Endophytic Fungi of Citrus Plants
Abstract
1. Introduction
2. Endophytic Occurrence of Citrus Pathogens
3. Other Endophytic Fungi and Their Interactions with Pests and Pathogens of Citrus
4. Biotechnological Implications
5. Conclusions
Funding
Conflicts of Interest
References
- De Bary, A. Morphologie und Physiologie der Pilze, Flechten und Myxomyceten; Engelmann: Leipzig, Germany, 1866. [Google Scholar]
- Hyde, K.D.; Soytong, K. The fungal endophyte dilemma. Fungal Divers. 2008, 33, 163–173. [Google Scholar]
- Turner, T.R.; James, E.K.; Poole, P.S. The plant microbiome. Genome Biol. 2013, 14, 209. [Google Scholar] [CrossRef] [PubMed]
- McOnie, K.C. The latent occurrence in Citrus and other hosts of a Guignardia easily confused with G. citricarpa, the black spot pathogen. Phytopathology 1964, 54, 64–67. [Google Scholar]
- Meyer, L.; Slippers, B.; Korsten, L.; Kotze, J.M.; Wingfield, M.J. Two distinct Guignardia species associated with citrus in South Africa. S. Afr. J. Sci. 2001, 97, 191–194. [Google Scholar]
- Baayen, R.P.; Bonants, P.J.M.; Verkley, G.; Carroll, G.C.; van der Aa, H.A.; de Weerdt, M.; van Brouwershaven, I.R.; Schutte, G.C.; Maccheroni, W., Jr.; Glienke de Blanco, C.; et al. Nonpathogenic isolates of the citrus black spot fungus, Guignardia citricarpa, identified as a cosmopolitan endophyte of woody plants, G. mangiferae (Phyllosticta capitalensis). Phytopathology 2002, 92, 464–477. [Google Scholar] [CrossRef]
- Zavala, M.G.M.; Er, H.L.; Goss, E.M.; Wang, N.Y.; Dewdney, M.; van Bruggen, A.H.C. Genetic variation among Phyllosticta strains isolated from citrus in Florida that are pathogenic or nonpathogenic to citrus. Trop. Plant Pathol. 2014, 39, 119–128. [Google Scholar] [CrossRef]
- Guarnaccia, V.; Gehrmann, T.; Silva-Junior, G.J.; Fourie, P.H.; Haridas, S.; Vu, D.; Spatafora, J.; Martin, F.M.; Robert, V.; Grigoriev, I.V.; et al. Phyllosticta citricarpa and sister species of global importance to Citrus. Mol. Plant Pathol. 2019. [Google Scholar] [CrossRef]
- Wikee, S.; Udayanga, D.; Crous, P.W.; Chukeatirote, E.; McKenzie, E.H.; Bahkali, A.H.; Dai, D.Q.; Hyde, K.D. Phyllosticta—An overview of current status of species recognition. Fungal Divers. 2011, 51, 43–61. [Google Scholar] [CrossRef]
- Wikee, S.; Lombard, L.; Crous, P.W.; Nakashima, C.; Motohashi, K.; Chukeatirote, E.; Alias, S.A.; McKenzie, E.H.C.; Hyde, K.D. Phyllosticta capitalensis, a widespread endophyte of plants. Fungal Divers. 2013, 60, 91–105. [Google Scholar] [CrossRef]
- Okane, I.; Nakagiri, A.; Ito, T.; Lumyong, S. Extensive host range of an endophytic fungus, Guignardia endophyllicola (anamorph: Phyllosticta capitalensis). Mycoscience 2003, 44, 353–363. [Google Scholar] [CrossRef]
- Bonants, P.J.; Carroll, G.C.; De Weerdt, M.; van Brouwershaven, I.R.; Baayen, R.P. Development and validation of a fast PCR-based detection method for pathogenic isolates of the citrus black spot fungus, Guignardia citricarpa. Eur. J. Plant Pathol. 2003, 109, 503–513. [Google Scholar] [CrossRef]
- Meyer, L.; Sanders, G.M.; Jacobs, R.; Korsten, L. A one-day sensitive method to detect and distinguish between the citrus black spot pathogen Guignardia citricarpa and the endophyte Guignardia mangiferae. Plant Dis. 2006, 90, 97–101. [Google Scholar] [CrossRef]
- Meyer, L.; Jacobs, R.; Kotzé, J.M.; Truter, M.; Korsten, L. Detection and molecular identification protocols for Phyllosticta citricarpa from citrus matter. S. Afr. J. Sci. 2012, 108, 53–59. [Google Scholar] [CrossRef]
- Peres, N.A.; Harakava, R.; Carroll, G.C.; Adaskaveg, J.E.; Timmer, L.W. Comparison of molecular procedures for detection and identification of Guignardia citricarpa and G. mangiferae. Plant Dis. 2007, 91, 525–531. [Google Scholar] [CrossRef]
- Van Gent-Pelzer, M.P.E.; Van Brouwershaven, I.R.; Kox, L.F.F.; Bonants, P.J.M. A TaqMan PCR method for routine diagnosis of the quarantine fungus Guignardia citricarpa on citrus fruit. J. Phytopathol. 2007, 155, 357–363. [Google Scholar] [CrossRef]
- Baldassari, R.B.; Wickert, E.; de Goes, A. Pathogenicity, colony morphology and diversity of isolates of Guignardia citricarpa and G. mangiferae isolated from Citrus spp. Eur. J. Plant Pathol. 2008, 120, 103–110. [Google Scholar] [CrossRef]
- Stringari, D.; Glienke, C.; Christo, D.D.; Maccheroni, W., Jr.; Azevedo, J.L.D. High molecular diversity of the fungus Guignardia citricarpa and Guignardia mangiferae and new primers for the diagnosis of the citrus black spot. Braz. Arch. Biol. Technol. 2009, 52, 1063–1073. [Google Scholar] [CrossRef]
- Hu, J.; Johnson, E.G.; Wang, N.Y.; Davoglio, T.; Dewdney, M.M. qPCR quantification of pathogenic Guignardia citricarpa and nonpathogenic G. mangiferae in citrus. Plant Dis. 2014, 98, 112–120. [Google Scholar] [CrossRef]
- Schirmacher, A.M.; Tomlinson, J.A.; Barnes, A.V.; Barton, V.C. Species-specific real-time PCR for diagnosis of Phyllosticta citricarpa on Citrus species. EPPO Bull. 2019. [Google Scholar] [CrossRef]
- Everett, K.R.; Rees-George, J. Reclassification of an isolate of Guignardia citricarpa from New Zealand as Guignardia mangiferae by sequence analysis. Plant Pathol. 2006, 55, 194–199. [Google Scholar] [CrossRef]
- Romão, A.S.; Spósito, M.B.; Andreote, F.D.; Azevedo, J.L.D.; Araújo, W.L. Enzymatic differences between the endophyte Guignardia mangiferae (Botryosphaeriaceae) and the citrus pathogen G. citricarpa. Genet. Mol. Res. 2011, 10, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Munari Rodrigues, C.; Takita, M.A.; Silva, N.V.; Ribeiro-Alves, M.; Machado, M.A. Comparative genome analysis of Phyllosticta citricarpa and Phyllosticta capitalensis, two fungi species that share the same host. BMC Genom. 2019, 20, 554. [Google Scholar] [CrossRef]
- Wikee, S.; Lombard, L.; Nakashima, C.; Motohashi, K.; Chukeatirote, E.; Cheewangkoon, R.; McKenzie, E.H.C.; Hyde, K.D.; Crous, P.W. A phylogenetic re-evaluation of Phyllosticta (Botryosphaeriales). Stud. Mycol. 2013, 76, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Wulandari, N.F.; Toanun, C.; Hyde, K.D.; Duong, L.M.; de Gruyter, J.; Meffert, J.P.; Groenewald, J.Z.; Crous, P.W. Phyllosticta citriasiana sp. nov., the cause of Citrus tan spot of Citrus maxima in Asia. Fungal Divers. 2009, 34, 23–39. [Google Scholar]
- Wang, X.; Chen, G.; Huang, F.; Zhang, J.; Hyde, K.D.; Li, H. Phyllosticta species associated with citrus diseases in China. Fungal Divers. 2012, 52, 209–224. [Google Scholar] [CrossRef]
- Guarnaccia, V.; Groenewald, J.Z.; Li, H.; Glienke, C.; Carstens, E.; Hattingh, V.; Fourie, P.H.; Crous, P.W. First report of Phyllosticta citricarpa and description of two new species, P. paracapitalensis and P. paracitricarpa, from citrus in Europe. Stud. Mycol. 2017, 87, 161–185. [Google Scholar] [CrossRef]
- Glienke, C.; Pereira, O.L.; Stringari, D.; Fabris, J.; Kava-Cordeiro, V.; Galli-Terasawa, L.; Cunnington, J.; Shivas, R.G.; Groenewald, J.Z.; Crous, P.W. Endophytic and pathogenic Phyllosticta species, with reference to those associated with citrus black spot. Persoonia 2011, 26, 47–56. [Google Scholar] [CrossRef]
- Schubert, T.S.; Dewdney, M.M.; Peres, N.A.; Palm, M.E.; Jeyaprakash, A.; Sutton, B.; Mondal, S.N.; Wang, N.Y.; Rascoe, J.; Picton, D.D. First report of Guignardia citricarpa associated with citrus black spot on sweet orange (Citrus sinensis) in North America. Plant Dis. 2012, 96, 1225. [Google Scholar] [CrossRef]
- Jeger, M.; Bragard, C.; Caffier, D.; Candresse, T.; Chatzivassiliou, E.; Dehnen-Schmutz, K.; Gilioli, G.; Gregoire, J.C.; Jaques Miret, J.A.; MacLeod, A.; et al. Evaluation of a paper by Guarnaccia et al. (2017) on the first report of Phyllosticta citricarpa in Europe. EFSA J. 2018, 16, 5114. [Google Scholar]
- Tran, N.T.; Miles, A.K.; Dietzgen, R.G.; Drenth, A. Phyllosticta capitalensis and P. paracapitalensis are endophytic fungi that show potential to inhibit pathogenic P. citricarpa on citrus. Australas. Plant Pathol. 2019, 48, 281–296. [Google Scholar] [CrossRef]
- Wickert, E.; de Macedo Lemos, E.G.; Kishi, L.T.; de Souza, A.; de Goes, A. Genetic diversity and population differentiation of Guignardia mangiferae from “Tahiti” acid lime. Sci. World J. 2012. [Google Scholar] [CrossRef]
- Huang, F.; Chen, G.Q.; Hou, X.; Fu, Y.S.; Cai, L.; Hyde, K.D.; Li, H.Y. Colletotrichum species associated with cultivated citrus in China. Fungal Divers. 2013, 61, 61–74. [Google Scholar] [CrossRef]
- Waculicz-Andrade, C.E.; Savi, D.C.; Bini, A.P.; Adamoski, D.; Goulin, E.H.; Silva, G.J., Jr.; Massola, N.S., Jr.; Terasawa, L.G.; Kava, V.; Glienke, C. Colletotrichum gloeosporioides sensu stricto: An endophytic species or citrus pathogen in Brazil? Australas. Plant Pathol. 2017, 46, 191–203. [Google Scholar] [CrossRef]
- Durán, E.L.; Ploper, L.D.; Ramallo, J.C.; Piccolo Grandi, R.A.; Hupper Giancoli, Á.C.; Azevedo, J.L. The foliar fungal endophytes of Citrus limon in Argentina. Can. J. Bot. 2005, 83, 350–355. [Google Scholar] [CrossRef]
- Douanla-Meli, C.; Langer, E.; Mouafo, F.T. Fungal endophyte diversity and community patterns in healthy and yellowing leaves of Citrus limon. Fungal Ecol. 2013, 6, 212–222. [Google Scholar] [CrossRef]
- Mohali, S.; Burgess, T.I.; Wingfield, M.J. Diversity and host association of the tropical tree endophyte Lasiodiplodia theobromae revealed using simple sequence repeat markers. For. Pathol. 2005, 35, 385–396. [Google Scholar] [CrossRef]
- Slippers, B.; Wingfield, M.J. Botryosphaeriaceae as endophytes and latent pathogens of woody plants: Diversity, ecology and impact. Fungal Biol. Rev. 2007, 21, 90–106. [Google Scholar] [CrossRef]
- Zhao, W.; Bai, J.; McCollum, G.; Baldwin, E. High incidence of preharvest colonization of huanglongbing-symptomatic Citrus sinensis fruit by Lasiodiplodia theobromae (Diplodia natalensis) and exacerbation of postharvest fruit decay by that fungus. Appl. Environ. Microbiol. 2015, 81, 364–372. [Google Scholar] [CrossRef]
- Udayanga, D.; Liu, X.; McKenzie, E.H.C.; Chukeatirote, E.; Bahkali, A.H.A.; Hyde, K.D. The genus Phomopsis: Biology, applications, species concepts and names of common phytopathogens. Fungal Divers. 2011, 50, 189–225. [Google Scholar] [CrossRef]
- Gomes, R.R.; Glienke, C.; Videira, S.I.R.; Lombard, L.; Groenewald, J.Z.; Crous, P.W. Diaporthe: A genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 2013, 31, 1–41. [Google Scholar] [CrossRef]
- Savi, D.C.; Aluizio, R.; Glienke, C. Brazilian plants: An unexplored source of endophytes as producers of active metabolites. Planta Med. 2019, 85, 619–636. [Google Scholar]
- Huang, F.; Hou, X.; Dewdney, M.M.; Fu, Y.; Chen, G.; Hyde, K.D.; Li, H. Diaporthe species occurring on citrus in China. Fungal Divers. 2013, 61, 237–250. [Google Scholar] [CrossRef]
- Guarnaccia, V.; Crous, P.W. Emerging citrus diseases in Europe caused by species of Diaporthe. IMA Fungus 2017, 8, 317–334. [Google Scholar] [CrossRef]
- Huang, F.; Udayanga, D.; Wang, X.; Hou, X.; Mei, X.; Fu, Y.; Hyde, K.D.; Li, H. Endophytic Diaporthe associated with Citrus: A phylogenetic reassessment with seven new species from China. Fungal Biol. 2015, 119, 331–347. [Google Scholar] [CrossRef]
- Peever, T.L.; Canihos, Y.; Olsen, L.; Ibáñez, A.; Liu, Y.C.; Timmer, L.W. Population genetic structure and host specificity of Alternaria spp. causing brown spot of Minneola tangelo and rough lemon in Florida. Phytopathology 1999, 89, 851–860. [Google Scholar] [CrossRef]
- Akimitsu, K.; Peever, T.L.; Timmer, L.W. Molecular, ecological and evolutionary approaches to understanding Alternaria diseases of citrus. Mol. Plant Pathol. 2003, 4, 435–446. [Google Scholar] [CrossRef]
- Sadeghi, F.; Samsampour, D.; Seyahooei, M.A.; Bagheri, A.; Soltani, J. Diversity and spatiotemporal distribution of fungal endophytes associated with Citrus reticulata cv. Siyahoo. Curr. Microbiol. 2019, 76, 279–289. [Google Scholar] [CrossRef]
- Juybari, H.Z.; Tajick Ghanbary, M.A.; Rahimian, H.; Karimi, K.; Arzanlou, M. Seasonal, tissue and age influences on frequency and biodiversity of endophytic fungi of Citrus sinensis in Iran. For. Pathol. 2019, e12559. [Google Scholar] [CrossRef]
- Sandoval-Denis, M.; Guarnaccia, V.; Polizzi, G.; Crous, P.W. Symptomatic Citrus trees reveal a new pathogenic lineage in Fusarium and two new Neocosmospora species. Persoonia 2018, 40, 1–25. [Google Scholar] [CrossRef]
- Childs, J.F.L.; Kopp, L.E.; Johnson, R.E. A species of Physoderma present in Citrus and related species. Phytopathology 1965, 55, 681–687. [Google Scholar]
- Ho, M.Y.; Chung, W.C.; Huang, H.C.; Chung, W.H.; Chung, W.H. Identification of endophytic fungi of medicinal herbs of Lauraceae and Rutaceae with antimicrobial property. Taiwania 2012, 57, 229–241. [Google Scholar]
- Santos Gai, C.; Teixeira Lacava, P.; Maccheroni, W., Jr.; Glienke, C.; Araújo, W.L.; Miller, T.A.; Azevedo, J.L. Diversity of endophytic yeasts from sweet orange and their localization by scanning electron microscopy. J. Basic Microbiol. 2009, 49, 441–451. [Google Scholar]
- Rodríguez, P.; Reyes, B.; Barton, M.; Coronel, C.; Menéndez, P.; Gonzalez, D.; Rodríguez, S. Stereoselective biotransformation of α-alkyl-β-keto esters by endophytic bacteria and yeast. J. Mol. Catal. B Enzym. 2011, 71, 90–94. [Google Scholar] [CrossRef]
- Bamisile, B.S.; Dash, C.K.; Akutse, K.S.; Qasim, M.; Ramos Aguila, L.C.; Wang, F.; Keppanan, R.; Wang, L. Endophytic Beauveria bassiana in foliar-treated Citrus limon plants acting as a growth suppressor to three successive generations of Diaphorina citri Kuwayama (Hemiptera: Liviidae). Insects 2019, 10, 176. [Google Scholar] [CrossRef]
- Araújo, W.L.; Maccheroni, W., Jr.; Aguilar-Vildoso, C.I.; Barroso, P.A.; Saridakis, H.O.; Azevedo, J.L. Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can. J. Microbiol. 2001, 47, 229–236. [Google Scholar] [CrossRef]
- Glienke-Blanco, C.; Aguilar-Vildoso, C.I.; Vieira, M.L.C.; Barroso, P.A.V.; Azevedo, J.L. Genetic variability in the endophytic fungus Guignardia citricarpa isolated from citrus plants. Genet. Mol. Biol. 2002, 25, 251–255. [Google Scholar] [CrossRef]
- Manoharan, G.; Sairam, T.; Thangamani, R.; Ramakrishnan, D.; Tiwari, M.K.; Lee, J.K.; Marimuthu, J. Identification and characterization of type III polyketide synthase genes from culturable endophytes of ethnomedicinal plants. Enzyme Microb. Technol. 2019, 131, 109396. [Google Scholar] [CrossRef]
- Ling, L.; Li, Z.; Jiao, Z.; Zhang, X.; Ma, W.; Feng, J.; Zhang, J.; Lu, L. Identification of novel endophytic yeast strains from tangerine peel. Curr. Microbiol. 2019, 76, 1066–1072. [Google Scholar] [CrossRef]
- Paz, Z.; Burdman, S.; Gerson, U.; Sztejnberg, A. Antagonistic effects of the endophytic fungus Meira geulakonigii on the citrus rust mite Phyllocoptruta oleivora. J. Appl. Microbiol. 2007, 103, 2570–2579. [Google Scholar] [CrossRef]
- Pena, L.C.; Jung, L.F.; Savi, D.C.; Servienski, A.; Aluizio, R.; Goulin, E.H.; Galli-Terasawa, L.V.; Lameiro de Noronha Sales Maia, B.H.; Annies, V.; Cavichiolo Franco, C.R.; et al. A Muscodor strain isolated from Citrus sinensis and its production of volatile organic compounds inhibiting Phyllosticta citricarpa growth. J. Plant Dis. Prot. 2017, 124, 349–360. [Google Scholar] [CrossRef]
- Rodrigues, K.F.; Sieber, T.N.; Grünig, C.R.; Holdenrieder, O. Characterization of Guignardia mangiferae isolated from tropical plants based on morphology, ISSR-PCR amplifications and ITS1-5.8 S-ITS2 sequences. Mycol. Res. 2004, 108, 45–52. [Google Scholar] [CrossRef]
- Miles, A.K.; Tan, Y.P.; Tan, M.K.; Donovan, N.J.; Ghalayini, A.; Drenth, A. Phyllosticta spp. on cultivated citrus in Australia. Australas. Plant Pathol. 2013, 42, 461–467. [Google Scholar] [CrossRef]
- Schüepp, H. Untersuchungen über Guignardia citricarpa Kiely, den Erreger der Schwarzfleckenkrankheit auf Citrus. J. Phytopathol. 1960, 40, 258–271. [Google Scholar] [CrossRef]
- Azevedo, J.L.; Maccheroni, W., Jr.; Pereira, J.O.; de Araújo, W.L. Endophytic microorganisms: A review on insect control and recent advances on tropical plants. Electron. J. Biotechnol. 2000, 3, 15–16. [Google Scholar] [CrossRef]
- Hawksworth, D.L.; Crous, P.W.; Redhead, S.A.; Reynolds, D.R.; Samson, R.A.; Seifert, K.A.; Taylor, J.W.; Wingfield, M.J.; Abaci, O.; Aime, C.; et al. The Amsterdam declaration on fungal nomenclature. IMA Fungus 2011, 2, 105–112. [Google Scholar] [CrossRef]
- Davis, E.C.; Franklin, J.B.; Shaw, A.J.; Vilgalys, R. Endophytic Xylaria (Xylariaceae) among liverworts and angiosperms: Phylogenetics, distribution, and symbiosis. Am. J. Bot. 2003, 90, 1661–1667. [Google Scholar] [CrossRef]
- U’Ren, J.M.; Miadlikowska, J.; Zimmerman, N.B.; Lutzoni, F.; Stajich, J.E.; Arnold, A.E. Contributions of North American endophytes to the phylogeny, ecology, and taxonomy of Xylariaceae (Sordariomycetes, Ascomycota). Mol. Phylogenet. Evol. 2016, 98, 210–232. [Google Scholar] [CrossRef]
- Nicoletti, R.; Fiorentino, A. Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture 2015, 5, 918–970. [Google Scholar] [CrossRef]
- Camargo Dos Santos, P.J.; Savi, D.C.; Rodrigues Gomes, R.; Goulin, E.H.; Da Costa Senkiv, C.; Ossamu Tanaka, F.A.; Rodrigues Almeida, A.M.; Galli-Terasawa, L.; Kava, V.; Glienke, C. Diaporthe endophytica and D. terebinthifolii from medicinal plants for biological control of Phyllosticta citricarpa. Microbiol. Res. 2016, 186, 153–160. [Google Scholar] [CrossRef]
- Hartley, S.E.; Gange, A.C. Impacts of plant symbiotic fungi on insect herbivores: Mutualism in a multitrophic context. Ann. Rev. Entomol. 2009, 54, 323–342. [Google Scholar] [CrossRef]
- Eberl, F.; Uhe, C.; Unsicker, S.B. Friend or foe? The role of leaf-inhabiting fungal pathogens and endophytes in tree-insect interactions. Fungal Ecol. 2019, 38, 104–112. [Google Scholar] [CrossRef]
- Martinuz, A.; Schouten, A.; Menjivar, R.D.; Sikora, R.A. Effectiveness of systemic resistance toward Aphis gossypii (Hom., Aphididae) as induced by combined applications of the endophytes Fusarium oxysporum Fo162 and Rhizobium etli G12. Biol. Control 2012, 62, 206–212. [Google Scholar] [CrossRef]
- Bogner, C.W.; Kamdem, R.S.; Sichtermann, G.; Matthäus, C.; Hölscher, D.; Popp, J.; Proksch, P.; Grundler, F.M.; Schouten, A. Bioactive secondary metabolites with multiple activities from a fungal endophyte. Microb. Biotechnol. 2017, 10, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Brakhage, A.A.; Schroeckh, V. Fungal secondary metabolites–strategies to activate silent gene clusters. Fungal Genet. Biol. 2011, 48, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Deepika, V.B.; Murali, T.S.; Satyamoorthy, K. Modulation of genetic clusters for synthesis of bioactive molecules in fungal endophytes: A review. Microbiol. Res. 2016, 182, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Kumaran, R.S.; Muthumary, J.; Hur, B.K. Taxol from Phyllosticta citricarpa, a leaf spot fungus of the angiosperm Citrus medica. J. Biosci. Bioeng. 2008, 106, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, R.; Fiorentino, A. Antitumor metabolites of fungi. Curr. Bioact. Comp. 2014, 10, 207–244. [Google Scholar] [CrossRef]
- Savi, D.C.; Shaaban, K.A.; Mitra, P.; Ponomareva, L.V.; Thorson, J.S.; Glienke, C.; Rohr, J. Secondary metabolites produced by the citrus phytopathogen Phyllosticta citricarpa. J. Antibiot. 2019, 72, 306–310. [Google Scholar] [CrossRef]
- Buckel, I.; Andernach, L.; Schüffler, A.; Piepenbring, M.; Opatz, T.; Thines, E. Phytotoxic dioxolanones are potential virulence factors in the infection process of Guignardia bidwellii. Sci. Rep. 2017, 7, 8926. [Google Scholar] [CrossRef]
- Yuan, W.H.; Liu, M.; Jiang, N.; Guo, Z.K.; Ma, J.; Zhang, J.; Song, Y.C.; Tan, R.X. Guignardones A–C: Three meroterpenes from Guignardia mangiferae. Eur. J. Org. Chem. 2010, 33, 6348–6353. [Google Scholar] [CrossRef]
- Guimarães, D.O.; Lopes, N.P.; Pupo, M.T. Meroterpenes isolated from the endophytic fungus Guignardia mangiferae. Phytochem. Lett. 2012, 5, 519–523. [Google Scholar] [CrossRef]
- Han, W.B.; Dou, H.; Yuan, W.H.; Gong, W.; Hou, Y.Y.; Ng, S.W.; Tan, R.X. Meroterpenes with toll-like receptor 3 regulating activity from the endophytic fungus Guignardia mangiferae. Planta Med. 2015, 81, 145–151. [Google Scholar] [CrossRef]
- Sun, Z.H.; Liang, F.L.; Wu, W.; Chen, Y.C.; Pan, Q.L.; Li, H.H.; Ye, W.; Liu, H.X.; Li, S.N.; Tan, G.H.; et al. Guignardones P–S, new meroterpenoids from the endophytic fungus Guignardia mangiferae A348 derived from the medicinal plant smilax glabra. Molecules 2015, 20, 22900–22907. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, X.; Sun, W.; Liu, J.; Yang, J.; Chen, C.; Liu, X.; Gao, L.; Wang, J.; Li, H.; et al. Manginoids A–G: Seven monoterpene–shikimate-conjugated meroterpenoids with a spiro ring system from Guignardia mangiferae. Org. Lett. 2017, 19, 5956–5959. [Google Scholar] [CrossRef]
- Li, T.X.; Yang, M.H.; Wang, X.B.; Wang, Y.; Kong, L.Y. Synergistic antifungal meroterpenes and dioxolanone derivatives from the endophytic fungus Guignardia sp. J. Nat. Prod. 2015, 78, 2511–2520. [Google Scholar] [CrossRef]
- Eze, P.M.; Ojimba, N.K.; Abonyi, D.O.; Chukwunwejim, C.R.; Abba, C.C.; Okoye, F.B.C.; Esimone, C.O. Antimicrobial activity of metabolites of an endophytic fungus isolated from the leaves of Citrus jambhiri (Rutaceae). Trop. J. Nat. Prod. Res. 2018, 2, 145–149. [Google Scholar] [CrossRef]
- Doty, S.L. Growth-promoting endophytic fungi of forest trees. In Endophytes of Forest Trees; Pirttilä, A., Frank, A., Eds.; Springer: Berlin, Germany, 2011; pp. 151–156. [Google Scholar]
- Waqas, M.; Khan, A.L.; Kamran, M.; Hamayun, M.; Kang, S.M.; Kim, Y.H.; Lee, I.J. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 2012, 17, 10754–10773. [Google Scholar] [CrossRef]
- Suwannarach, N.; Kumla, J.; Bussaban, B.; Nuangmek, W.; Matsui, K.; Lumyong, S. Biofumigation with the endophytic fungus Nodulisporium spp. CMU-UPE34 to control postharvest decay of citrus fruit. Crop Prot. 2013, 45, 63–70. [Google Scholar] [CrossRef]
- Gomes, A.A.M.; Queiroz, M.V.; Pereira, O.L. Mycofumigation for the biological control of post-harvest diseases in fruits and vegetables: A review. Austin J. Biotechnol. Bioeng. 2015, 2, 1051. [Google Scholar]
- Kaddes, A.; Fauconnier, M.L.; Sassi, K.; Nasraoui, B.; Jijakli, M.H. Endophytic fungal volatile compounds as solution for sustainable agriculture. Molecules 2019, 24, 1065. [Google Scholar] [CrossRef]
- Huang, Z.; Yang, J.; Cai, X.; She, Z.; Lin, Y. A new furanocoumarin from the mangrove endophytic fungus Penicillium sp. (ZH16). Nat. Prod. Res. 2012, 26, 1291–1295. [Google Scholar] [CrossRef]
- Zaher, A.M.; Moharram, A.M.; Davis, R.; Panizzi, P.; Makboul, M.A.; Calderón, A.I. Characterisation of the metabolites of an antibacterial endophyte Botryodiplodia theobromae Pat. of Dracaena draco L. by LC–MS/MS. Nat. Prod. Res. 2015, 29, 2275–2281. [Google Scholar] [CrossRef]
- Balakumaran, M.D.; Ramachandran, R.; Kalaichelvan, P.T. Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiol. Res. 2015, 178, 9–17. [Google Scholar] [CrossRef]
- Busby, P.E.; Ridout, M.; Newcombe, G. Fungal endophytes: Modifiers of plant disease. Plant Mol. Biol. 2016, 90, 645–655. [Google Scholar] [CrossRef]
- Schlaeppi, K.; Bulgarelli, D. The plant microbiome at work. Mol. Plant Microbe Interact. 2015, 28, 212–217. [Google Scholar] [CrossRef]
- Ahlholm, J.U.; Helander, M.; Henriksson, J.; Metzler, M.; Saikkonen, K. Environmental conditions and host genotype direct genetic diversity of Venturia ditricha, a fungal endophyte of birch trees. Evolution 2002, 56, 1566–1573. [Google Scholar] [CrossRef]
- Balint, M.; Tiffin, P.; Hallstrom, B.; O’Hara, R.B.; Olson, M.S.; Fankhauser, J.D.; Piepenbring, M.; Schmitt, I. Host genotype shapes the foliar fungal microbiome of balsam poplar (Populus balsamifera). PLoS ONE 2013, 8, e53987. [Google Scholar] [CrossRef]
Endophyte 1 | Plant Species | Country | Reference |
---|---|---|---|
Alternaria alternata | C. limon, C. tangelo | Florida | [46] |
Citrus spp. | Japan | [47] | |
C. limon | Argentina | [35] | |
C. reticulata | Iran | [48] | |
Alternaria brassicicola | C. reticulata | Iran | [48] |
Alternaria carthami | C. reticulata | Iran | [48] |
Alternaria citri | C. sinensis | Iran | [49] |
Alternaria infectoria | C. sinensis | Iran | [49] |
Alternaria rosae | C. sinensis | Iran | [49] |
Alternaria sp. | C. kotokan | Taiwan | [52] |
C. sinensis | Iran | [49] | |
Annulohypoxylon stygium | C. sinensis | Iran | [49] |
Arthrinium sp. | C. japonica | Taiwan | [52] |
Ascochyta medicaginicola | C. reticulata | Iran | [48] |
Aspergillus nidulans | C. sinensis | Iran | [49] |
Aspergillus niger | C. reticulata | Iran | [48] |
Aspergillus pallidofulvus | C. reticulata | Iran | [48] |
Aspergillus terreus | C. sinensis | Iran | [49] |
Aureobasidium iranianum | C. reticulata | Iran | [48] |
Aureobasidium melanogenum | C. reticulata | Iran | [48] |
Aureobasidium pullulans | C. sinensis | Brazil | [53] |
C. japonica | Uruguay | [54] | |
C. reticulata | Iran | [48] | |
Beauveria bassiana | C. limon | China | [55] |
Biscogniauxia mediterranea | C. sinensis | Iran | [49] |
Biscogniauxia nummularia | C. sinensis | Iran | [49] |
Bjerkandera adusta | C. sinensis | Iran | [49] |
Botryosphaeria sp. | C. aurantium | Taiwan | [52] |
Camarosporium sp. | C. aurantium, C. medica var. sarcodactylis | Taiwan | [52] |
Candida parapsilosis | C. sinensis | Brazil | [53] |
Cercospora sp. | C. limon | Cameroon | [36] |
C. sinensis | Iran | [49] | |
Chaetomium globosum | C. sinensis | Iran | [49] |
Chaetomium sp. | C. sinensis | Taiwan | [52] |
Cladosporium cladosporioides | C. reticulata | Iran | [48] |
Cladosporium sp. | C. limon, C. reshni, C. sinensis, C. sunki, C. trifoliata, C. volkameriana | Brazil | [56] |
Cladosporium xanthochromaticum | C. reticulata | Iran | [48] |
Colletotrichum boninense | C. limon | Cameroon | [36] |
C. sinensis | Iran | [49] | |
Colletotrichum fructicola | C. japonica, C. reticulata | China | [43] |
Colletotrichum gloeosporioides | C. limon, C. reshni, C. sinensis, C. sunki, C. trifoliata, C. volkameriana | Brazil | [56] |
C. limon | Argentina | [35] | |
Cameroon | [36] | ||
C. grandis, C. reticulata, C. sinensis, C. unshiu | China | [43] | |
C. sinensis | Iran | [49] | |
Colletotrichum karstii | C. grandis, C. limon | China | [43] |
Colletotrichum sp. | C. aurantium, C. medica var. sarcodactylis, C. sinensis | Taiwan | [52] |
C. deliciosa, C. reticulata | Brazil | [57] | |
C, aurantifolia | India | [58] | |
Coprinellus radians | C. sinensis | Iran | [49] |
Coprinopsis sp. | C. medica | Taiwan | [52] |
Cryptococcus flavescens | C. sinensis | Brazil | [53] |
Cryptococcus laurentii | C. sinensis | Brazil | [53] |
Cyanodermella sp. | C. medica var. sarcodactylis, Citrus sp. | Taiwan | [52] |
Diaporthe arecae s.c. 2 | C. grandis, C. limon, C. reticulata, C. sinensis, Citrus sp., C. unshiu | China | [45] |
Diaporthe biconispora2,* | C. grandis, C. japonica, C. sinensis | China | [45] |
Diaporthe biguttulata2,* | C. limon | China | [45] |
Diaporthe citri2 | C. reticulata, C. unshiu | China | [43,45] |
Diaporthe citriasiana2 | C. unshiu | China | [43] |
Diaporthe citrichinensis2 | C. grandis, C. japonica | China | [45] |
Diaporthe discoidispora2,* | C. sinensis, C. unshiu | China | [45] |
Diaporthe endophytica2 | C. limon | China | [45] |
Diaporthe eres2 | C. japonica, Citrus sp., C. unshiu | China | [45] |
Diaporthe eucalyptorum2 | C. limon | Cameroon | [36] |
Diaporthe foeniculina2 | C. sinensis | Iran | [49] |
Diaporthe hongkongensis2 | C. grandis, C. reticulata, C. sinensis, C. unshiu | China | [45] |
Diaporthe multiguttulata2,* | C. grandis | China | [45] |
Diaporthe ovalispora2,* | C. limon | China | [45] |
Diaporthe phaseolorum2 | C. limon | Cameroon | [36] |
Diaporthe sojae2 | C. limon, C. reticulata, C. unshiu | China | [45] |
Diaporthe sp. 2 | C. limon | Cameroon | [36] |
C. aurantium, C. medica, C. sinensis | Taiwan | [52] | |
C. japonica | China | [45] | |
C. reticulata | Iran | [48] | |
Diaporthe unshiuensis2,* | C. japonica | China | [45] |
Didymella microchlamydospora | C. reticulata | Iran | [48] |
Discostroma sp. | C. medica | Taiwan | [52] |
Epicoccum nigrum | C. sinensis | Iran | [49] |
Eutypella sp. | C. medica var. sarcodactylis | Taiwan | [52] |
Fusarium culmorum | C. sinensis | Iran | [49] |
Fusarium incarnatum | C. sinensis | Iran | [49] |
Fusarium oxysporum | C. reticulata | Iran | [48] |
Fusarium proliferatum | C. sinensis | Iran | [49] |
Fusarium sarcochroum | C. limon, C. reticulata | Italy, Spain | [50] |
Fusarium sp. | C. sinensis | Taiwan | [52] |
C. reticulata | Iran | [48] | |
Hanseniaspora opuntiae | C. reticulata | China | [59] |
Hypholoma fasciculare | C. sinensis | Iran | [49] |
Hypoxylon investiens | C. sinensis | Iran | [49] |
Lasiodiplodia theobromae | C. sinensis | China | [39] |
Lasmenia sp. | C. medica var. sarcodactylis | Taiwan | [52] |
Meira geulakonigae | C. paradisi | Israel | [60] |
Meyerozyma caribbica | C. reticulata | Iran | [48] |
Meyerozyma guilliermondii | C. sinensis | Brazil | [53] |
C. reticulata | China | [58] | |
Muscodor sp. | C. sinensis | Brazil | [61] |
Mycoleptodiscus sp. | C. aurantium | Taiwan | [52] |
Mycosphaerella sp. | C. limon | Cameroon | [36] |
Myrothecium sp. | C. reticulata | Iran | [48] |
Neocosmospora solani | C. reticulata | Iran | [48] |
Neosetophoma sp. | C. reticulata | Iran | [48] |
Nigrospora oryzae | C. sinensis | Iran | [49] |
Nigrospora sphaerica | C. limon | Argentina | [35] |
Nodulisporium sp. | C. limon | Argentina | [35] |
Passalora loranthi | C. limon | Cameroon | [36] |
Penicillium citrinum | C. reticulata | Iran | [48] |
Pestalotiopsis mangiferae | C. limon | Cameroon | [36] |
Pestalotiopsis microspora | C. limon | Cameroon | [36] |
Pestalotiopsis sp. | C. limon | Cameroon | [36] |
Phaeoacremonium parasiticum | C. reticulata | Iran | [48] |
Phialophora sp. | C. sinensis | Brazil | [53] |
Phoma sp. | C. limon | Cameroon | [36] |
Phyllosticta capitalensis2 | Citrus spp. | South Africa | [4] |
C. deliciosa, C. reticulata | Brazil | [57] | |
C. aurantium, C. natsudaidai, C. trifoliata | Japan | [11] | |
C. aurantium | Brazil | [62] | |
C. latifolia | Brazil | [17] | |
C. limonia, C. sinensis, Citrus sp. | Brazil | [28] | |
C. aurantium, C. australasica | Australia | [63] | |
C. limon | Cameroon | [36] | |
Italy, Malta, Spain Greece, Portugal | [27] | ||
C. aurantifolia | Italy | ||
C. sinensis | Iran | [49] | |
Phyllosticta citribraziliensis2,* | Citrus sp. | Brazil | [28] |
Phyllosticta citricarpa2 | Citrus sp. | South Africa | [64] |
C. reshni, C. sinensis, C. sunki, C. trifoliata, C. volkameriana | Brazil | [56] | |
C. deliciosa, C. reticulata | Brazil | [65] | |
C. limon | Argentina | [35] | |
C. latifolia | Brazil | [17] | |
C. sinensis | Florida | [29] | |
Phyllosticta paracapitalensis2,* | C. aurantifolia C. floridana C. limon | New Zealand Italy Spain | [27] |
C. aurantium, C. australasica, C. hystrix, C. japonica, C. maxima, C. reticulata, C. wintersii | Australia | [31] | |
Phyllosticta sp. 2 | C. medica var. sarcodactylis | Taiwan | [52] |
Physoderma citri | Citrus spp. | Florida | [51] |
Pichia kluyveri | C. reticulata | China | [59] |
Pseudocercospora sp. | C. japonica | Taiwan | [52] |
Pseudopestalotiopsis theae | C. limon | Cameroon | [36] |
Pseudozyma flocculosa | C. reticulata | Iran | [48] |
Rhodotorula dairenensis | C. sinensis | Brazil | [53] |
Rhodotorula mucilaginosa | C. sinensis | Brazil | [53] |
Rosellinia sp. | C. sinensis | Iran | [49] |
Sarocladium subulatum | C. sinensis | Iran | [49] |
Scedosporium apiospermum | C. reticulata | Iran | [48] |
Sordaria fimicola | C. sinensis | Iran | [49] |
Sporobolomyces sp. | C. sinensis | Brazil | [53] |
Sporormiella minima | C. limon | Argentina | [35] |
C. sinensis | Iran | [49] | |
Stemphylium sp. | C. aurantium, C. japonica | Taiwan | [52] |
Stenella sp. | C. limon | Cameroon | [36] |
Talaromyces purpurogenus | C. reticulata | Iran | [48] |
Talaromyces trachyspermus | C. reticulata | Iran | [48] |
Xylaria cubensis | C. sinensis | Iran | [49] |
Xylaria sp. | C. limon | Cameroon | [36] |
C. japonica | Taiwan | [52] | |
Zasmidium sp. | C. limon | Cameroon | [36] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicoletti, R. Endophytic Fungi of Citrus Plants. Agriculture 2019, 9, 247. https://doi.org/10.3390/agriculture9120247
Nicoletti R. Endophytic Fungi of Citrus Plants. Agriculture. 2019; 9(12):247. https://doi.org/10.3390/agriculture9120247
Chicago/Turabian StyleNicoletti, Rosario. 2019. "Endophytic Fungi of Citrus Plants" Agriculture 9, no. 12: 247. https://doi.org/10.3390/agriculture9120247
APA StyleNicoletti, R. (2019). Endophytic Fungi of Citrus Plants. Agriculture, 9(12), 247. https://doi.org/10.3390/agriculture9120247