Effect of Nitrogen Sources on the Phenological Phases of Italian Zucchini Under Salt Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Location and Experimental Design
2.2. Plant Material and Soil Characteristics
2.3. Fertilization and Irrigation Management
2.4. Parameters Evaluated
2.4.1. Leaf Gas Exchange, Chlorophyll Fluorescence, Electrolyte Leakage, and Photosynthetic Pigments
2.4.2. Growth and Production
2.5. Statistical Analysis
3. Results
3.1. Leaf Gas Exchange, Electrolyte Leakage, Photosynthetic Pigments, and Chlorophyll Fluorescence
3.2. Growth and Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Costa, I.B.C.; Bonfim, F.P.G.; Pasa, M.C. Agricultura familiar: Estudo de caso do sistema produtivo em comunidade rural do estado do mato grosso, brasil. Braz. J. Dev. 2023, 9, 26754–26765. [Google Scholar] [CrossRef]
- Dantas, M.V.; Lima, G.S.; Gheyi, H.R.; Pinheiro, F.W.A.; Silva, P.C.C.; Soares, L.A.A. Gas exchange and hydroponic production of zucchini under salt stress and H2O2 application. Rev. Caatinga 2022, 35, 436–449. [Google Scholar] [CrossRef]
- Guerra, A.M.N.M.; Silva, M.G.M.; Evangelista, R.S.; Santos, E.B.; Nogueira, W.P. Produção de cultivares de abobrinha italiana a pleno sol e sombreada no nordeste brasileiro. Agropecuária Técnica 2020, 41, 1–7. [Google Scholar] [CrossRef]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Número de Estabelecimentos Agropecuários e Quantidade Produzida por Produtos da Horticultura—Resultados Preliminares 2018; IBGE: Rio de Janeiro, Brazil, 2019. [Google Scholar]
- Fadl, M.E.; Jalhoum, M.E.M.; Abdelrahman, M.A.E.; Ali, E.A.; Zahra, W.R.; Abuzaid, A.S.; Fiorentino, C.; D’antonio, P.; Belal, A.A.; Scopa, A. Soil salinity assessing and mapping using several statistical and distribution techniques in arid and semi-arid ecosystems, Egypt. Agronomy 2023, 13, 583. [Google Scholar] [CrossRef]
- Wang, N.; Chen, S.; Huang, J.; Frappart, F.; Taghizadeh, R.; Zhang, X.; Wigneron, J.; Xue, J.; Xiao, Y.; Peng, J.; et al. Global soil salinity estimation at 10 m using multi-source remote sensing. J Remote Sens. 2024, 4, 0130. [Google Scholar] [CrossRef]
- Cirillo, C.; Rouphael, Y.; Caputo, R.; Raimondi, G.; Sifola, M.I.; de Pascale, S. Effects of high salinity and the exogenous of an osmolyte on growth, photosynthesis and mineral composition in two ornamental shrubs. J. Hortic. Sci. Biotechnol. 2016, 91, 14–22. [Google Scholar] [CrossRef]
- Acosta-Motos, J.R.; Ortuño, M.F.; Vicente, A.B.; Vivancos, P.D.; Blanco, M.J.S.; Hernandez, J.A. Plant responses to salt stress: Adaptive mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef]
- Medeiros, J.F.; Terceiro Neto, C.P.C.; Dias, N.S.; Gheyi, H.R.; Silva, M.V.T.; Loiola, A.T. Salinidade e ph de um argissolo irrigado com água salina sob estratégias de manejo. Rev. Bras. Agric. Irrig. 2017, 11, 1407–1419. [Google Scholar] [CrossRef]
- Sousa, H.C.; Sousa, G.G.; Cambissa, P.B.C.; Lessa, C.I.N.; Goes, G.F.; Silva, F.D.B.; Abreu, F.S.; Viana, T.V.A. Gas exchange and growth of zucchini crop subjected to salt and water stress. Rev. Bras. Eng. Agrícola Ambient. 2022, 26, 815–822. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanism of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Syvertsen, J.P.; Garcia-Sanchez, F. Multiple abiotic stresses occurring with salinity stress in citrus. Environ. Exp. Bot. 2014, 103, 128–137. [Google Scholar] [CrossRef]
- Sá, F.V.S.; Brito, M.E.B.; Silva, L.A.; Moreira, R.C.L.; Fernandes, P.D.; Figueiredo, L.C. Fisiologia da percepção do estresse salino em híbridos de tangerineira—Sunki comum sob solução hidropônica salinizada. Comun. Sci. 2015, 6, 463–470. [Google Scholar] [CrossRef]
- Sá, F.V.S.; Gheyi, H.R.; Lima, G.S.; Paiva, E.P.; Lacerda, C.F.; Fernandes, P.D. Saline water, nitrogen and phosphorus on water relations and physiological aspects of west indian cherry. Comun. Sci. 2018, 9, 430–437. [Google Scholar] [CrossRef]
- Santos, J.B.; Gheyi, H.R.; Lima, G.S.; Xavier, D.A.; Cavalcante, L.F.; Centeno, C.R.M. Morfofisiologia e produção do algodoeiro herbáceo irrigado com águas salinas e adubado com nitrogênio. Comun. Sci. 2016, 7, 86–96. [Google Scholar] [CrossRef]
- Bazzo, J.H.B.; Riede, C.R.; Arruda, K.M.A.; Cardoso, C.P.; Franzoni, I.; Fonseca, I.C.B.; Zucareli, C. Performance of white oat cultivars in response to nitrogen fertilization and trinexapac-ethyl. Semin. Ciências Agrárias 2019, 40, 2121–2135. [Google Scholar] [CrossRef]
- Blanger, B.R.; Lobo, F.A.; Genuncio, G.C.; Possamai, A.C.S. Avaliação de um método para estimar a absorção radicular do nitrato em arroz. Rev. Ibero Am. Ciências Ambient. 2021, 12, 1–19. [Google Scholar] [CrossRef]
- Cordeiro, C.F.S.; Rodrigues, D.R.; Echer, F.R. Cover crops and controlled-release urea decrease need for mineral nitrogen fertilizer for cotton in sandy soil. Field Crop. Res. 2022, 276, 108387. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Embrapa—Empresa Brasileira de Pesquisa Agropecuária. Manual de Análises Químicas de Solos, Plantas e Fertilizantes, 2nd ed.; Embrapa Informação Tecnológica: Brasília, Brazil, 2009. [Google Scholar]
- Novais, R.F.; Neves, J.C.L.; Barros, N.F. Ensaio em ambiente controlado. In Métodos de Pesquisa em Fertilidade do Solo; Oliveira, A.J., Garrido, W.E., Araújo, J.D., Lourenço, S.; Orgs.Embrapa-Sea: Brasília, Brazil, 1991; pp. 189–254. [Google Scholar]
- Oxborough, K.; Baker, N.R. An instrument capable of imaging chlorophyll a fluorescence from leaves at very low irradiance and at cellular and subcellular levels of organization. Plant Cell Environ. 1997, 20, 1473–1483. [Google Scholar] [CrossRef]
- Kramer, D.M.; Johnson, G.; Kiirats, O.; Edwads, G.E. New fluorescence parameters for the determination of qa redox state and excitation energy fluxes. Photosynth. Res. 2004, 79, 209–218. [Google Scholar] [CrossRef]
- Singh, H.P.; Batish, D.R.; Kohli, R.K.; Arora, K. Arsenic-induced root growth inhibition in mung bean (phaseolus aureus roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul. 2007, 53, 65–73. [Google Scholar] [CrossRef]
- Wellburn, A.R. The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Fialho, G.S.; Dalvi, L.P.; Dalvi, N.B.C.; Kuhlcamp, K.T.; Effgen, E.M. Prediction of the leaf area in zucchini fruit: A nondestructive, exact, simple, fast and practical method. Rev. Bras. Agropecuária Sustentável 2011, 1, 59–63. [Google Scholar]
- Ferreira, D.F. Sisvar: A computer analysis system to fixed effects split plot type designs. Rev. Bras. Biom. 2019, 37, 529–535. [Google Scholar] [CrossRef]
- Munns, R.; Day, D.A.; Fricke, W.; Watt, M.; Arsova, B.; Barkla, B.J.; Bose, J.; Byrt, C.S.; Chen, Z.; Foster, K.J.; et al. Energy costs of salt tolerance in crop plants. New Phytol. 2020, 225, 1072–1090. [Google Scholar] [CrossRef]
- Lira, E.; Souza, J.; Galdino, L.; Macêdo, C.; Silva, A.; Melo, Y.; Santos, I.; Arriel, M.; Meneses, C.; Maia, J. Changes in reserve mobilization caused by salinity could interfere in the initial growth of Jatropha curcas. Sustainability 2021, 13, 7446. [Google Scholar] [CrossRef]
- Sá, F.V.S.; Gueyi, H.R.; Lima, G.S.; Paiva, E.P.; Silva, L.A.; Moreira, R.C.L.; Fernandes, P.D.; Dias, A.S. Ecophysiology of west indian cherry irrigated with saline water under phosphorus and nitrogen doses. Biosci. J. 2019, 35, 211–221. [Google Scholar] [CrossRef]
- Sá, F.V.S.; Gheyi, H.R.; Lima, G.S.; Pinheiro, F.W.A.; Paiva, E.P.; Moreira, R.C.L.; Silva, L.A.; Fernandes, P.D. The right combination of n-p-k fertilization may mitigate salt stress in custard apple (annona squamosa L.). Acta Physiologiae Plantarum 2021, 43, 59. [Google Scholar] [CrossRef]
- Silva, F.H.; Morais, P.L.D.; Albuquerque, C.C.; Albuquerque, M.T.; Dias, N.S. Physiological aspects of melon (cucumis melo l.) as a function of salinity. J. Plant Growth Regul. 2021, 40, 1298–1314. [Google Scholar] [CrossRef]
- Praxedes, S.S.C.; Ferreira Neto, M.; Loiola, A.T.; Santos, F.J.Q.; Umbelino, B.F.; Silva, L.A.; Moreira, R.C.L.; Melo, A.S.; Lacerda, C.F.; Fernandes, P.D.; et al. Photosynthetic responses, growth, production, and tolerance of traditional varieties of cowpea under salt stress. Plants 2022, 11, 1863. [Google Scholar] [CrossRef]
- Fernandes, C.S.; Sá, F.V.S.; Ferreira Neto, M.; Dias, N.S.; Reges, L.B.L.; Gheyi, H.R.; Paiva, E.P.; Silva, A.A.; Melo, A.S. Ionic homeostasis, biochemical components and yield of Italian zucchini under nitrogen forms and salt stress. Braz. J. Biol. 2022, 82, e233567. [Google Scholar] [CrossRef] [PubMed]
- Hatsugai, N.; Katagiri, F. Quantification of plant cell death by electrolyte leakage assay. Bio-Protocol 2018, 5, e2758. [Google Scholar] [CrossRef] [PubMed]
- Raddatz, N.; Morales de Los Ríos, L.; Lindahl, M.; Quintero, F.J.; Pardo, J.M. Coordinated transport of nitrate, potassium, and sodium. Front. Plant Sci. 2020, 11, 247. [Google Scholar] [CrossRef]
- Pathak, J.; Ahmed, H.; Kumari, N.; Pandey, A.; Rajneesh, R.P. Role of calcium and potassium in amelioration of environmental stress in plant. In Protective Chemical Agents in the Amelioration of Plant Abiotic Stress; John Wiley & Sons, Ltd.: Chichester, UK, 2020; pp. 535–562. [Google Scholar] [CrossRef]
- Leiva-Ampuero, A.; Agurto, M.; Matus, J.T.; Hoppe, G.; Huidobro, C.; Inostroza-Blancheteau, C.; Reyes-Díaz, M.; Stange, C.; Canessa, P.; Vega, A. Salinity impairs photosynthetic capacity and enhances carotenoid-related gene expression and biosynthesis in tomato (Solanum lycopersicum L. cv. micro-tom). PeerJ 2020, 8, e9742. [Google Scholar] [CrossRef]
- Kopsell, D.A.; Kopsell, D.E.; Curran-Celentano, J. Carotenoid pigments in kale are influenced by nitrogen concentration and form. J. Sci. Food Agric. 2007, 87, 900–907. [Google Scholar] [CrossRef]
- Han, J.; Shi, J.; Zeng, L.; Xu, J.; Wu, L. Effects of nitrogen fertilization on the acidity and salinity of greenhouse soils. Environ. Sci. Pollut. Res. Int. 2015, 22, 2976–2986. [Google Scholar] [CrossRef]
- Souza, M.W.L.; Torres, S.B.; Oliveira, F.A.; Marques, I.C.S.; Pereira, K.T.O.; Guimarães, T.T. Saline-water irrigation and plant growth regulator application on zucchini fruit yield and quality. Rev. Bras. Eng. Agrícola Ambient. 2020, 24, 679–684. [Google Scholar] [CrossRef]
- Fernandes, C.S.; Ferreira Neto, M.; Dias, N.S.; Reges, L.B.L.; Silva, L.A.; Moreira, R.C.L.; Silva, A.Á.; Paiva, E.P.; Fernandes, P.D.; Sá, F.V.S. The appropriate source of nitrogen for italian zucchini under salt stress conditions. J. Soil Sci. Plant Nutr. 2022, 22, 560–570. [Google Scholar] [CrossRef]
- Nobre, R.G.; Gheyi, H.R.; Soares, F.A.L.; Cardoso, J.A.F. Produção de girassol sob estresse salino e adubação nitrogenada. Rev. Bras. Ciência Solo 2011, 35, 929–937. [Google Scholar] [CrossRef]
- Lima, G.S.; Nobre, R.G.; Gheyi, H.R.; Soares, L.A.A.; Silva, A.O. Crescimento e componentes de produção da mamoneira sob estresse salino e adubação nitrogenada. Engenharia Agrícola 2014, 34, 854–866. [Google Scholar] [CrossRef]
- Ribeiro, P.H.P.; Silva, S.; Dantas Neto, J.; Oliveira, C.S.; Chaves, L.H.G. Crescimento e componentes de produção do girassol em função da irrigação com água salina e adubação nitrogenada. Rev. Eng. Agric. 2015, 23, 48–56. [Google Scholar] [CrossRef]
- Dantas, M.V.; Lima, G.S.; Greyi, H.R.; Pinheiro, F.W.A.; Silva, L.A.; Fernandes, P.D. Summer squash morphophysiology under salt stress and exogenous application of h2o2 in hydroponic cultivation. Comun. Sci. 2021, 12, e3464. [Google Scholar]
- Canjá, J.F.; Azevedo, J.; Sousa, G.G.; Magalhaes, C.L.; Viana, T.V.A. Initial growth of zucchini irrigated with saline water in soil with biofertilizers. Agro@mbiente On-Line 2021, 15, 1–15. [Google Scholar] [CrossRef]
- Roosta, H.R.; Schjoerring, J.K. Effects of ammonium toxicity on nitrogen metabolism and elemental profile of cucumber plants. J. Plant Nutr. 2007, 30, 1933–1951. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Plant Physiology and Development, 6th ed.; Sinauer Associates: New York, NY, USA, 2015. [Google Scholar]
- Volkov, V.; Beilby, M.J. Salinity tolerance in plants: Mechanisms and regulation of ion transport. Front. Plant Sci. 2017, 8, 1795. [Google Scholar] [CrossRef] [PubMed]
- Wan, Q.; Hongbo, S.; Zhaolong, X.; Jia, L.; Dayong, Z.; Yihong, H. Salinity tolerance mechanism of osmotin and osmotin-like proteins: A promising candidate for enhancing plant salt tolerance. Curr. Genom. 2017, 18, 553–556. [Google Scholar] [CrossRef]
- Liang, W.; Ma, X.; Wan, P.; Liu, L. Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commun. 2018, 495, 286–291. [Google Scholar] [CrossRef]

| pH | OM (%) | P | K+ | Na+ | Ca2+ | Mg2+ | Al3+ | H + Al | SB | CEC | V | ESP |
| ---------------------- (cmolc dm−3) --------------------- | --- % --- | |||||||||||
| 5.3 | 1.7 | 2.1 | 0.13 | 0.05 | 2.7 | 0.9 | 0.0 | 1.8 | 3.78 | 5.58 | 68 | 2.0 |
| ECse dS m−1 | ds kg dm−3 | Sand | Silt | Clay | ||||||||
| -------------------------------------- (g kg−1) -------------------------------------- | ||||||||||||
| 0.1 | 1.6 | 820 | 30 | 150 | ||||||||
| Treatments | Dose per Plant | |
|---|---|---|
| Vegetative Phase | Reproductive Phase | |
| T1 | 2.01 g KNO3 + 2.31 g CaNO3 | 2.01 g KNO3 + 2.31 g CaNO3 |
| T2 | 2.01 g KNO3 + 2.31 g CaNO3 | 2.01 g KNO3 + 2.31 g CaNO3 |
| T3 | 2.01 g KNO3 + 0.66 g Urea + 0.39 g CaNO3 | 2.01 g KNO3 + 0.66 g Urea + 0.39 g CaNO3 |
| T4 | 1.32 g Urea + 1.5 g KCl | 2.01 g KNO3 + 2.31 g CaNO3 |
| T5 | 2.01 g KNO3 + 2.31 g CaNO3 | 1.32 g Urea + 1.5 g KCl |
| T6 | 1.32 g Urea + 1.5 g KCl | 1.32 g Urea + 1.5 g KCl |
| Water Sources | Parameters | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| pH | EC | K+ | Na+ | Mg2+ | Ca2+ | Cl− | CO32− | HCO3− | SAR | |
| dS m−1 | ---------------------- mmolc L−1----------------------- | (mmolc L−1)0.5 | ||||||||
| 1 | 7.57 | 0.50 | 0.31 | 3.79 | 1.20 | 0.83 | 2.40 | 0.60 | 3.20 | 3.76 |
| 2 | 7.10 | 9.50 | 0.83 | 54.13 | 24.20 | 37.80 | 116.00 | 0.00 | 3.40 | 9.70 |
| Treatments | Irrigation Volume | Salts Applied via Irrigation |
|---|---|---|
| L per Plant | g per Plant | |
| T1 | 12.50 | 4.00 |
| T2 | 12.68 | 36.51 |
| T3 | 12.61 | 36.32 |
| T4 | 12.85 | 37.00 |
| T5 | 12.73 | 36.67 |
| T6 | 12.34 | 35.55 |
| F-Test (p-Value) | ||||||
|---|---|---|---|---|---|---|
| Sources of Variation | AN (µmol CO2 m−2 s−1) | Gs (mol CO2 m−2 s−1) | Ci (µmol CO2 mol−1) | E (mmol m−2 s−1) | Tl (°C) | Fv/Fm |
| Blocks | 0.0116 ns | 0.0000 ** | 0.0002 ** | 0.0048 ** | 0.00001 ** | 0.2761 ns |
| Treatments | 0.0140 * | 0.0400 * | 0.4502 ns | 0.0751 ns | 0.2942 ns | 0.6749 ns |
| Means ± EP | ||||||
| T1 | 17.43 ± 1.08 a | 0.24 ± 0.03 a | 215.75 ± 24.27 a | 2.94 ± 0.33 a | 32.90 ± 1.28 a | 0.807 ± 0.001 a |
| T2 | 11.79 ± 1.59 b | 0.19 ± 0.05 ab | 250.50 ± 26.75 a | 2.43 ± 0.33 a | 32.53 ± 1.07 a | 0.807 ± 0.002 a |
| T3 | 12.47 ± 1.79 ab | 0.22 ± 0.05 ab | 258.00 ± 28.25 a | 2.64 ± 0.33 a | 32.20 ± 1.07 a | 0.811 ± 0.004 a |
| T4 | 11.27 ± 1.41 b | 0.16 ± 0.05 ab | 227.50 ± 40.63 a | 2.08 ± 0.32 a | 32.28 ± 1.38 a | 0.808 ± 0.004 a |
| T5 | 13.31 ± 2.35 ab | 0.18 ± 0.04 ab | 242.25 ± 20.83 a | 2.34 ± 0.28 a | 31.98 ± 1.32 a | 0.810 ± 0.002 a |
| T6 | 10.41 ± 0.82 b | 0.13 ± 0.02 b | 228.25 ± 19.96 a | 2.05 ± 0.13 a | 32.75 ± 1.08 a | 0.802 ± 0.008 a |
| DMS | 5.58 | 0.09 | 73.18 | 0.98 | 1.38 | 0.01 |
| F-Test (p-Value) | ||||
|---|---|---|---|---|
| Sources of Variation | EL (%) | Chl a (µm cm−2) | Chl b (µm cm−2) | Carot (µm cm−2) |
| Blocks | 0.3507 ns | 0.3445 ns | 0.1214 ns | 0.3888 ns |
| Treatments | 0.0000 ** | 0.0012 ** | 0.0001 ** | 0.0007 ** |
| Means ± SE | ||||
| T1 | 22.61 ± 1.25 c | 11.01 ± 0.58 a | 2.59 ± 0.12 a | 3.23 ± 0.25 a |
| T2 | 54.00 ± 3.63 ab | 7.73 ± 0.33 b | 1.93 ± 0.28 ab | 2.12 ± 0.07 b |
| T3 | 47.65 ± 1.63 b | 5.97 ± 0.37 b | 0.94 ± 0.13 c | 2.00 ± 0.02 b |
| T4 | 49.02 ± 1.71 b | 6.88 ± 0.45 b | 1.66 ± 0.18 bc | 2.21 ± 0.12 b |
| T5 | 52.99 ± 4.70 ab | 7.69 ± 1.14 b | 1.91 ± 0.22 ab | 2.30 ± 0.22 b |
| T6 | 66.72 ± 6.30 a | 6.14 ± 0.90 b | 1.17 ± 0.11 bc | 1.86 ± 0.22 b |
| DMS | 16.74 | 3.14 | 0.77 | 0.79 |
| F-Test (p-Value) | |||
| Sources of Variation | Y | ETR (µmol e− m−2 s−1) | Fo’ |
| Blocks | 0.4065 ns | 0.2127 ns | 0.1110 ns |
| Treatments | 0.7472 ns | 0.0797 ns | 0.2371 ns |
| Means ± SE | |||
| T1 | 0.74 ± 0.01 a | 38.55 ± 5.49 a | 1.77 ± 0.05 a |
| T2 | 0.72 ± 0.02 a | 18.75 ± 3.01 a | 1.56 ± 0.07 a |
| T3 | 0.68 ± 0.04 a | 25.13 ± 6.10 a | 1.50 ± 0.06 a |
| T4 | 0.72 ± 0.02 a | 16.20 ± 1.66 a | 1.64 ± 0.12 a |
| T5 | 0.70 ± 0.05 a | 27.83 ± 9.09 a | 1.70 ± 0.11 a |
| T6 | 0.72 ± 0.02 a | 20.73 ± 3.72 a | 1.69 ± 0.10 a |
| DMS | 0.13 | 23.56 | 0.37 |
| F-Test (p-Value) | |||
| Sources of Variation | qL | YNPQ | YNO |
| Blocks | 0.0555 ns | 0.5115 ns | 0.1607 ns |
| Treatments | 0.2323 ns | 0.7969 ns | 0.4812 ns |
| Means ± SE | |||
| T1 | 0.0097 ± 0.0006 a | 0.2203 ± 0.0040 a | 0.0424 ± 0.0021 a |
| T2 | 0.0072 ± 0.0005 a | 0.2259 ± 0.0131 a | 0.0505 ± 0.0031 a |
| T3 | 0.0063 ± 0.0012 a | 0.2614 ± 0.0321 a | 0.0612 ± 0.0114 a |
| T4 | 0.0081 ± 0.0010 a | 0.2340 ± 0.0192 a | 0.0493 ± 0.0042 a |
| T5 | 0.0088 ± 0.0018 a | 0.2516 ± 0.0379 a | 0.0501 ± 0.0089 a |
| T6 | 0.0088 ± 0.0013 a | 0.2287 ± 0.0141 a | 0.0494 ± 0.0053 a |
| DMS | 0.0045 | 0.1082 | 0.0285 |
| F-Test (p-Value) | |||||
|---|---|---|---|---|---|
| Sources of Variation | PH (cm) | SD (mm) | NL (unit) | SDM (g) | LA (cm2) |
| Blocks | 0.1235 ns | 0.0405 * | 0.8804 ns | 0.3030 ns | 0.2787 ns |
| Treatments | 0.0372 * | 0.0002 ** | 0.0156 * | 0.0015 ** | 0.0003 ** |
| Means ± SE | |||||
| T1 | 18.75 ± 1.11 a | 18.08 ± 0.78 a | 21.50 ± 1.32 a | 38.66 ± 3.87 a | 5783.15 ± 452.79 a |
| T2 | 17.13 ± 1.05 a | 14.18 ± 0.34 bc | 19.00 ± 1.08 ab | 29.72 ± 0.73 ab | 4181.51 ± 130.17 b |
| T3 | 15.25 ± 0.85 a | 15.60 ± 1.05 ab | 17.25 ± 0.63 ab | 28.56 ± 2.63 ab | 3702.79 ± 247.33 b |
| T4 | 15.00 ± 1.08 a | 14.43 ± 0.53 bc | 18.00 ± 1.78 ab | 26.58 ± 2.35 b | 3457.96 ± 241.10 b |
| T5 | 14.75 ± 1.18 a | 15.58 ± 0.35 ab | 15.00 ± 0.41 b | 27.40 ±1.98 b | 3526.85 ± 485.78 b |
| T6 | 15.13 ± 0.43 a | 12.90 ± 0.67 c | 16.00 ± 0.41 b | 20.05 ± 1.06 b | 3216.46 ± 141.05 b |
| DMS | 4.10 | 2.57 | 5.25 | 10.49 | 1.402.82 |
| F-Test (p-Value) | |||||
|---|---|---|---|---|---|
| Sources of Variation | NFP (Unit) | AFM (g) | LD (cm) | TD (cm) | PP (g) |
| Blocks | 0.4199 ns | 0.8003 ns | 0.4106 ns | 0.9409 ns | 0.3749 ns |
| Treatments | 0.00001 ** | 0.00001 ** | 0.00001 ** | 0.00001 ** | 0.00001 ** |
| Means ± SE | |||||
| T1 | 3.25 ± 0.25 a | 421.20 ± 15.88 a | 22.00 ± 0.35 a | 5.63 ± 0.21 a | 1360.98 ± 74.69 a |
| T2 | 2.00 ± 0.00 b | 254.80 ± 13.05 b | 18.00 ± 1.15 b | 5.10 ± 0.06 a | 509.60 ± 26.10 b |
| T3 | 2.00 ± 0.00 b | 199.28 ± 2.36 c | 16.75 ± 0.43 b | 4.43 ± 0.17 b | 398.55 ± 4.72 b |
| T4 | 2.00 ± 0.00 b | 209.40 ± 1.45 c | 17.20 ± 0.41 b | 4.35 ± 0.15 b | 418.80 ± 2.89 b |
| T5 | 0.00 ± 0.00 c | 0.00 ± 0.00 d | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c |
| T6 | 0.00 ± 0.00 c | 0.00 ± 0.00 d | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c |
| DMS | 0.46 | 41.27 | 2.52 | 0.63 | 1470.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Silva, G.d.F.; Peixoto, T.D.C.; Ferreira Neto, M.; Souto, A.G.d.L.; Rodrigues Filho, R.A.; Araújo, K.F.d.P.; Cavalcante, J.S.J.; Pereira, K.T.O.; Moreira, R.C.L.; Fernandes, P.D.; et al. Effect of Nitrogen Sources on the Phenological Phases of Italian Zucchini Under Salt Stress. Agriculture 2026, 16, 62. https://doi.org/10.3390/agriculture16010062
Silva GdF, Peixoto TDC, Ferreira Neto M, Souto AGdL, Rodrigues Filho RA, Araújo KFdP, Cavalcante JSJ, Pereira KTO, Moreira RCL, Fernandes PD, et al. Effect of Nitrogen Sources on the Phenological Phases of Italian Zucchini Under Salt Stress. Agriculture. 2026; 16(1):62. https://doi.org/10.3390/agriculture16010062
Chicago/Turabian StyleSilva, Gleydson de Freitas, Tayd Dayvison Custódio Peixoto, Miguel Ferreira Neto, Antônio Gustavo de Luna Souto, Ricardo André Rodrigues Filho, Kariolania Fortunato de Paiva Araújo, Jussiara Sonally Jácome Cavalcante, Kleane Targino Oliveira Pereira, Rômulo Carantino Lucena Moreira, Pedro Dantas Fernandes, and et al. 2026. "Effect of Nitrogen Sources on the Phenological Phases of Italian Zucchini Under Salt Stress" Agriculture 16, no. 1: 62. https://doi.org/10.3390/agriculture16010062
APA StyleSilva, G. d. F., Peixoto, T. D. C., Ferreira Neto, M., Souto, A. G. d. L., Rodrigues Filho, R. A., Araújo, K. F. d. P., Cavalcante, J. S. J., Pereira, K. T. O., Moreira, R. C. L., Fernandes, P. D., Dias, N. d. S., Rocha, J. L. A., Melo, A. S. d., Silva, A. Á. d., & Sá, F. V. d. S. (2026). Effect of Nitrogen Sources on the Phenological Phases of Italian Zucchini Under Salt Stress. Agriculture, 16(1), 62. https://doi.org/10.3390/agriculture16010062

