A GNSS-IR Soil Moisture Inversion Method Considering Multi-Factor Influences Under Different Vegetation Covers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology
2.2. Sites and Data
2.2.1. Study Area
2.2.2. Data Processing Workflow
2.3. GNSS-IR Soil Moisture Inversion Dataset
2.3.1. Extraction of Reflection Signal Feature Parameters
2.3.2. Normalized Microwave Reflection Index
2.4. Construction of the SMC Inversion Model and Evaluation of Model Accuracy
2.4.1. Support Vector Regression
2.4.2. Convolutional Neural Network
2.4.3. Newton–Raphson-Based Optimization XGBoost
- (1)
- Newton–Raphson-Based Optimizer
- (2)
- XGBoost
- (3)
- NRBO-XGBoost
2.4.4. 5-Fold Cross-Validation
2.4.5. Model Accuracy Evaluation
3. Results and Analysis
3.1. Factor Selection
3.2. Soil Moisture Inversion Results
3.2.1. SMC Inversion Results Based on ∆φ, ∆Heff, and Amplitude
3.2.2. SMC Inversion Optimization Based on Multi-Factor Dataset
3.2.3. SMC Inversion Results Using Multiple Features Under Different Vegetation Cover Types
4. Discussion
4.1. The Impact of Different Vegetation Cover on SMC Retrieval Accuracy and Mechanisms
4.2. Impact of Model Selection on SMC Inversion Results
4.3. Research Constraints and Future Directions
5. Conclusions
- (1)
- Comprehensive analysis of different land cover types revealed that SMC inversion demonstrated significantly higher accuracy in grassland and open shrubland areas compared to other vegetation types.
- (2)
- Based on MP1, the NMRI exhibited a significant correlation with NDVI, which supports correction of distortions in the reflected signal’s amplitude and phase induced by VMC. However, errors increase when using the delayed phase to invert SMC after rainfall, highlighting the need to consider the influence of rainfall on the delayed phase.
- (3)
- The GNSS-IR technology was used to estimate SMC across different land types, and the performance of three models—SVR, CNN, and NRBO-XGBoost—was compared. The results showed that the NRBO-XGBoost model demonstrated higher stability.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation List
Abbreviation | Full Form |
AR | Accumulated Rainfall |
AAF | Amplitude Attenuation Factor |
CNN | Convolutional Neural Networks |
DEM | Digital Elevation Model |
GNSS | Global Navigation Satellite System |
GNSS-IR | Global Navigation Satellite System Interferometric Reflection |
GPS | Global Positioning System |
NDVI | Normalized Difference Vegetation Index |
NMRI | Normalized Microwave Reflection Index |
NRBO | Newton–Raphson-Based Optimize |
NRSR | Newton–Raphson Search Rule |
PR | Precipitation |
SMC | Soil Moisture Content |
SNR | Signal-to-Noise Ratio |
SVR | Support Vector Regression |
Tavg | Average Temperature |
VWC | Vegetation Moisture Content |
XGBoost | Extreme Gradient Boosting |
GEE | Google Earth Engine |
ESA | European Space Agency |
ET | Evapotranspiration |
Symbol Nomenclature
Symbol | Description |
Ad | direct signal |
Ar | reflected signal |
bias term | |
CART | classification and regression tree |
dim | problem dimension |
E[L(X,θ)] | expected value of the objective function, accounting for noise and uncertainty |
f | frequencies |
H | antenna height |
Heff | effective reflective height |
K (xi + xj) | kernel function |
L(X,θ) | loss function of XGBoost |
lb | lower bounds |
M j | input mapping layers |
MP1 | pseudorange multipath error of the L1 carrier |
MAE | mean absolute error |
P1 | pseudorange observation on the L1 carrier |
R2 | coefficient of determination |
R(θ) | regularization term |
rand | random number between 0 and 1 |
randn | normally distributed random number with mean 0 and variance 1 |
RBF | radial basis function |
RMSE | root mean squared error |
SNRr | residual sequence of low elevation angle containing reflection information |
TAO | trap avoidance operator |
ub | upper bounds |
weight matrix of the j convolutional kernel in the i layer | |
‖w‖2 | sum of the squares of the weight vector |
input to the j convolutional kernel of the I layer, also the output of the I − 1 layer | |
convolution kernel | |
XI+1(j) | value of the j output neuron in the I + 1 layer |
position of the j dimension in the population | |
optimal set of hyperparameters derived from NRBO optimization | |
θ | satellite elevation angle |
λ | wavelength |
ξ | slack variable |
ϵ | error tolerance |
φ | delay phase |
References
- Farrell, M.; Leizica, E.; Gili, A.; Noellemeyer, E. Identification of management zones with different potential moisture availability for sustainable intensification of dryland agriculture. Precis. Agric. 2023, 24, 1116–1131. [Google Scholar] [CrossRef]
- Zhu, M.K.; Kong, F.L.; Li, Y.; Li, M.M.; Zhang, J.L.; Xi, M. Effects of moisture and salinity on soil dissolved organic matter and ecological risk of coastal wetland. Environ. Res. 2020, 187, 109659. [Google Scholar] [CrossRef]
- Hauser, M.; Orth, R.; Seneviratne, S.I. Investigating soil moisture—climate interactions with prescribed soil moisture experiments: An assessment with the Community Earth System Model (version 1.2). Geosci. Model Dev. 2017, 10, 1665–1677. [Google Scholar] [CrossRef]
- Gupta, S.K.; Singh, S.K.; Kanga, S.; Kumar, P.; Meraj, G.; Sahariah, D.; Debnath, J.; Chand, K.; Sajan, B.; Singh, S. Unearthing India’s soil moisture anomalies: Impact on agriculture and water resource strategies. Theor. Appl. Climatol. 2024, 155, 7575–7590. [Google Scholar] [CrossRef]
- Piccini, C.; Metzger, K.; Debaene, G.; Stenberg, B.; Götzinger, S.; Borůvka, L.; Sandén, T.; Bragazza, L.; Liebisch, F. In-field soil spectroscopy in Vis–NIR range for fast and reliable soil analysis: A review. Eur. J. Soil Sci. 2024, 75, e13481. [Google Scholar] [CrossRef]
- Muzylev, E.L. Utilization of Remote Sensing Data in the Simulation of the Water and Heat Regime of Land Areas: A Review of Publications. Water Resour. 2023, 50, 709–731. [Google Scholar] [CrossRef]
- Kandala, R.; Franssen, H.H.; Chaudhuri, A.; Sekhar, M. The value of soil temperature data versus soil moisture data for state, parameter, and flux estimation in unsaturated flow model. Vadose Zone J. 2024, 23, e20298. [Google Scholar] [CrossRef]
- Yan, G.X.; Bore, T.; Schlaeger, S.; Scheuermann, A.; Li, L. Dynamic effects in soil water retention curves: An experimental exploration by full-scale soil column tests using spatial time-domain reflectometry and tensiometers. Acta Geotech. 2024, 19, 7517–7543. [Google Scholar] [CrossRef]
- Bore, T.; Yan, G.; Mishra, P.N.; Brierre, T.; Placencia-Gómez, E.; Revil, A.; Wagner, N. A flow through coaxial cell to investigate high frequency broadband complex permittivity: Design, calibration and validation. Measurement 2024, 237, 115198. [Google Scholar] [CrossRef]
- Abdulraheem, M.I.; Chen, H.; Li, L.; Moshood, A.Y.; Zhang, W.; Xiong, Y.; Zhang, Y.; Taiwo, L.B.; Farooque, A.A.; Hu, J. Recent Advances in Dielectric Properties-Based Soil Water Content Measurements. Remote Sens. 2024, 16, 1328. [Google Scholar] [CrossRef]
- Akash, M.; Kumar, P.M.; Bhaskar, P.; Deepthi, P.R.; Sukhdev, A. Review of estimation of soil moisture using active microwave remote sensing technique. Remote Sens. Appl. Soc. Environ. 2024, 33, 101118. [Google Scholar] [CrossRef]
- Cheng, T.; Hong, S.; Huang, B.; Qiu, J.; Zhao, B.; Tan, C. Passive Microwave Remote Sensing Soil Moisture Data in Agricultural Drought Monitoring: Application in Northeastern China. Water 2021, 13, 2777. [Google Scholar] [CrossRef]
- Li, M.; Yan, Y. Comparative Analysis of Machine-Learning Models for Soil Moisture Estimation Using High-Resolution Remote-Sensing Data. Land 2024, 13, 1331. [Google Scholar] [CrossRef]
- Li, S.; Zhu, P.; Song, N.; Li, C.; Wang, J. Regional Soil Moisture Estimation Leveraging Multi-Source Data Fusion and Automated Machine Learning. Remote Sens. 2025, 17, 837. [Google Scholar] [CrossRef]
- Lu, H.; Tian, J. Integrating Machine Learning with Data Assimilation for High Resolution Soil Moisture Estimation. In Proceedings of the IGARSS 2024—2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; pp. 5179–5182. [Google Scholar] [CrossRef]
- Wang, X.L.; Song, M.F.; He, X.F.; Zhang, T.T. Enhancing sea level inversion accuracy with a novel phase-based error correction method and multi-GNSS combination approach. GPS Solut. 2025, 29, 34. [Google Scholar] [CrossRef]
- Ding, R.; Zheng, N.; Stienne, G.; He, J.; Zhang, H.; Liu, X. A High Spatiotemporal Resolution Snow Depth Inversion Solution with Multi-GNSS-IR in Complex Terrain. J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 14874–14893. [Google Scholar] [CrossRef]
- Purnell, D.; Dabboor, M.; Matte, P.; Peters, D.; Anctil, F.; Ghobrial, T. Observations of River Ice Breakup Using GNSS-IR, SAR and Machine Learning. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5800613. [Google Scholar] [CrossRef]
- Yang, C.; Mao, K.; Guo, Z.; Shi, J.; Bateni, S.M.; Yuan, Z. Review of GNSS-R Technology for Soil Moisture Inversion. Remote Sens. 2024, 16, 1193. [Google Scholar] [CrossRef]
- Larson, K.M.; Small, E.E.; Gutmann, E.; Bilich, A.; Axelrad, P.; Braun, J. Using GPS multipath to measure soil moisture fluctuations: Initial results. GPS Solut. 2008, 12, 173–177. [Google Scholar] [CrossRef]
- Pierdicca, N.; Guerriero, L.; Giusto, R.; Brogioni, M.; Egido, A. SAVERS: A Simulator of GNSS Reflections from Bare and Vegetated Soils. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6542–6554. [Google Scholar] [CrossRef]
- Chew, C.C.; Small, E.E.; Larson, K.M.; Zavorotny, V.U. Effects of Near-Surface Soil Moisture on GPS SNR Data: Development of a Retrieval Algorithm for Soil Moisture. IEEE Trans. Geosci. Remote Sens. 2013, 52, 537–543. [Google Scholar] [CrossRef]
- Tabibi, S.; Nievinski, F.G.; Dam, T.V.; João, F.G. Assessment of modernized GPS L5 SNR for ground-based multipath reflectometry applications. Adv. Space Res. 2015, 55, 1104–1116. [Google Scholar] [CrossRef]
- Han, M.; Zhu, Y.; Yang, D.; Hong, X.; Song, S. A Semi-Empirical SNR Model for Soil Moisture Retrieval Using GNSS SNR Data. Remote Sens. 2018, 10, 280. [Google Scholar] [CrossRef]
- Liang, Y.; Ren, C.; Huang, Y. Research on multi-satellites fusion inversion model of soil moisture based on sliding window. In Proceedings of the China Satellite Navigation Conference (CSNC) 2018, Harbin, China, 23–25 May 2018; Sun, J., Yang, C., Guo, S., Eds.; Springer: Singapore, 2018; Volume I, pp. 85–95. [Google Scholar] [CrossRef]
- Jiang, L.L.; Yang, L.; Han, M.; Hong, X.B.; Sun, B.; Liang, Y. Soil moisture inversion method based on GNSS-IR dual frequency data fusion. J. Beijing Univ. Aeronaut. Astronaut. 2019, 45, 1248–1255. [Google Scholar] [CrossRef]
- Nie, S.; Wang, Y.; Tu, J.; Li, P.; Xu, J.; Li, N.; Wang, M.; Huang, D.; Song, J. Retrieval of Soil Moisture Content Based on Multisatellite Dual-Frequency Combination Multipath Errors. Remote Sens. 2022, 14, 3193. [Google Scholar] [CrossRef]
- Zhu, Y.; Shen, F.; Sui, M.; Cao, X. Effects of Parameter Selections on Soil Moisture Retrieval Using GNSS-IR. IEEE Access 2020, 8, 211784–211793. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, R.; Tu, J.; Liao, M.; Pang, J.; Yu, B.; Li, K.; Xiang, W.; Fu, Y.; Liu, G. A GNSS-IR Method for Retrieving Soil Moisture Content from Integrated Multi-Satellite Data That Accounts for the Impact of Vegetation Moisture Content. Remote Sens. 2021, 13, 2442. [Google Scholar] [CrossRef]
- Ding, Q.; Liang, Y.; Liang, X.; Ren, C.; Yan, H.; Liu, Y.; Zhang, Y.; Lu, X.; Lai, J.; Hu, X. Soil Moisture Retrieval Using GNSS-IR Based on Empirical Modal Decomposition and Cross-Correlation Satellite Selection. Remote Sens. 2023, 15, 3218. [Google Scholar] [CrossRef]
- Zhang, X.; Nie, S.; Zhang, C.; Zhang, J.; Cai, H. Soil moisture estimation based on triple-frequency multipath error. Int. J. Remote Sens. 2021, 42, 5953–5968. [Google Scholar] [CrossRef]
- Wei, H.; Yang, X.; Pan, Y.; Shen, F. GNSS-IR Soil Moisture Inversion Derived from Multi-GNSS and Multi-Frequency Data Accounting for Vegetation Effects. Remote Sens. 2023, 15, 5381. [Google Scholar] [CrossRef]
- Ma, J.J.; Liang, Y.J.; Cheng, B.; Hu, X.M.; Ren, C.; Yang, M.M.; Huang, Y.B.; Liang, C.W.; Guo, X. A synchronous retrieval method of vegetation water content and soil moisture based on GNSS-IR and multi-source data fusion. J. Spat. Sci. 2025, 70, 161–181. [Google Scholar] [CrossRef]
- Pan, Y.L.; Ren, C.; Liang, Y.J.; Zhang, Z.G.; Shi, Y.J. Inversion of surface vegetation water content based on GNSS-IR and MODIS data fusion. Satell. Navig. 2020, 1, 21. [Google Scholar] [CrossRef]
- Ding, R.; Zheng, N.; Zhang, H.; Zhang, H.; Lang, F.; Ban, W. A Study of GNSS-IR Soil Moisture Inversion Algorithms Integrating Robust Estimation with Machine Learning. Sustainability 2023, 15, 6919. [Google Scholar] [CrossRef]
- Zhang, Y.; Bu, J.; Zuo, X.; Yu, K.; Wang, Q.; Huang, W. Vegetation Water Content Retrieval from Spaceborne GNSS-R and Multi-Source Remote Sensing Data Using Ensemble Machine Learning Methods. Remote Sens. 2024, 16, 2793. [Google Scholar] [CrossRef]
- Li, Y.J.; Zhu, M.Y.; Luo, L.Y.; Wang, S.; Chen, C.; Zhang, Z.T.; Yao, Y.F.; Hu, X.T. GNSS-IR dual-frequency data fusion for soil moisture inversion based on Helmert variance component estimation. J. Hydrol. 2024, 631, 130752. [Google Scholar] [CrossRef]
- Huang, C.W.; Liu, L.L.; Lin, M.J.; Huang, Q.W.; Bi, H.H. A GNSS-IR soil moisture inversion method based on the SSA assisted ELM. In Proceedings of the SPIE, International Conference on Remote Sensing and Digital Earth (RSDE 2024), Chengdu, China, 2 January 2025; Volume 13514, pp. 62–67. [Google Scholar] [CrossRef]
- Xian, H.Y.; Shen, F.; Guan, Z.P.; Zhou, F.; Cao, X.Y.; Ge, Y.L. A GNSS-IR soil moisture retrieval method via multi-layer perceptron with consideration of precipitation and environmental factors. GPS Solut. 2024, 28, 122. [Google Scholar] [CrossRef]
- Bilich, A.; Larson, K.M.; Axelrad, P. Modeling GPS phase multipath with SNR: Case study from the Salar de Uyuni, Boliva. J. Geophys. Res. Solid Earth 2008, 113, 0148–0227. [Google Scholar] [CrossRef]
- Chew, C.; Small, E.E.; Larson, K.M. An algorithm for soil moisture estimation using GPS-interferometric reflectometry for bare and vegetated soil. GPS Solut. 2016, 20, 525–537. [Google Scholar] [CrossRef]
- Roussel, N.; Frappart, F.; Ramillien, G.; Darrozes, J.; Desjardins, C.; Gegout, P.; Pérosanz, F.; Biancale, R. Simulations of direct and reflected wave trajectories for ground-based GNSS-R experiments. Geosci. Model Dev. 2014, 7, 2261–2279. [Google Scholar] [CrossRef]
- Roussel, N.; Frappart, F.; Ramillien, G.; Darrozes, J.; Baup, F.; Lestarquit, L. Detection of soil moisture variations using GPS and GLONASS SNR data for elevation angles ranging from 2° to 70°. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4781–4794. [Google Scholar] [CrossRef]
- Kim, S.B.; Huang, H.; Liao, T.H.; Colliander, A. Estimating Vegetation Water Content and Soil Surface Roughness Using Physical Models of L-Band Radar Scattering for Soil Moisture Retrieval. Remote Sens. 2018, 10, 556. [Google Scholar] [CrossRef]
- Larson, K.M.; Small, E.E. Normalized Microwave Reflection Index: A Vegetation Measurement Derived from GPS Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1501–1511. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 6999–7019. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Lu, Z. Active learning Bayesian support vector regression model for global approximation. Inf. Sci. 2021, 544, 549–563. [Google Scholar] [CrossRef]
- Taye, M.M. Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions. Computation 2023, 11, 52. [Google Scholar] [CrossRef]
- Cong, S.; Zhou, Y. A review of convolutional neural network architectures and their optimizations. Artif. Intell. Rev. 2023, 56, 1905–1969. [Google Scholar] [CrossRef]
- Gopalani, P.; Mukherjee, A. Global convergence of SGD on two layer neural nets, Information and Inference. J. IMA 2025, 14, iaae035. [Google Scholar] [CrossRef]
- Sowmya, R.; Premkumar, M.; Jangir, P. Newton-Raphson-based optimizer: A new population-based metaheuristic algorithm for continuous optimization problems. Eng. Appl. Artif. Intell. 2024, 128, 107532. [Google Scholar] [CrossRef]
- Dong, J.W.; Chen, Y.M.; Yao, B.Y.; Zhang, X.; Zeng, N.F. A neural network boosting regression model based on XGBoost. Appl. Soft Comput. 2022, 125, 109067. [Google Scholar] [CrossRef]
- Li, Y.; Liu, B.; Chai, X.; Guo, F.; Li, Y.; Fu, D. Research on Shallow Water Depth Remote Sensing Based on the Improvement of the Newton–Raphson Optimizer. Water 2025, 17, 552. [Google Scholar] [CrossRef]
- Jung, Y. Multiple predicting K-fold cross-validation for model selection. J. Nonparametric Stat. 2017, 30, 197–215. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, D.K.; Wang, F.; Hong, X.B.; Yang, L. A two-antenna GNSS approach to determine soil moisture content and vegetation growth status. GPS Solut. 2024, 28, 75. [Google Scholar] [CrossRef]
- Jing, L.L.; Wang, N.Z.; Gao, F.; Xu, T.H.; Kong, Y.H.; Wang, L.; Yang, L. A soil moisture retrieval algorithm on bare surface using GNSS-IR technique. Measurement 2025, 249, 117095. [Google Scholar] [CrossRef]
- Li, J.; Yang, D.; Wang, F.; Hong, X. Statistical Analysis of Land-Based GNSS-IR/R Over Bare and Vegetation Surfaces. IEEE Trans. Geosci. Remote Sens. 2024, 62, 75. [Google Scholar] [CrossRef]
- Li, Y.; Xu, T.; Yang, S.; Yu, K.; Chang, X.; Jin, T. A Forward Model and Inversion Algorithm for Near-Surface Soil Moisture Estimation with GNSS Refraction Pattern Technique. IEEE Trans. Geosci. Remote Sens. 2024, 62, 14301119. [Google Scholar] [CrossRef]
- Asgari1, D.; Rahmani, M.; Asgari, J.; Asgarimehr, M.; Wickert, J. Investigation of the Global Influence of Surface Roughness on Space-borne GNSS-R Observations. J. Geophys. Res. Biogeosci. 2025, 130, e2024JG008243. [Google Scholar] [CrossRef]
- Calvet, J.C.; Wigneron, J.P.; Walker, J.; Karbou, F.; Chanzy, A.; Albergel, C. Sensitivity of Passive Microwave Observations to Soil Moisture and Vegetation Water Content: L-Band to W-Band. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1190–1199. [Google Scholar] [CrossRef]
- He, L.; Cheng, Y.; Li, Y.; Li, F.; Fan, K.; Li, Y. An Improved Method for Soil Moisture Monitoring with Ensemble Learning Methods Over the Tibetan Plateau. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2833–2844. [Google Scholar] [CrossRef]
Station | Type of Land Cover | Longitude | Latitude | Mean Sea Level | Receiver Type | Antenna Type | Sampling Interval |
---|---|---|---|---|---|---|---|
P038 | grassland | −103.4073 | 34.147255 | 1236.51 | TRIMBLE NETRS | TRM29659.00 | 15S |
p389 | open shrubland | −120.6033 | 43.811988 | 1416.8 | TRIMBLE NETRS | TRM29659.00 | 15S |
p309 | savannas | −120.9512 | 38.08999 | 71.99 | TRIMBLE NETRS | TRM29659.00 | 15S |
p472 | woody savannas | −117.1047 | 32.889208 | 172.02 | TRIMBLE NETRS | TRM29659.00 | 15S |
p742 | cultivated land | −116.6026 | 33.495542 | 1175.09 | TRIMBLE NETRS | TRM29659.00 | 15S |
Bkap | barren | -116.080 | 35.287048 | 252.03 | TRIMBLE NETRS | TRM29659.00 | 15S |
Data | Source | Time Sequence |
---|---|---|
Precipitation | International Soil Moisture Network https://ismn.earth/en/dataviewer/ (accessed on 14 April 2024) | daily data |
SMC | International Soil Moisture Network https://ismn.earth/en/dataviewer/ (accessed on 14 April 2024) | daily data |
Evaporation | Calculation of the Hargreaves Equation | daily data |
Temperature (Maximum, Minimum, Average) | International Soil Moisture Network https://ismn.earth/en/dataviewer/ (accessed on 14 April 2024) | daily data |
NDVI | Google Earth Engine https://code.earthengine.google.com/ (accessed on 29 May 2024) | 7 day |
Station | Azimuth Angle | Elevation Angle | Receiver Height |
---|---|---|---|
P038 | 0~230° | 5~30° | 0.83 |
p389 | 180~360° | 5~30° | 0.83 |
p309 | 60~240° | 5~30° | 0.83 |
p472 | 0~250° | 5~30° | 0.83 |
p742 | 240~360° | 5~30° | 0.83 |
Bkap | 45~250° | 5~30° | 0.83 |
Station | Model | R2 (All) | R2 (Test Set) | RMSE (Test Set) | MAE (Test Set) |
---|---|---|---|---|---|
P038 | SVR | 0.9125 | 0.92808 | 0.0192 | 0.0104 |
CNN | 0.9723 | 0.96766 | 0.0146 | 0.0068 | |
NRBO-XGBoost | 0.9895 | 0.98656 | 0.0094 | 0.0051 | |
p389 | SVR | 0.9564 | 0.62564 | 0.0081 | 0.0065 |
CNN | 0.9639 | 0.66195 | 0.0075 | 0.0059 | |
NRBO-XGBoost | 0.9879 | 0.83272 | 0.0053 | 0.0028 | |
p309 | SVR | 0.8713 | 0.87394 | 0.0086 | 0.0060 |
CNN | 0.8998 | 0.87991 | 0.0081 | 0.0056 | |
NRBO-XGBoost | 0.9513 | 0.92153 | 0.0067 | 0.0045 | |
p472 | SVR | 0.6932 | 0.34031 | 0.0120 | 0.0089 |
CNN | 0.8389 | 0.76487 | 0.0083 | 0.0054 | |
NRBO-XGBoost | 0.8337 | 0.64461 | 0.0121 | 0.0101 | |
p742 | SVR | 0.8703 | 0.49402 | 0.0096 | 0.0059 |
CNN | 0.9379 | 0.49045 | 0.0083 | 0.0062 | |
NRBO-XGBoost | 0.9521 | 0.66816 | 0.0082 | 0.0061 | |
Bkap | SVR | 0.6417 | 0.58505 | 0.0088 | 0.0069 |
CNN | 0.8071 | 0.76544 | 0.0067 | 0.0049 | |
NRBO-XGBoost | 0.8968 | 0.83849 | 0.0069 | 0.0058 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Y.; Yan, J.; Li, G.; Ma, W.; Yao, X.; Song, M.; Li, Q.; Li, J. A GNSS-IR Soil Moisture Inversion Method Considering Multi-Factor Influences Under Different Vegetation Covers. Agriculture 2025, 15, 837. https://doi.org/10.3390/agriculture15080837
Yao Y, Yan J, Li G, Ma W, Yao X, Song M, Li Q, Li J. A GNSS-IR Soil Moisture Inversion Method Considering Multi-Factor Influences Under Different Vegetation Covers. Agriculture. 2025; 15(8):837. https://doi.org/10.3390/agriculture15080837
Chicago/Turabian StyleYao, Yadong, Jixuan Yan, Guang Li, Weiwei Ma, Xiangdong Yao, Miao Song, Qiang Li, and Jie Li. 2025. "A GNSS-IR Soil Moisture Inversion Method Considering Multi-Factor Influences Under Different Vegetation Covers" Agriculture 15, no. 8: 837. https://doi.org/10.3390/agriculture15080837
APA StyleYao, Y., Yan, J., Li, G., Ma, W., Yao, X., Song, M., Li, Q., & Li, J. (2025). A GNSS-IR Soil Moisture Inversion Method Considering Multi-Factor Influences Under Different Vegetation Covers. Agriculture, 15(8), 837. https://doi.org/10.3390/agriculture15080837