Trav. Sci. Parc Natl. Port-Cros 2004, 20, 97–146. [Google Scholar]
- Jones, C.G.; Lawton, J.H.; Shachak, M. Organisms as Ecosystem Engineers. Ecosystem Management. Oikos 1994, 69, 373–386. [Google Scholar] [CrossRef]
- Gutierrez, J.L.; Hacker, S.D.; Coombes, M.A.; Wild, C.; Pereira-Filho, G.H.; Palomo, M.G. Chapter 10: Marine Hard Substrate Communities. In Marine Biology: A Functional Approach to the Oceans and Their Organisms; Pan, J., Pratolongo, P.D., Eds.; Marine Science Series; CRC Press: Boca Raton, FL, USA, 2022; Volume 1, pp. 232–273. [Google Scholar]
- Corriero, G.; Pierri, C.; Mercurio, M.; Nonnis Marzano, C.; Onen Tarantini, S.; Gravina, M.F.; Lisco, S.; Moretti, M.; De Giosa, F.; Valenzano, E.; et al. A Mediterranean Mesophotic Coral Reef Built by Non-Symbiotic Scleractinians. Sci. Rep. 2019, 9, 3601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardone, F.; Corriero, G.; Longo, C.; Mercurio, M.; Onen Tarantini, S.; Gravina, M.F.; Lisco, S.; Moretti, M.; De Giosa, F.; Giangrande, A.; et al. Massive Bioconstructions Built by Neopycnodonte Cochlear (Mollusca, Bivalvia) in a Mesophotic Environment in the Central Mediterranean Sea. Sci. Rep. 2020, 10, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardone, F.; Corriero, G.; Longo, C.; Pierri, C.; Gimenez, G.; Gravina, M.F.; Giangrande, A.; Lisco, S.; Moretti, M.; De Giosa, F.; et al. A System of Marine Animal Bioconstructions in the Mesophotic Zone along the Southeastern Italian Coast. Front. Mar. Sci. 2022, 9, 1504. [Google Scholar] [CrossRef]
- Garrabou, J.; Ballesteros, E. Growth of Mesophyllum alternans and Lithophyllum frondosum (Corallinales, Rhodophyta) in the northwestern Mediterranean. Eur. J. Phycol. 2000, 35, 1–10. [Google Scholar] [CrossRef]
- Buhl-Mortensen, P.; Buhl-Mortensen, L.; Purser, A. Trophic Ecology and Habitat Provision in Cold-Water Coral Ecosystems. In Marine Animal Forests. The Ecology of Benthic Biodiversity Hotspots; Springer: Cham, Switzerland, 2016; pp. 1–26. [Google Scholar] [CrossRef]
- Fraschetti, S.; Terlizzi, A.; Guarnieri, G.; Pizzolante, F.; D’Ambrosio, P.; Maiorano, P.; Beqiraj, S.; Boero, F. Effects of Unplanned Development on Marine Biodiversity: A Lesson from Albania (Central Mediterranean Sea). J. Coast. Res. 2011, 270, 106–115. [Google Scholar] [CrossRef]
- Kashta, L.; Beqiraj, S.; Tilot, V.; Zuna, V.; Dodbiba, E. The first MPA in Albania, Sazani island - Karaburini peninsula, as a regional priority conservation area for marine biodiversity. Varst. Narave 2011, 1, 139–158. [Google Scholar]
- UNEP/MAP-PAP/RAC-SPA/RAC; MET; NAPA. Integrated Monitoring Programme—Albania; PAP/RAC, GEF Adriatic project: Tirana, Albania, 2021; 176p. [Google Scholar]
- UNEP-MAP-RAC/SPA. Action Plan for the Conservation of the Coralligenous and Other Calcareous Bio-Concretions in the Mediterranean Sea; Regional Activity Centre for Specially Protected Areas: Tunis, Tunisia, 2008. [Google Scholar]
- Kabo, M. Gjeografia Fizike e Shqipërisë, Akademia e Shkencave Të Shqiperisë. Qendra Stud. Gjeogr. 1990, I, 400. [Google Scholar]
- Gjiknuri, L. Results of the Echinoderms Study on the Albanian Coast. Ph.D. Thesis, University of Tirana, Tirana, Albania, 1980. [Google Scholar]
- Kashta, L. Të Dhëna Ekologjike Dhe Biogjeografike Mbi Algat e Gjelbra Të Gjirit Të Vlorës. [Ecological and Geographical Data about Green Algae in the Bay of Vlora]. Bul. I Shk. Nat. Tiranë 1988, 1, 97–103. [Google Scholar]
- Vaso, A.; Gjiknuri, L. Decapod Crustaceans of the Albanian Coast. Crustaceana 1993, 65, 390–407. [Google Scholar] [CrossRef]
- Dhora, D.; Salvini-Plawen, L. Preliminary List of Gastropoda and Bivalvia from off the Albanian Coast. La Conchiglia 1997, 284, 10–20. [Google Scholar]
- Dhora, D. Molusqe Te Tjere Te Bregdetit Shqiptar [Other Mollusks from the Albanian Coast]. Stud. Biol. Akad. E Shk. Te Shqip. Inst. I Kerk. Biol. 2000, 4, 85–90. [Google Scholar]
- Beqiraj, S. Molusqet Ne: Biodiversiteti Ne Ekosistemin Bregdetar Delta e Vjoses–Laguna e Nartes [Molluscs In: Biodiversity in the Coastal Ecosystem Delta of Vjosa–Narta Lagoon]; United Nations Development Programme, Global Environment Facility Small Grant Programme, SHBSH: Tirana, Albania, 2001; pp. 46–52. [Google Scholar]
- Beqiraj, S.; Kashta, L. Te Dhena Paraprake per Makrofaunen Bentike Shoqeruese Te Livadheve Te Posidonia oceanica Ne Bregdetin Shqiptar. [Preliminary Data on the Benthic Macrofauna Associated to the Meadows of Posidonia oceanica in the Albanian Coast]. Bul. I Shk. Nat. Univ. I Shkodres 2007, 58, 107–121. [Google Scholar]
- Selmani, J.; Beqiraj, S. Comparative Data On Macrozoobenthos Community Between Eastern And Western Coasts Of Sazani Island, Albania. Glob. J. Res. Anal. 2021, 10, 122–124. [Google Scholar] [CrossRef]
- Rajkovic, Z.; Kromidha, G. Management Plan for National Marine Park Karaburun-Sazan; United Nations Development Programme: New York, NY, USA, 2014. [Google Scholar]
- Kashta, L.; Beqiraj, S. Analysis of the Proposed Potential Marine Protected Areas. Protected Areas Gap Assessment and Marine Protected Areas Development in Albania; UNDP: New York, NY, USA; GEF: Washington, DC, USA; MEFWA: Tirana, Albania, 2009; p. 81. [Google Scholar]
- Beqiraj, S.; Zuna, V.; Dodbiba, E. Priority Action Plan for Sazani—Karaburuni Marine Protected Area; GEF/UNDP: Tirana, Albania, 2010; p. 74. [Google Scholar]
- Beqiraj, S.; Kashta, L. Assessment of Marine Natural Values and Rationale for the Proposed MPA of Rodoni Cape; Technical Report; GEF/UNDP: Tirana, Albania, 2014; p. 52. [Google Scholar]
- Antolić, B.; Špan, A.; Nikolić, V.; Grubelić, I.; Despalatović, M.; Cvitković, I. A Checklist of the Benthic Marine Macroalgae from the Eastern Adriatic Coast: II. Heterokontophyta: Phaeophyceae. Acta Adriat. Int. J. Mar. Sci. 2010, 51, 9–33. [Google Scholar]
- Blanfuné, A.; Boudouresque, C.F.; Verlaque, M.; Beqiraj, S.; Kashta, L.; Nasto, I.; Ruci, S.; Thibaut, T. Response of Rocky Shore Communities to Anthropogenic Pressures in Albania (Mediterranean Sea): Ecological Status Assessment through the CARLIT Method. Mar. Pollut. Bull. 2016, 109, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Andromede Oceanology. Underwater Marine Habitats Mapping of the National Marine Park Karaburun-Sazan (Albania) 2016; Andromede Oceanology/Agence de l’eau Rhône Méditerranée et Corse: Mauguio, France, 2016; pp. 1–82. [Google Scholar]
- Orfanidis, S.; Rindi, F.; Cebrian, E.; Fraschetti, S.; Nasto, I.; Taskin, E.; Bianchelli, S.; Papathanasiou, V.; Kosmidou, M.; Caragnano, A.; et al. Effects of Natural and Anthropogenic Stressors on Fucalean Brown Seaweeds Across Different Spatial Scales in the Mediterranean Sea. Front. Mar. Sci. 2021, 8, 1330. [Google Scholar] [CrossRef]
- Kashta, L. Marine Macrophyte Algae of Albania. Ph.D. Thesis, University of Tirana, Tirana, Albania, 1986. [Google Scholar]
- Kupe, L.; Miho, A. Considerations about Environmental State of Important Aquatic Habitats in Albania Based in Algal Assessment–A Review. In Proceedings of the RiverNet Conference, Tirana, Albania, 15–16 May 2006. [Google Scholar]
- Ercegovic, A. Sur Les Cystoseira Adriatiques: Leur Morphologie, Ecologie et Evolution. In Fauna et Flora Adriatica; Institut D’Oceanographie et de Peche, 1952; Volume 7. [Google Scholar]
- Kashta, L.; Beqiraj, S.; Mato, X.; Xhulaj, M.; Gae, A.; Mullaj, A. The Inventory of Habitats with Posidonia Oceanica and Littoral Habitats in Albania—Technical Report; Protection of the Aquatic Wildlife of Albania, Ministry of Environment, Forests and Water Administration of Albania: Tirana, Albania, 2005; pp. 1–81.
- Kashta, L.; Xhulaj, M.; Mato, X.; Beqiraj, S.; Gaçe, A. The State of Posidonia Meadows along the Albanian Coast: General Evaluation. In Proceedings of the Third Mediterranean Symposium on Marine Vegetation, Marseilles, France, 2–29 March 2007; pp. 27–29. [Google Scholar]
- UNDP/GEF; Ministry of Environment. Management Plan. Complex: LLogora-Rrëza e Kanalit-Dukat-Orikum-Tragjas-Radhimë-Karaburun; GEF UNDP Conservation of Wetland and Coastal Ecosystems in Mediterranean Region Project: Tirana, Albania, 2005; p. 144.
- Savini, A.; Corselli, C.; Durmishi, C.; Marku, S.; Morelli, D.; Tessarolo, C. Geomorphology of the Vlora Gulf Seafloor: Results from Multibeam and High-Resolution Seismic Data. J. Coast. Res. 2011, 2011, 6–16. [Google Scholar] [CrossRef]
- Trygonis, V.; Sini, M. PhotoQuad: A Dedicated Seabed Image Processing Software, and a Comparative Error Analysis of Four Photoquadrat Methods. J. Exp. Mar. Biol. Ecol. 2012, 424, 99–108. [Google Scholar] [CrossRef]
- Brind’Amour, A.; Laffargue, P.; Morin, J.; Vaz, S.; Foveau, A.; Le Bris, H. Morphospecies and Taxonomic Sufficiency of Benthic Megafauna in Scientific Bottom Trawl Surveys. Cont. Shelf Res. 2014, 72, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Strano, F.; Micaroni, V.; Costa, G.; Bertocci, I.; Bertolino, M. Shallow-Water Sponge Grounds along the Apulian Coast (Central Mediterranean Sea). Mar. Biodivers. 2020, 50, 7. [Google Scholar] [CrossRef]
- Clarke, K.R. Non-Parametric Multivariate Analyses of Changes in Community Structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods; PRIMER-E: Plymouth, UK, 2008. [Google Scholar]
- Belmonte, G.; Costantini, A.; Moscatello, S.; Denitto, F.; Shkurtaj, B. Le Grotte Sommerse Della Penisola Del Karaburun (Albania): Primi Dati. Thalass. Salentina 2006, 29, 15–28. [Google Scholar] [CrossRef]
- Fanelli, G.; Piraino, S.; Belmonte, G.; Geraci, S.; Boero, F. Human Predation along Apulian Rocky Coasts (SE Italy): Desertification Caused by Lithophaga lithophaga (Mollusca) Fisheries. Mar. Ecol. Prog. Ser. 1994, 110, 1–8. [Google Scholar] [CrossRef]
- Piazzi, L.; Balata, D.; Ceccherelli, G.; Cinelli, F. Interactive Effect of Sedimentation and Caulerpa racemosa var. cylindracea Invasion on Macroalgal Assemblages in the Mediterranean Sea. Estuar. Coast. Shelf Sci. 2005, 64, 467–474. [Google Scholar] [CrossRef]
- Montefalcone, M.; Morri, C.; Parravicini, V.; Bianchi, C.N. A Tale of Two Invaders: Divergent Spreading Kinetics of the Alien Green Algae Caulerpa taxifolia and Caulerpa cylindracea. Biol. Invasions 2015, 17, 2717–2728. [Google Scholar] [CrossRef]
- Streftaris, N.; Zenetos, A. Alien Marine Species in the Mediterranean-the 100 ‘Worst Invasives’ and Their Impact. Mediterr. Mar. Sci. 2006, 7, 87–118. [Google Scholar] [CrossRef] [Green Version]
- Otero, M.; Cebrian, E.; Francour, P.; Galil, B.; Savini, D. Monitoring Marine Invasive Species in Mediterranean Marine Protected Areas (MPAs): A Strategy and Practical Guide for Managers; IUCN: Malaga, Spain, 2013; 136p. [Google Scholar]
- Corriero, G.; Pierri, C.; Accoroni, S.; Alabiso, G.; Bavestrello, G.; Barbone, E.; Bastianini, M.; Bazzoni, A.M.; Bernardi Aubry, F.; Boero, F.; et al. Ecosystem Vulnerability to Alien and Invasive Species: A Case Study on Marine Habitats along the Italian Coast. Aquat. Conserv. Mar. Freshw. Ecosyst. 2016, 26, 392–409. [Google Scholar] [CrossRef]
- Catford, J.A.; Jansson, R.; Nilsson, C. Reducing Redundancy in Invasion Ecology by Integrating Hypotheses into a Single Theoretical Framework. Divers. Distrib. 2009, 15, 22–40. [Google Scholar] [CrossRef] [Green Version]
- Guelorget, O.; Perthuisot, J.-P. Le Domaine Paralique. Expressions Géologiques, Biologiques et Économiques Du Confinement. Trav. Lab. Géol. 1983, 16, 1–136. [Google Scholar]
- Bakun, A.; Agostini, V.N. Seasonal Patterns of Wind-Induced Upwelling/Downwelling in the Mediterranean Sea. Sci. Mar. 2001, 65, 243–257. [Google Scholar] [CrossRef]
- Agostini, V.N.; Bakun, A. ‘Ocean Triads’ in the Mediterranean Sea: Physical Mechanisms Potentially Structuring Reproductive Habitat Suitability (with Example Application to European Anchovy, Engraulis Encrasicolus). Fish. Oceanogr. 2002, 11, 129–142. [Google Scholar] [CrossRef]
- Sebens, K.P. Habitat Structure and Community Dynamics in Marine Benthic Systems. In Habitat Structure; Springer: Berlin/Heidelberg, Germany, 1991; pp. 211–234. [Google Scholar]
- Rosenberg, R. Benthic Marine Fauna Structured by Hydrodynamic Processes and Food Availability. Neth. J. Sea Res. 1995, 34, 303–317. [Google Scholar] [CrossRef]
- Guichard, F.; Bourget, E. Topographic Heterogeneity, Hydrodynamics, and Benthic Community Structure: A Scale-Dependent Cascade. Mar. Ecol. Prog. Ser. 1998, 171, 59–70. [Google Scholar] [CrossRef]
- Bell, J.J.; Barnes, D.K.A. The Distribution and Prevalence of Sponges in Relation to Environmental Gradients within a Temperate Sea Lough: Inclined Cliff Surfaces. Divers. Distrib. 2000, 6, 305–323. [Google Scholar] [CrossRef]
- Piazzi, L.; Cinti, M.F.; Guala, I.; Grech, D.; La Manna, G.; Pansini, A.; Pinna, F.; Stipcich, P.; Ceccherelli, G. Variations in Coralligenous Assemblages from Local to Biogeographic Spatial Scale. Mar. Environ. Res. 2021, 169, 105375. [Google Scholar] [CrossRef]
- Longo, C.; Cardone, F.; Pierri, C.; Mercurio, M.; Mucciolo, S.; Marzano, C.N.; Corriero, G. Sponges Associated with Coralligenous Formations along the Apulian Coasts. Mar. Biodivers. 2018, 48, 2151–2163. [Google Scholar] [CrossRef]
- Bray, L.; Kassis, D.; Hall-Spencer, J.M. Assessing Larval Connectivity for Marine Spatial Planning in the Adriatic. Mar. Environ. Res. 2017, 125, 73–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paterno, M.; Schiavina, M.; Aglieri, G.; Ben Souissi, J.; Boscari, E.; Casagrandi, R.; Chassanite, A.; Chiantore, M.; Congiu, L.; Guarnieri, G.; et al. Population Genomics Meet Lagrangian Simulations: Oceanographic Patterns and Long Larval Duration Ensure Connectivity among Paracentrotus Lividus Populations in the Adriatic and Ionian Seas. Ecol. Evol. 2017, 7, 2463–2479. [Google Scholar] [CrossRef] [PubMed]
- Çinar, M.E.; Féral, J.P.; Arvanitidis, C.; David, R.; Taşkin, E.; Sini, M.; Dailianis, T.; Doğan, A.; Gerovasileiou, V.; Evcen, A.; et al. Coralligenous Assemblages along Their Geographical Distribution: Testing of Concepts and Implications for Management. Aquat. Conserv. Mar. Freshw. Ecosyst. 2020, 30, 1578–1594. [Google Scholar] [CrossRef]
- Ferrigno, F.; Appolloni, L.; Donnarumma, L.; Di Stefano, F.; Rendina, F.; Sandulli, R.; Russo, G.F. Diversity Loss in Coralligenous Structuring Species Impacted by Fishing Gear and Marine Litter. Diversity 2021, 13, 331. [Google Scholar] [CrossRef]
- Pierdomenico, M.; Bonifazi, A.; Argenti, L.; Ingrassia, M.; Casalbore, D.; Aguzzi, L.; Viaggiu, E.; Le Foche, M.; Chiocci, F.L. Geomorphological Characterization, Spatial Distribution and Environmental Status Assessment of Coralligenous Reefs along the Latium Continental Shelf. Ecol. Indic. 2021, 131, 108219. [Google Scholar] [CrossRef]
- Gaino, E.; Pronzato, R.; Corriero, G.; Buffa, P. Mortality of Commercial Sponges: Incidence in Two Mediterranean Areas. Ital. J. Zool. 1992, 59, 79–85. [Google Scholar] [CrossRef]
- Pronzato, R.; Manconi, R. Mediterranean Commercial Sponges: Over 5000 Years of Natural History and Cultural Heritage. Mar. Ecol. 2008, 29, 146–166. [Google Scholar] [CrossRef]
Parameter | Definition | Value |
---|---|---|
Epibiosis | Extent of the phenomenon of epibiosis on single colonies or individuals as percentage of affected surface | Low: <25% Medium: 25–50% High: >50% |
Necrosis | Extent of the necrosis phenomenon on single colonies or individuals as percentage of affected surface | Low: <25% Medium: 25–50% High: >50% |
Sedimentation | Qualitative estimation of the sedimentary covering | Low: <30% Medium: 30–60% High: >60% |
Inclination | Substrate slope | Horizontal: <30° Inclined: 30–80° Vertical: >80° |
Substrate nature | General characterization of the substrate | Biogenic boulders Rocky cliff Blocks |
Phylum | Class | Species | ZH | DH | HA | WE |
---|---|---|---|---|---|---|
Ocrophyta | Phaeophyceae | Zanardinia typus (Nardo) P.C.Silva, 2000 | * | |||
Padina pavonica (Linnaeus) Thivy, 1960 | * | * | ||||
Cystoseira spp. C.Agardh, 1820 | * | |||||
Chlorophyta | Algal turf | * | * | * | * | |
Ulvophyceae | Caulerpa cylindracea Sonder, 1845 | * | * | |||
Codium bursa (Olivi) C.Agardh, 1817 | * | |||||
Halimeda tuna (J.Ellis & Solander) J.V.Lamouroux, 1816 | * | * | * | |||
Flabellia petiolata (Turra) Nizamuddin, 1987 | * | |||||
Pyramimonadophyc | Palmophyllum crassum (Naccari) Rabenhorst, 1868 | * | * | * | ||
Rhodophyta | Florideophyceae | ECR | * | * | * | * |
Peyssonnelia rubra (Greville) J.Agardh, 1851 | * | * | * | * | ||
Peyssonnelia squamaria (S.G.Gmelin) Decaisne ex J.Agardh, 1842 | * | * | * | * | ||
Porifera | Calcarea | Clathrina clathrus (Schmidt, 1864) | * | |||
Petrobiona massiliana Vacelet & Lévi, 1958 | * | |||||
Homoscleromorpha | Oscarella lobularis (Schmidt, 1862) | * | ||||
Demospongiae | Acanthella acuta Schmidt, 1862 | * | ||||
Agelas oroides (Schmidt, 1864) | * | * | * | * | ||
Aplysina cavernicola (Vacelet, 1959) | * | |||||
Axinella cannabina (Esper, 1794) | * | * | ||||
Axinella damicornis (Esper, 1794) | * | * | * | * | ||
Axinella polypoides Schmidt, 1862 | * | |||||
Axinella verrucosa (Esper, 1794) | * | * | * | * | ||
Chondrosia reniformis Nardo, 1847 | * | * | * | |||
Cliona copiosa (Sarà, 1959) | * | * | ||||
Cliona schmidtii (Ridley, 1881) | * | |||||
Crambe crambe (Schmidt, 1862) | * | * | * | * | ||
Dendroxea lenis (Topsent, 1892) | * | * | * | |||
Dysidea avara (Schmidt, 1862) | * | |||||
Haliclona (Halichoclona) fulva (Topsent, 1893) | * | * | * | * | ||
Haliclona sp. | * | |||||
Hexadella racovitzai Topsent, 1896 | * | |||||
Ircinia variabilis (Schmidt, 1862) | * | |||||
Merlia normani Kirkpatrick, 1908 | * | * | ||||
Mycale (Mycale) massa (Schmidt, 1862) | * | |||||
Petrosia (Petrosia) ficiformis (Poiret, 1789) | * | * | * | |||
Phorbas tenacior (Topsent, 1925) | * | * | * | |||
Sarcotragus foetidus Schmidt, 1862 | * | * | ||||
Sarcotragus spinosulus Schmidt, 1862 | * | * | ||||
Scalarispongia scalaris (Schmidt, 1862) | ||||||
Spirastrellidae ind. | * | * | * | * | ||
Spongia lamella (Schulze, 1879) | * | |||||
Spongia (Spongia) officinalis Linnaeus, 1759 | * | |||||
Cnidaria | Hydrozoa | Hydrozoa ind. | * | * | * | * |
Anthozoa | Caryophyllia sp. | * | ||||
Cladopsammia rolandi Lacaze-Duthiers, 1897 | * | * | * | |||
Leptopsammia pruvoti Lacaze-Duthiers, 1897 | * | * | * | |||
Madracis pharensis (Heller, 1868) | * | * | * | * | ||
Mollusca | Nudibranchia | Flabellina affinis (Gmelin, 1791) | * | |||
Peltodoris atromaculata Bergh, 1880 | * | |||||
Annelida | Polychaeta | Filograna implexa Berkeley, 1835 | * | * | ||
Sabella spallanzanii (Gmelin, 1791) | * | * | ||||
Hermodice carunculata (Pallas, 1766) | * | * | ||||
Bryozoa | Stenolaemata | Frondipora verrucosa (Lamouroux, 1821) | * | |||
Gymnolaemata | Myriapora truncata (Pallas, 1766) | * | * | |||
Pentapora fascialis (Pallas, 1766) | * | * | * | |||
Schizomavella spp. | * | |||||
Arthropoda | Malacostraca | Palinurus elephas (Fabricius, 1787) | * | * | ||
Echinodermata | Asteroidea | Echinaster (Echinaster) sepositus (Retzius, 1783) | * | |||
Hacelia attenuata Gray, 1840 | * | * | * | |||
Echinoidea | Sphaerechinus granularis (Lamarck, 1816) | * | * | * | ||
Centrostephanus longispinus (Philippi, 1845) | * | |||||
Chordata | Ascidiacea | Halocynthia papillosa (Linnaeus, 1767) | * | * | * | * |
Source | Df | MS | Pseudo-F | P(perm) |
---|---|---|---|---|
Site | 3 | 16188 | 15.762 | 0.0001 |
Depth | 1 | 4135.8 | 4.0269 | 0.0002 |
Site × Depth | 3 | 4707.5 | 4.5836 | 0.0001 |
Res | 72 | 1027 | ||
Total | 79 | |||
Pairwise test (site × depth): for Depth 15–20: ZH ≠ WE ≠ DH = HA for Depth 25–30: ZH ≠ WE ≠ DH ≠ HA |
Group ZH | |||||
Deep | |||||
Average similarity: 36.54 | |||||
Species | Av. Abund | Av. Sim | Sim/SD | Contrib% | Cum% |
Peyssonnelia sp. | 31.95 | 16.88 | 0.86 | 46.18 | 46.18 |
Algal turf | 17.79 | 7.54 | 0.80 | 20.63 | 66.82 |
OTU EOS | 5.27 | 2.61 | 0.64 | 7.14 | 73.96 |
ECR | 4.61 | 1.71 | 0.42 | 4.69 | 78.64 |
Agelas oroides | 2.77 | 1.45 | 0.69 | 3.96 | 82.61 |
OTU BHS | 8.51 | 1.44 | 0.43 | 3.95 | 86.55 |
Spongia (Spongia) officinalis | 5.28 | 1.37 | 0.37 | 3.75 | 90.31 |
Shallow | |||||
Average similarity: 52.53 | |||||
Peyssonnelia sp. | 42.03 | 19.69 | 2.43 | 37.48 | 37.48 |
Algal turf | 26.93 | 8.97 | 1.20 | 17.07 | 54.55 |
OTU BHS | 30.14 | 6.64 | 0.95 | 12.63 | 67.18 |
ECR | 19.83 | 4.26 | 1.95 | 8.11 | 75.29 |
Agelas oroides | 12.46 | 4.22 | 2.17 | 8.04 | 83.33 |
Hydrozoa ind. | 11.06 | 2.70 | 1.42 | 5.14 | 88.47 |
Cliona viridis | 8.95 | 1.77 | 0.62 | 3.38 | 91.85 |
Group DH | |||||
Deep | |||||
Average similarity: 53.58 | |||||
Species | Av. Abund | Av. Sim | Sim/SD | Contrib% | Cum% |
ECR | 4.91 | 10.48 | 2.97 | 19.56 | 19.56 |
Hydrozoa ind. | 5.39 | 9.55 | 1.63 | 17.83 | 37.39 |
Peyssonnelia sp. | 6.17 | 9.48 | 2.96 | 17.70 | 55.08 |
Agelas oroides | 3.22 | 4.68 | 2.16 | 8.74 | 63.82 |
OTU EOS | 15.08 | 2.31 | 0.84 | 5.14 | 81.81 |
Cliona viridis | 21.72 | 2.16 | 0.37 | 4.82 | 86.63 |
OTU BHS | 9.89 | 1.62 | 0.51 | 3.06 | 90.23 |
Shallow | |||||
Average similarity: 63.85 | |||||
Peyssonnelia sp. | 37.94 | 23.57 | 7.59 | 36.92 | 36.92 |
Hydrozoa ind. | 26.28 | 13.88 | 4.04 | 21.73 | 58.65 |
ECR | 17.60 | 9.06 | 3.89 | 14.20 | 72.85 |
Agelas oroides | 11.99 | 3.57 | 0.72 | 5.60 | 78.45 |
Algal turf | 8.69 | 3.00 | 0.52 | 4.70 | 83.15 |
Palmophyllum crassum | 6.83 | 2.98 | 0.72 | 4.66 | 87.81 |
OTU EOS | 12.91 | 2.88 | 0.51 | 4.21 | 92.31 |
Group HA | |||||
Deep | |||||
Average similarity: 51.62 | |||||
Species | Av. Abund | Av. Sim | Sim/SD | Contrib% | Cum% |
Palmophyllum crassum | 30,79 | 13.89 | 1.73 | 26.91 | 26.91 |
OTU EOS | 24.72 | 8.17 | 1.58 | 15.82 | 42.74 |
Peyssonnelia sp. | 41.71 | 7.72 | 0.98 | 14.95 | 57.69 |
Lepto/Cladopsammia complex | 16.33 | 5.58 | 1.86 | 10.81 | 68.50 |
ECR | 19.20 | 4.81 | 1.04 | 9.32 | 77.82 |
Palmophyllum crassum | 30.79 | 13.89 | 1.73 | 26.91 | 26.91 |
Agelas oroides | 9.00 | 3.5 | 1.82 | 6.78 | 84.60 |
Gelatinous red algae | 10.22 | 2.39 | 0.64 | 4.64 | 89.24 |
Phorbas tenacior | 3.49 | 0.98 | 0.67 | 1.9 | 91.14 |
Shallow | |||||
Average similarity: 48.37 | |||||
Peyssonnelia sp. | 62.11 | 28.91 | 1.70 | 59.78 | 59.78 |
Palmophyllum crassum | 15.22 | 8.79 | 1.10 | 18.17 | 77.95 |
Hydrozoa ind. | 7.53 | 2.58 | 0.78 | 5.34 | 83.29 |
ECR | 7.98 | 2.47 | 0.74 | 5.11 | 88.40 |
Agelas oroides | 8.73 | 1.57 | 0.54 | 3.24 | 91.63 |
Group WE | |||||
Deep | |||||
Average similarity: 55.26 | |||||
Species | Av. Abund | Av. Sim | Sim/SD | Contrib% | Cum% |
Palmophyllum crassum | 21.81 | 29.49 | 3.97 | 53.37 | 53.37 |
Peyssonnelia sp. | 11.13 | 11.57 | 1.70 | 20.93 | 74.30 |
Gelatinous red algae | 6.78 | 5.04 | 0.75 | 9.12 | 83.42 |
ECR | 4.25 | 3.39 | 0.62 | 6.13 | 89.55 |
Algal turf | 4.29 | 2.76 | 0.90 | 5.00 | 94.55 |
Shallow | |||||
Average similarity: 50.73 | |||||
ECR | 17.59 | 13.64 | 1.85 | 26.88 | 26.88 |
Palmophyllum crassum | 12.93 | 10.82 | 1.12 | 21.33 | 48.21 |
Agelas oroides | 17.10 | 10.29 | 1.46 | 20.29 | 68.50 |
Peyssonnelia sp. | 13.40 | 8.54 | 0.94 | 16.83 | 85.33 |
OTU EOS | 5.87 | 3.92 | 1.02 | 7.72 | 93.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gimenez, G.; Corriero, G.; Beqiraj, S.; Lazaj, L.; Lazic, T.; Longo, C.; Mercurio, M.; Nonnis Marzano, C.; Zuccaro, M.; Zuna, V.; et al. Characterization of the Coralligenous Formations from the Marine Protected Area of Karaburun-Sazan, Albania. J. Mar. Sci. Eng. 2022, 10, 1458. https://doi.org/10.3390/jmse10101458
Gimenez G, Corriero G, Beqiraj S, Lazaj L, Lazic T, Longo C, Mercurio M, Nonnis Marzano C, Zuccaro M, Zuna V, et al. Characterization of the Coralligenous Formations from the Marine Protected Area of Karaburun-Sazan, Albania. Journal of Marine Science and Engineering. 2022; 10(10):1458. https://doi.org/10.3390/jmse10101458
Chicago/Turabian StyleGimenez, Guadalupe, Giuseppe Corriero, Sajmir Beqiraj, Lorela Lazaj, Tamara Lazic, Caterina Longo, Maria Mercurio, Carlotta Nonnis Marzano, Massimo Zuccaro, Violeta Zuna, and et al. 2022. "Characterization of the Coralligenous Formations from the Marine Protected Area of Karaburun-Sazan, Albania" Journal of Marine Science and Engineering 10, no. 10: 1458. https://doi.org/10.3390/jmse10101458
APA StyleGimenez, G., Corriero, G., Beqiraj, S., Lazaj, L., Lazic, T., Longo, C., Mercurio, M., Nonnis Marzano, C., Zuccaro, M., Zuna, V., & Pierri, C. (2022). Characterization of the Coralligenous Formations from the Marine Protected Area of Karaburun-Sazan, Albania. Journal of Marine Science and Engineering, 10(10), 1458. https://doi.org/10.3390/jmse10101458