Effect of Wilting Intensity, Dry Matter Content and Sugar Addition on Nitrogen Fractions in Lucerne Silages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Silages
2.2. Basic Analysis
2.3. Crude Protein Fractionation and Amino Acid Analysis
2.4. Modified Hohenheim Gas Test
2.5. Fermentation Pattern Analysis
2.6. Statistical Analysis
3. Results
3.1. General Chemical Composition
3.2. Crude Protein Fractions and Amino Acids
3.3. Modified Hohenheim Gas Test
3.4. Fermentation Pattern
4. Discussion
4.1. General Chemical Composition
4.2. Crude Protein Fractions
4.3. Amino Acids
4.4. Modified Hohenheim Gas Test
4.5. Fermentation Pattern
4.6. General Considerations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Broderick, G.A. Desirable characteristics of forage legumes for improving protein utilization in ruminants. J. Anim. Sci. 1995, 73, 2760–2773. [Google Scholar] [CrossRef] [PubMed]
- Broderick, G.A. Performance of lactating dairy cows fed either alfalfa silage or alfalfa hay as the sole forage. J. Dairy Sci. 1995, 78, 320–329. [Google Scholar] [CrossRef]
- Guo, X.S.; Ding, W.R.; Han, J.G.; Zhou, H. Characterization of protein fractions and amino acids in ensiled alfalfa treated with different chemical additives. Anim. Feed Sci. Technol. 2008, 142, 89–98. [Google Scholar] [CrossRef]
- Coblentz, W.K.; Grabber, J.H. In situ protein degradation of alfalfa and birdsfoot trefoil hays and silages as influenced by condensed tannin concentration. J. Dairy Sci. 2013, 96, 3120–3137. [Google Scholar] [CrossRef] [PubMed]
- Hoedtke, S.; Gabel, M.; Zeyner, A. Protein degradation in feedstuffs during ensilage and changes in the composition of the crude protein fraction (Der Proteinabbau im Futter während der Silierung und Veränderungen in der Zusammensetzung der Rohproteinfraktion). Übers. Tierernährg. 2010, 38, 157–179. (In German) [Google Scholar]
- Lüscher, A.; Mueller-Harvey, I.; Soussana, J.F.; Rees, R.M.; Peyraud, J.L. Potential of legume-based grassland-livestock systems in Europe: A review. Grass Forage Sci. 2014, 69, 206–228. [Google Scholar] [CrossRef]
- Owens, V.N.; Albrecht, K.A.; Muck, R.E.; Duke, S.H. Protein degradation and fermentation characteristics of red clover and alfalfa silage harvested with varying levels of total nonstructural carbohydrates. Crop Sci. 1999, 39, 1873–1880. [Google Scholar] [CrossRef]
- Owens, F.N.; Secrist, D.S.; Hill, W.J.; Gill, D.R. Acidosis in cattle: A review. J. Anim. Sci. 1998, 76, 275–286. [Google Scholar] [CrossRef]
- Edmunds, B.; Spiekers, H.; Südekum, K.-H.; Nussbaum, H.; Schwarz, F.J.; Bennett, R. Effect of extent and rate of wilting on nitrogen components of grass silage. Grass Forage Sci. 2014, 69, 140–152. [Google Scholar] [CrossRef]
- Seale, D.R.; Henderson, A.R.; Pettersson, K.O.; Lowe, J.F. The effect of addition of sugar and inoculation with two commercial inoculants on the fermentation of lucerne silage in laboratory silos. Grass Forage Sci. 1986, 41, 61–70. [Google Scholar] [CrossRef]
- Muck, R.E. Factors influencing silage quality and their implications for management. J. Dairy Sci. 1988, 71, 2992–3002. [Google Scholar] [CrossRef]
- Bundesarbeitskreis Futterkonservierung. Praxishandbuch Futter- und Substratkonservierung; vollst. überarb. Aufl. 2011; DLG-Verlag GmbH: Frankfurt, Germany, 2011; Volume 8. (In German) [Google Scholar]
- Martinez-Fernandez, A.; Soldado, A.; De-la-Roza-Delgado, B.; Vicente, F.; Gonzalez-Arrojo, M.A.; Argamenteria, A. Modelling a quantitative ensilability index adapted to forages from wet temperate areas. Span. J. Agric. Res. 2013, 11, 455–462. [Google Scholar] [CrossRef]
- Verband deutscher landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA). Handbuch der landwirtschaftlichen Versuchs- und Untersuchungsmethodik (VDLUFA-Methodenbuch). Band III. Die chemische Untersuchung von Futtermitteln; VDLUFA-Verlag: Darmstadt, Germany, 2012; Volume 3. (In German) [Google Scholar]
- Weissbach, F.; Kuhla, S. Substance losses in determining the dry matter content of silage and green fodder: Arising errors and possibilities of correction (Stoffverluste bei der Bestimmung des Trockenmassegehaltes von Silagen und Grünfutter: Entstehende Fehler und Möglichkeiten der Korrektur). Übers. Tierernährg. 1995, 23, 189–214. (In German) [Google Scholar]
- Sniffen, C.J.; O’Connor, J.D.; van Soest, P.J.; Fox, D.G.; Russell, J.B. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef] [PubMed]
- Licitra, G.; Hernandez, T.M.; van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No. 152/2009 of 27 January 2009 laying down the methods of sampling and analysis for the official control of feed. Off. J. Eur. Union 2009, L54, 1–130. [Google Scholar]
- Steingaß, H.; Nibbe, D.; Südekum, K.-H.; Lebzien, P.; Spiekers, H. Estimation of uCP concentrations using the modified Hohenheim gas test and its application on the evaluation of rapeseed and soybean meals (Schätzung des nXP-Gehaltes mit Hilfe des modifizierten Hohenheimer Futterwerttests und dessen Anwendung zur Bewertung von Raps-und Sojaextraktionsschroten). In Kurzfassungen der Vorträge, 113; VDLUFA-Kongress: Berlin, Germany, 2001; 114p, (Abstr. in German). [Google Scholar]
- Steingaß, H.; Südekum, K.H. Protein evaluation for ruminants—basics, analytical developments and perspectives (Proteinbewertung beim Wiederkäuer—Grundlagen, analytische Entwicklungen und Ausblick). Übers. Tierernährg. 2013, 41, 51–73. (In German) [Google Scholar]
- Edmunds, B.; Südekum, K.-H.; Spiekers, H.; Schuster, M.; Schwarz, F.J. Estimating utilisable crude protein at the duodenum, a precursor to metabolisable protein for ruminants, from forages using a modified gas test. Anim. Feed Sci. Technol. 2012, 175, 106–113. [Google Scholar] [CrossRef]
- Leberl, P.; Gruber, L.; Steingaß, H.; Schenkel, H. Comparison of the methods modified Hohenheimer Futterwerttest (moHFT) and Cornell system for determination of nXP-content of concentrates. In Proceedings of the 16th International Science Symposium on Nutrition of Domestic Animals, Radenci, Slovenia, 8–9 November 2007; Kapun, S., Kramberger, B., Ceh, T., Eds.; Kmetijsko gozdarska zbornica Slovenije, Kmetijsko gozdarski zavod: Murska Sobota, Slovenia, 2007; pp. 171–176. [Google Scholar]
- Menke, K.-H.; Steingaß, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Agricultural and Food Research Council. Energy and Protein Requirements of Ruminants: An Advisory Manual Prepared by the AFRC Technical Committee on Responses to Nutrients; CAB International: Wallingford, UK, 1993. [Google Scholar]
- Brüning, D.; Gerlach, K.; Weiß, K.; Südekum, K.-H. Effect of compaction, delayed sealing and aerobic exposure on maize silage quality and on formation of volatile organic compounds. Grass Forage Sci. 2018, 73, 53–66. [Google Scholar] [CrossRef]
- Hinds, A.A.; Lowe, L.E. Application of the Berthelot reaction to the determination of ammonium-N in soil extracts and soil digests. Commun. Soil Sci. Plant Anal. 1980, 11, 469–475. [Google Scholar] [CrossRef]
- Weiß, K.; Kaiser, E. The determination of lactic acid in silage with HPLC (Milchsäurebestimmung in Silageextrakten mit Hilfe der HPLC). Wirtschaftseig. Futter 1995, 41, 69–80. (In German) [Google Scholar]
- Weiß, K. Fermentation Process and Fermentation Quality of Silages Originating from Low-Nitrate Herbage (Gärungsverlauf und Gärqualität von Silagen aus nitratarmen Grünfutter). Ph.D. Thesis, Humboldt-Universität zu Berlin, Berlin, Germany, 2001. (In German). [Google Scholar]
- Weiß, K.; Sommer, G. Determination of Esters and Other Volatile Organic Compounds (VOC) in Silage Extracts Using Gas Chromatography (Bestimmung von Estern und anderen flüchtigen organischen Substanzen (VOC) in Silageextrakten mit Hilfe der Gaschromatographie). VDLUFA Schriftenr. 2012, 68, 561–569. (In German) [Google Scholar]
- Von Lengerken, J.; Zimmermann, K. Handbuch Futtermittelprüfung; Deutscher Landwirtschaftsverlag: Berlin, Germany, 1991; Volume 1. (In German) [Google Scholar]
- Udén, P.; Robinson, P.H.; Mateos, G.G.; Blank, R. Use of replicates in statistical analyses in papers submitted for publication in Animal Feed Science and Technology. Anim. Feed Sci. Technol. 2012, 171, 1–5. [Google Scholar] [CrossRef]
- Lowry, S.R. Use and misuse of multiple comparisons in animal experiments. J. Anim. Sci. 1992, 70, 1971–1977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewar, W.A.; McDonald, P.; Whittenbury, R. The hydrolysis of grass hemicelluloses during ensilage. J. Sci. Food Agric. 1963, 14, 411–417. [Google Scholar] [CrossRef]
- Santos, M.C.; Kung, L. Short communication: The effects of dry matter and length of storage on the composition and nutritive value of alfalfa silage. J. Dairy Sci. 2016, 99, 5466–5469. [Google Scholar] [CrossRef] [PubMed]
- Wyss, U.; Girard, M.; Grosse Brinkhaus, A.; Dohme-Meier, F. Crude protein fractions in three legume species (Proteinfraktionen in drei Leguminosenarten). Agrarforsch. Schweiz 2017, 8, 220–225. (In German) [Google Scholar]
- Rotz, C.A. Field Curing of Forages. In Post-harvest Physiology and Preservation of Forages; CSSA Special Publication 22; Crop Science Society of America: Fitchburg, WI, USA; American Society of Agronomy: Madison, WI, USA, 1995; pp. 39–66. [Google Scholar]
- Kirchhof, S.; Eisner, I.; Gierus, M.; Südekum, K.-H. Variation in the contents of crude protein fractions of different forage legumes during the spring growth. Grass Forage Sci. 2010, 65, 376–382. [Google Scholar] [CrossRef]
- Yuan, X.; Wen, A.; Desta, S.T.; Dong, Z.; Shao, T. Effects of four short-chain fatty acids or salts on the dynamics of nitrogen transformations and intrinsic protease activity of alfalfa silage. J. Sci. Food Agric. 2017, 97, 2759–2766. [Google Scholar] [CrossRef]
- Heron, S.J.E.; Edwards, R.A.; Phillips, P. Effect of pH on the activity of ryegrass Lolium multiflorum proteases. J. Sci. Food Agric. 1989, 46, 267–277. [Google Scholar] [CrossRef]
- Tao, L.; Guo, X.S.; Zhou, H.; Undersander, D.J.; Nandety, A. Short communication: Characteristics of proteolytic activities of endo- and exopeptidases in alfalfa herbage and their implications for proteolysis in silage. J. Dairy Sci. 2012, 95, 4591–4595. [Google Scholar] [CrossRef]
- Owens, V.N.; Albrecht, K.A.; Muck, R.E. Protein degradation and ensiling characteristics of red clover and alfalfa wilted under varying levels of shade. Can. J. Plant Sci. 1999, 79, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Muck, R.E. Dry matter level effects on alfalfa silage quality I. Nitrogen transformations. Transact. ASAE 1987, 30, 7–14. [Google Scholar] [CrossRef]
- Purwin, C.; Sienkiewicz, S.; Pysera, B.; Lipiński, K.; Fijałkowska, M.; Piwczyński, D.; Puzio, N. Nitrogen fractions and amino acid content in alfalfa and red clover immediately after cutting and after wilting in the field. J. Elementol. 2014, 19, 723–734. [Google Scholar] [CrossRef]
- Scherer, R.; Gerlach, K.; Südekum, K.-H. Biogenic amines and gamma-amino butyric acid in silages: Formation, occurrence and influence on dry matter intake and ruminant production. Anim. Feed Sci. Technol. 2015, 210, 1–16. [Google Scholar] [CrossRef]
- Ohshima, M.; McDonald, P. A review of the changes in nitrogenous compounds of herbage during ensilage. J. Sci. Food Agric. 1978, 29, 497–505. [Google Scholar] [CrossRef]
- Oh, C.-H.; Oh, S.-H. Effects of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis. J. Med. Food 2004, 7, 19–23. [Google Scholar] [CrossRef]
- Krizsan, S.J.; Westad, F.; Adnøy, T.; Odden, E.; Aakre, S.E.; Randby, A.T. Effect of volatile compounds in grass silage on voluntary intake by growing cattle. Animal 2007, 1, 283–292. [Google Scholar] [CrossRef]
- Aschenbach, J.R.; Gäbel, G. Effect and absorption of histamine in sheep rumen: Significance of acidotic epithelial damage. J. Anim. Sci. 2000, 78, 464. [Google Scholar] [CrossRef]
- Repetto, J.L.; González, J.; Cajarville, C. Effect of dehydration on ruminal degradability of lucerne. Anim. Res. 2000, 49, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Kung, L.; Shaver, R. Interpretation and use of silage fermentation analysis reports. Focus Forage 2001, 3, 1–5. [Google Scholar]
- Driehuis, F.; Oude Elferink, S.J.W.H.; Spoelstra, S.F. Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with Lactobacillus buchneri inhibits yeast growth and improves aerobic stability. J. Appl. Microbiol. 1999, 87, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Weiß, K.; Kalzendorf, C. Effect of wilting and silage additives on silage quality of lucerne, red clover and legume-grass mixtures. In Proceedings of the 26th General Meeting of the European Grassland Federation, Trondheim, Norway, 4–8 September 2016; pp. 170–172. [Google Scholar]
- Wylam, C.B. Analytical studies on the carbohydrates of grasses and clovers. III.—Carbohydrate breakdown during wilting and ensilage. J. Sci Food Agric. 1953, 4, 527–531. [Google Scholar] [CrossRef]
- Zheng, M.; Niu, D.; Zuo, S.; Mao, P.; Meng, L.; Xu, C. The effect of cultivar, wilting and storage period on fermentation and the clostridial community of alfalfa silage. Ital. J. Anim. Sci. 2017, 17, 336–346. [Google Scholar] [CrossRef] [Green Version]
- Ðorđević, N.Ž.; Grubić, G.A.; Stojanović, B.D.; Božičković, A.Ð. The influence of compression level and inoculation on biochemical changes in lucerne silages. J. Agric. Sci. 2011, 56, 15–23. [Google Scholar] [CrossRef]
- Eisner, I.; Südekum, K.-H.; Kirchhof, S. Relationships between silage fermentation characteristics and feed intake by dairy cows (Beziehungen zwischen Fermentationscharakteristika von Silagen und der Futteraufnahme von Milchkühen). Übers. Tierernährg. 2006, 34, 197–221. (In German) [Google Scholar]
- Davies, D.R.; Merry, R.J.; Williams, A.P.; Bakewell, E.L.; Leemans, D.K.; Tweed, J.K. Proteolysis during ensilage of forages varying in soluble sugar content. J. Dairy Sci. 1998, 81, 444–453. [Google Scholar] [CrossRef]
- Danner, H.; Holzer, M.; Mayrhuber, E.; Braun, R. Acetic acid increases stability of silage under aerobic conditions. Appl. Environ. Microbiol. 2003, 69, 562–567. [Google Scholar] [CrossRef]
- Weiß, K.; Kroschewski, B.; Auerbach, H. Effects of air exposure, temperature and additives on fermentation characteristics, yeast count, aerobic stability and volatile organic compounds in corn silage. J. Dairy Sci. 2016, 99, 8053–8069. [Google Scholar] [CrossRef] [Green Version]
- Pahlow, G.; Muck, R.E.; Driehuis, F.; Oude Elferink, S.J.W.H.; Spoelstra, S.F. Microbiology of Ensiling. In Silage Science and Technology; Buxton, D.R., Muck, R.E., Harrison, J.H., Eds.; American Society of Agronomy: Madison, WI, USA; Crop Science Society of America: Fitchburg, WI, USA; Soil Science Society of America: Madison, WI, USA, 2003; pp. 31–93. [Google Scholar]
- Gerlach, K.; Roß, F.; Weiß, K.; Büscher, W.; Südekum, K.-H. Changes in maize silage fermentation products during aerobic deterioration and effects on dry matter intake by goats. Agric. Food Sci. 2013, 22, 168–181. [Google Scholar] [CrossRef]
- Lorenzo, B.F.; O’Kiely, P. Alternatives to formic acid as a grass silage additive under two contrasting ensilability conditions. Irish J. Agric. Food Res. 2008, 47, 135–149. [Google Scholar]
- Dawson, L.E.R.; Ferris, C.P.; Steen, R.W.J.; Gordon, F.J.; Kilpatrick, D.J. The effects of wilting grass before ensiling on silage intake. Grass Forage Sci. 1999, 54, 237–247. [Google Scholar] [CrossRef]
- Savoie, P. Intensive mechanical conditioning of forages: A review. Can. Biosyst. Eng. 2001, 43, 2.1–2.12. [Google Scholar]
- Mandell, I.B.; Mowat, D.N.; Bilanski, W.K.; Rai, S.N. Effect of heat treatment of alfalfa prior to ensiling on nitrogen solubility and in vitro ammonia production. J. Dairy Sci. 1989, 72, 2046–2054. [Google Scholar] [CrossRef]
Silage | DM | CP | aNDFom | ADFom | ADL |
---|---|---|---|---|---|
Fresh lucerne | 213.1 | 213 | 431 | 340 | 91 |
250HISU | 254.8 | 195 | 458 | 322 | 88 |
250HI | 240.5 | 215 | 463 | 364 | 88 |
250LISU | 255.0 | 198 | 422 | 325 | 87 |
250LI | 246.8 | 219 | 429 | 355 | 86 |
350HISU | 344.5 | 188 | 416 | 325 | 88 |
350HI | 340.0 | 211 | 446 | 338 | 90 |
350LISU | 346.8 | 195 | 390 | 312 | 96 |
350LI | 339.0 | 213 | 421 | 336 | 95 |
Results of statistical analyses | |||||
SEM | 18 | 4 | 9 | 6 | 1 |
SU | ** | ** | * | * | NS |
WI | NS | * | NS | NS | NS |
DML | ** | * | NS | NS | NS |
Crude Protein Fraction † | ||||||
---|---|---|---|---|---|---|
Silage | A | B1 | B2 | B3 | C | TP |
Fresh lucerne | 259 | 289 | 383 | 27 | 42 | 741 |
250HISU | 772 | 13 | 174 | 0 | 54 | 228 |
250HI | 799 | 6 | 154 | 0 | 53 | 201 |
250LISU | 782 | 11 | 16 | 0 | 47 | 218 |
250LI | 812 | 11 | 139 | 0 | 58 | 188 |
350HISU | 699 | 6 | 251 | 2 | 49 | 301 |
350HI | 744 | 6 | 206 | 0 | 49 | 256 |
350LISU | 718 | 3 | 253 | 2 | 47 | 282 |
350LI | 779 | 7 | 182 | 0 | 46 | 221 |
Results of statistical analyses | ||||||
SEM | 14 | 1 | 27 | 0 | 1 | 14 |
SU | ** | NS | ** | * | NS | ** |
WI | * | NS | NS | NS | NS | * |
DML | ** | NS | ** | * | # | ** |
AA | Ala | Arg | Asp | Cys | Glu | Gly | His | Ile | Leu | Lys | Met | Phe | Pro | Ser | Thr | Val | GABA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
250HISU | 21.1 | 2.3 | 11.3 | 1.2 | 10.2 | 9.6 | 1.9 | 9.5 | 14.8 | 3.2 | 3.2 | 9.3 | 6.2 | 3.2 | 3.6 | 11.8 | 10.3 |
250HI | 29.4 | 1.7 | 4.2 | 0.7 | 5 | 3.5 | 1.3 | 10.3 | 16.5 | 2.5 | 2.2 | 8.5 | 2.1 | 2.2 | 2 | 13.3 | 16.7 |
250LISU | 22.3 | 2.1 | 10.6 | 1.3 | 10.3 | 9.7 | 2 | 9.7 | 15 | 3.1 | 3.2 | 9.5 | 6 | 2.9 | 3 | 12 | 10.7 |
250LI | 28.8 | 1.7 | 4.4 | 0.9 | 5.5 | 6 | 1.6 | 10.6 | 16.3 | 2.6 | 2.7 | 8.4 | 2.3 | 2.2 | 2 | 13.4 | 16.5 |
350HISU | 14.7 | 3.1 | 17.6 | 0.13 | 12.5 | 8.9 | 3.3 | 8.9 | 14.4 | 7.6 | 3 | 9.1 | 8.7 | 4.7 | 6.4 | 11 | 8 |
350HI | 19.1 | 2.3 | 13 | 1.4 | 9.7 | 10 | 3.6 | 10 | 16 | 7.2 | 3.2 | 9.4 | 8.4 | 3 | 4 | 12.6 | 12.5 |
350LISU | 14.4 | 3.2 | 19.9 | 1.4 | 12.5 | 9.2 | 3.5 | 9.1 | 14.5 | 8.6 | 3.1 | 9.4 | 10.3 | 5.1 | 6.9 | 11.7 | 7.4 |
350LI | 18.1 | 2.3 | 14.4 | 1.4 | 10.9 | 10.3 | 4.4 | 10.3 | 16.3 | 7.8 | 3.4 | 10.2 | 10.9 | 3.4 | 4.4 | 13.2 | 10.9 |
SEM | 2.02 | 0.2 | 1.99 | 0.16 | 1.01 | 0.84 | 0.4 | 0.21 | 0.31 | 0.95 | 0.13 | 0.2 | 1.18 | 0.38 | 0.65 | 0.31 | 1.23 |
Results of statistical analyses | |||||||||||||||||
SU | ** | ** | ** | NS | ** | NS | NS | ** | ** | # | NS | NS | NS | ** | ** | ** | ** |
WI | NS | NS | NS | NS | NS | NS | NS | * | NS | NS | NS | NS | NS | NS | NS | * | NS |
DML | ** | ** | ** | # | ** | NS | ** | ** | * | ** | NS | NS | ** | ** | ** | * | ** |
AA | Ala | Arg | Asp | GABA | Glu | Gly | His | Ile | Leu | Lys | Met | Phe | Pro | Thr | Val |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
250HISU | 21.9 | 0 | 0.6 | 9.7 | 3 | 6 | 0 | 6 | 10.4 | 0 | 2.1 | 5.9 | 2.9 | 1.4 | 7.8 |
250HI | 32.5 | 0 | 0 | 12.5 | 0 | 0.8 | 0 | 8 | 12.8 | 0 | 1.2 | 5.3 | 0 | 0.2 | 10.6 |
250LISU | 23.5 | 0 | 0.4 | 10.1 | 3.1 | 6.2 | 0 | 6.3 | 10.7 | 0 | 2.2 | 6.1 | 2.8 | 0.9 | 8.3 |
250LI | 32 | 0 | 0.3 | 12.4 | 0.5 | 3.1 | 0 | 8.3 | 12.7 | 0 | 1.7 | 5.3 | 0.3 | 0.3 | 10.6 |
350HISU | 13.4 | 0 | 5.4 | 7.6 | 3.9 | 4.7 | 1 | 4.8 | 8.8 | 3.6 | 1.5 | 4.9 | 4.6 | 3.7 | 6.1 |
350HI | 19.8 | 0 | 6 | 9.3 | 3 | 6.6 | 1.7 | 7.1 | 11.4 | 4.1 | 1.7 | 5.8 | 6 | 2.1 | 9.1 |
350LISU | 12.7 | 0 | 7.4 | 7.1 | 4.1 | 4.6 | 1.5 | 4.9 | 8.7 | 4.4 | 1.5 | 5.1 | 6.1 | 4 | 6.4 |
350LI | 18.4 | 0 | 7.5 | 8.2 | 4.3 | 6.5 | 2.2 | 7.3 | 11.5 | 4.5 | 1.7 | 6.5 | 8.3 | 2.4 | 9.4 |
SEM | 2.64 | 0 | 1.21 | 0.72 | 0.57 | 0.71 | 0.32 | 0.47 | 0.55 | 0.79 | 0.11 | 0.19 | 1.03 | 0.51 | 0.61 |
Results of statistical analyses | |||||||||||||||
SU | ** | NS | NS | ** | # | NS | NS | ** | ** | NS | NS | NS | NS | ** | ** |
WI | NS | NS | NS | NS | NS | NS | NS | # | NS | NS | NS | NS | NS | NS | NS |
DML | ** | NS | ** | ** | * | NS | ** | ** | ** | ** | NS | NS | * | ** | ** |
Silage | uCP2 | uCP5 | uCP8 |
---|---|---|---|
250HISU | 72 | 109 | 127 |
250HI | 82 | 114 | 131 |
250LISU | 74 | 112 | 131 |
250LI | 76 | 110 | 128 |
350HISU | 74 | 105 | 121 |
350HI | 80 | 107 | 121 |
350LISU | 75 | 108 | 124 |
350LI | 74 | 103 | 118 |
SEM | 1.2 | 1.3 | 1.7 |
Results of statistical analyses | |||
SU | NS | NS | NS |
WI | NS | NS | NS |
DML | NS | NS | # |
Silage | pH | Lactic Acid | Acetic Acid | Propionic Acid | Butyric Acid | Caproic Acid | Ethyl Acetate | Ethyl Lactate | Methanol | Ethanol | Butanol | Propanol | WSC | Ammonia-N |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
250HISU | 4.58 | 50.6 | 38.2 | 0.8 | 0.7 | 0.0 | 0.2 | 0.1 | 2.1 | 7.9 | 0.1 | 1.9 | 10.1 | 175 |
250HI | 6.12 | 5.4 | 42.8 | 2.1 | 21.9 | 0.8 | 0.1 | 0.0 | 2.5 | 6.2 | 0.1 | 0.3 | 2.3 | 276 |
250LISU | 4.61 | 52.4 | 38.2 | 1.5 | 1.5 | 0.0 | 0.2 | 0.1 | 2.6 | 8.7 | 0.1 | 1.7 | 10.6 | 157 |
250LI | 5.85 | 15.3 | 48.4 | 2.0 | 7.2 | 0.8 | 0.1 | 0.0 | 3.0 | 5.4 | 0.1 | 0.3 | 3.1 | 221 |
350HISU | 4.77 | 39.7 | 31.1 | 1.0 | 0.6 | 0.0 | 0.2 | 0.1 | 1.7 | 6.5 | 0.0 | 0.2 | 17.6 | 145 |
350HI | 5.81 | 21.6 | 34.0 | 0.3 | 0.5 | 0.0 | 0.1 | 0.0 | 2.2 | 6.3 | 0.1 | 0.2 | 5.0 | 217 |
350LISU | 4.65 | 36.2 | 31.2 | 0.8 | 0.3 | 0.0 | 0.2 | 0.1 | 1.2 | 5.8 | 0.0 | 0.1 | 46.0 | 149 |
350LI | 5.73 | 38.4 | 31.4 | 1.3 | 0.3 | 0.0 | 0.1 | 0.0 | 1.8 | 4.3 | 0.1 | 0.2 | 4.8 | 191 |
Results of statistical analyses | ||||||||||||||
SEM | 0.24 | 5.94 | 2.22 | 0.2 | 2.7 | 0.13 | 0.02 | 0.02 | 0.20 | 0.49 | 0.02 | 0.26 | 5.12 | 15.9 |
SU | ** | * | # | NS | NS | NS | ** | ** | NS | # | NS | NS | # | ** |
WI | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
DML | NS | NS | ** | NS | NS | NS | NS | NS | * | NS | NS | # | NS | # |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartinger, T.; Gresner, N.; Südekum, K.-H. Effect of Wilting Intensity, Dry Matter Content and Sugar Addition on Nitrogen Fractions in Lucerne Silages. Agriculture 2019, 9, 11. https://doi.org/10.3390/agriculture9010011
Hartinger T, Gresner N, Südekum K-H. Effect of Wilting Intensity, Dry Matter Content and Sugar Addition on Nitrogen Fractions in Lucerne Silages. Agriculture. 2019; 9(1):11. https://doi.org/10.3390/agriculture9010011
Chicago/Turabian StyleHartinger, Thomas, Nina Gresner, and Karl-Heinz Südekum. 2019. "Effect of Wilting Intensity, Dry Matter Content and Sugar Addition on Nitrogen Fractions in Lucerne Silages" Agriculture 9, no. 1: 11. https://doi.org/10.3390/agriculture9010011
APA StyleHartinger, T., Gresner, N., & Südekum, K.-H. (2019). Effect of Wilting Intensity, Dry Matter Content and Sugar Addition on Nitrogen Fractions in Lucerne Silages. Agriculture, 9(1), 11. https://doi.org/10.3390/agriculture9010011