The Short-Term Efficacy of Straw Incorporation on Soil Detachment in Sloping Farmland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Test Soil
2.2. Experimental Treatments and Soil Sampling
2.3. The Hydraulic Parameters Measurement
2.4. Dc Measurements
2.5. Data Calculation and Statistical Analysis
3. Results
3.1. The Variability of Dc
3.2. The Relationship Between Hydraulic Parameters and Dc
3.3. The Effect of Straw Incorporation on Dc and Dc Reduction Benefits
3.4. The Response of Dc to Straw Incorporation and Hydraulic Characteristics
4. Discussion
4.1. The Variability of Dc with Straw Incorporation
4.2. The Effect of Hydraulic Characteristics on Dc
4.3. Factors Influencing the Variation in Dc
4.3.1. Soil Consolidation
4.3.2. Mechanical Effect of Incorporated Straw
4.4. The Model for Dc Prediction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Montgomery, D.R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Rice John, D.; Zhang, W.; Luo, G.; Cao, H.; Pan, H. Laboratory Investigation of the Effects of Blanket Defect Size on Initiation of Backward Erosion Piping. J. Geotech. Geoenviron. Eng. 2024, 150, 04024095. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, Y.; Han, Y.; Zhang, X.C. Sediment Transport and Soil Detachment on Steep Slopes. I. Transport Capacity Estimation. Soil Sci. Soc. Am. J. 2009, 73, 1291–1297. [Google Scholar] [CrossRef]
- Yao, C.; Zhang, Q.; Wang, C.; Ren, J.; Li, H.; Wang, H.; Wu, F. Response of sediment transport capacity to soil properties and hydraulic parameters in the typical agricultural regions of the Loess Plateau. Sci. Total Environ. 2023, 879, 163090. [Google Scholar] [CrossRef]
- Zhao, L.; Meng, P.; Zhang, J.; Zhang, J.; Li, J.; Wang, X. The contribution of human activities to runoff and sediment changes in the Mang River basin of the Loess Plateau, China. Land Degrad. Dev. 2023, 34, 28–41. [Google Scholar] [CrossRef]
- Lei, T.W.; Zhang, Q.W.; Zhao, J.; Xia, W.S.; Pan, Y.H. Soil Detachment Rates for Sediment Loaded Flow in Rills. Trans. Am. Soc. Agric. Eng. 2002, 45, 1897–1903. [Google Scholar]
- Li, Z.W.; Zhang, G.H.; Geng, R.; Wang, H.; Zhang, X.C. Land use impacts on soil detachment capacity by overland flow in the Loess Plateau, China. Catena 2015, 124, 9–17. [Google Scholar] [CrossRef]
- Shen, N.; Wang, Z.L.; Guo, Q.; Zhang, Q.W.; Wu, B.; Liu, J.; Ma, C.Y.; Delang, C.O.; Zhang, F.B. Soil detachment capacity by rill flow for five typical loess soils on the Loess Plateau of China. Soil Tillage Res. 2021, 213, 105159. [Google Scholar] [CrossRef]
- Yao, C.; Zhang, Q.W.; Chen, K.B.; Liu, L.T.; Wang, H.; Wang, C.F.; Wu, F.Q. Response of seasonal variation in soil detachment capacity to straw incorporation in sloping farmland on the Loess Plateau. Land Degrad. Dev. 2023, 34, 1740–1751. [Google Scholar] [CrossRef]
- Nearing, M.A.; Foster, G.R.; Lane, L.J.; Finkner, S.C. A Process-Based Soil Erosion Model for USDA-Water Erosion Prediction Project Technology. Trans. Am. Soc. Agric. Eng. 1989, 32, 1587–1593. [Google Scholar] [CrossRef]
- Zi, R.; Zhao, L.; Fang, Q.; Qian, X.; Fang, F.; Fan, C. Path analysis of the effects of hydraulic conditions, soil properties and plant roots on the soil detachment capacity of karst hillslopes. Catena 2023, 228, 107177. [Google Scholar] [CrossRef]
- Quinton, J.N.; Govers, G.; Van Oost, K.; Bardgett, R.D. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 2010, 3, 311–314. [Google Scholar] [CrossRef]
- Montanarella, L. Agricultural policy: Govern our soils. Nature 2015, 528, 32–33. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Zhang, Q.W.; Lu, C.; Li, H.K.; Wang, H.; Wu, F.Q. Variations in soil detachment by rill flow during crop growth stages in sloping farmlands on the Loess Plateau. Catena 2022, 216, 106375. [Google Scholar] [CrossRef]
- Wang, L.H.; Dalabay, N.; Lu, P.; Wu, F.Q. Effects of tillage practices and slope on runoff and erosion of soil from the Loess Plateau, China, subjected to simulated rainfall. Soil Tillage Res. 2017, 166, 147–156. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, G.; Lin, X.; Li, R.; Lu, S.; Jiao, Y.; Qiu, D.; Meng, G.; Wang, Q. The Complexity of Moisture Sources Affects the Altitude Effect of Stable Isotopes of Precipitation in Inland Mountainous Regions. Water Resour. Res. 2024, 60, e2023WR036084. [Google Scholar] [CrossRef]
- Cox, D.; Bezdicek, D.; Fauci, M. Effects of compost, coal ash, and straw amendments on restoring the quality of eroded Palouse soil. Biol. Fertil. Soils 2001, 33, 365–372. [Google Scholar] [CrossRef]
- Sommer, R.; Ryan, J.; Masri, S.; Singh, M.; Diekmann, J. Effect of shallow tillage, moldboard plowing, straw management and compost addition on soil organic matter and nitrogen in a dryland barley/wheat-vetch rotation. Soil Tillage Res. 2011, 115, 39–46. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, T.; Jia, Z.K.; Han, Q.F.; Ren, X.L. Soil aggregate and crop yield changes with different rates of straw incorporation in semiarid areas of northwest China. Geoderma 2014, 230, 41–49. [Google Scholar] [CrossRef]
- Zheng, Z.; Hoogenboom, G.; Cai, H.J.; Wang, Z.K. Winter wheat production on the Guanzhong Plain of Northwest China under projected future climate with SimCLIM. Agric. Water Manag. 2020, 239, 106233. [Google Scholar] [CrossRef]
- Zhao, H.L.; Shar, A.G.; Li, S.; Chen, Y.L.; Shi, J.L.; Zhang, X.Y.; Tian, X.H. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system. Soil Tillage Res. 2018, 175, 178–186. [Google Scholar] [CrossRef]
- Yang, J.H.; Liu, H.Q.; Lei, T.W.; Rahma, A.E.; Liu, C.X.; Zhang, J.P. Effect of straw-incorporation into farming soil layer on surface runoff under simulated rainfall. Catena 2021, 199, 105082. [Google Scholar] [CrossRef]
- Ma, J.Y.; Ma, B.; Wang, Y.X.; Wang, C.G.; Li, C.L.; Xiao, J.B. Combined effects of the wheat straw length and incorporation rate on reducing runoff and sediment yields. Catena 2022, 215, 106310. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, G.H.; Liu, F.; Luan, L.L. Effects of incorporated plant litter on soil resistance to flowing water erosion in the Loess Plateau of China. Biosyst. Eng. 2016, 147, 238–247. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, G.H.; Luan, L.L.; Liu, F. Temporal variation in soil resistance to flowing water erosion for soil incorporated with plant litters in the Loess Plateau of China. Catena 2016, 145, 239–245. [Google Scholar] [CrossRef]
- Wang, C.; Pan, Y.Y.; Zhang, Z.M.; Xiao, R.; Zhang, M.X. Effect of straw decomposition on organic carbon fractions and aggregate stability in salt marshes. Sci. Total Environ. 2021, 777, 145852. [Google Scholar] [CrossRef]
- Su, Y.; Cui, Y.-J.; Dupla, J.-C.; Canou, J. Soil-water retention behaviour of fine/coarse soil mixture with varying coarse grain contents and fine soil dry densities. Can. Geotech. J. 2021, 59, 291–299. [Google Scholar] [CrossRef]
- Bu, R.Y.; Ren, T.; Lei, M.J.; Liu, B.; Li, X.K.; Cong, R.H.; Zhang, Y.Y.; Lu, J.W. Tillage and straw-returning practices effect on soil dissolved organic matter, aggregate fraction and bacteria community under rice-rice-rapeseed rotation system. Agric. Ecosyst. Environ. 2020, 287, 106681. [Google Scholar] [CrossRef]
- Yin, W.; Chai, Q.; Guo, Y.; Fan, Z.; Coulter, J.A.J.F.C.R. Straw and plastic management regulate air-soil temperature amplitude and wetting-drying alternation in soil to promote intercrop productivity in arid regions. Field Crops Res. 2020, 249, 107758. [Google Scholar] [CrossRef]
- Liu, J.X.; Wang, B.; Duan, X.W.; Yang, Y.F.; Liu, G.B. Seasonal variation in soil erosion resistance to overland flow in gully-filled farmland on the Loess Plateau, China. Soil Tillage Res. 2022, 218, 105297. [Google Scholar] [CrossRef]
- Nearing, M.A.; Bradford, J.M.; Parker, S.C. Soil Detachment by Shallow Flow at Low Slopes. Soil Sci. Soc. Am. J. 1991, 55, 339–344. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, G.H. Effects of Near Soil Surface Characteristics on Soil Detachment by Overland Flow in a Natural Succession Grassland. Soilence Soc. Am. J. 2014, 78, 589–597. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, G.H.; Shi, Y.Y.; Zhang, X.C. Soil detachment by overland flow under different vegetation restoration models in the Loess Plateau of China. Catena 2014, 116, 51–59. [Google Scholar] [CrossRef]
- Ma, R.; Zheng, Z.C.; Li, T.X.; He, S.Q.; Zhang, X.Z.; Wang, Y.D.; Huang, H.G.; Ye, D.H. Temporal variation of soil erosion resistance on sloping farmland during the growth stages of maize (Zea mays L.). Hydrol. Process. 2021, 35, e14353. [Google Scholar] [CrossRef]
- Nearing, M.A.; Simanton, J.R.; Norton, L.D.; Bulygin, S.J.; Stone, J. Soil erosion by surface water flow on a stony, semiarid hillslope. Earth Surf. Process. Landf. 1999, 24, 677–686. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, J.B.; Cao, L.X.; Zheng, X.B.; Ren, P.; Zhao, S.L. The influence of tillage practices on soil detachment in the red soil region of China. Catena 2018, 165, 272–278. [Google Scholar] [CrossRef]
- Wang, J.G.; Feng, S.Y.; Ni, S.M.; Wen, H.; Cai, C.F.; Guo, Z.L. Soil detachment by overland flow on hillslopes with permanent gullies in the Granite area of southeast China. Catena 2019, 183, 104235. [Google Scholar] [CrossRef]
- Cao, L.X.; Zhang, K.L.; Wei, Z. Detachment of road surface soil by flowing water. Catena 2009, 76, 155–162. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Z.L.; Shen, N.; Chen, H. Modeling soil detachment capacity by rill flow using hydraulic parameters. J. Hydrol. 2016, 535, 473–479. [Google Scholar] [CrossRef]
- Geng, R.; Zhang, G.H.; Hong, D.L.; Ma, Q.H.; Shi, Y.Z. Response of soil detachment capacity to landscape positions in hilly and gully regions of the Loess Plateau. Catena 2021, 196, 104852. [Google Scholar] [CrossRef]
- Ma, J.; Li, Z.; Ma, B.; Wang, C.; Sun, B.; Shang, Y. Response mechanism of the soil detachment capacity of root-soil composites across different land uses. Soil Tillage Res. 2022, 224, 105501. [Google Scholar] [CrossRef]
- Yang, D.; Gao, P.; Zhao, Y.; Zhang, Y.; Liu, X.; Zhang, Q. Modeling sediment concentration of rill flow. J. Hydrol. 2018, 561, 286–294. [Google Scholar] [CrossRef]
- Rahma, A.E.; Warrington, D.N.; Lei, T.W. Efficiency of wheat straw mulching in reducing soil and water losses from three typical soils of the Loess Plateau, China. Int. Soil Water Conserv. Res. 2019, 7, 335–345. [Google Scholar] [CrossRef]
- Liu, B.Y.; Xie, Y.; Li, Z.G.; Liang, Y.; Zhang, W.B.; Fu, S.H.; Yin, S.Q.; Wei, X.; Zhang, K.L.; Wang, Z.Q.; et al. The assessment of soil loss by water erosion in China. Int. Soil Water Conserv. Res. 2020, 8, 430–439. [Google Scholar] [CrossRef]
- Liu, J.X.; Wang, B.; Duan, X.W. Temporal variation in soil detachment processes under litter incorporation effects in typical grassland on the Loess Plateau of China. Catena 2022, 215, 106358. [Google Scholar] [CrossRef]
- Lu, P.; Xie, X.L.; Wang, L.H.; Wu, F.Q. Effects of different spatial distributions of physical soil crusts on runoff and erosion on the Loess Plateau in China. Earth Surf. Process. Landf. 2017, 42, 2082–2089. [Google Scholar] [CrossRef]
- Chen, L.; Wang, J.; Wang, H.; Xu, F.F.; Song, P.S.; Yang, C.; Li, J.D. Variation in soil detachment capacity of structural and sedimentary crusts induced by simulated rainfall formed on ridge and furrow. Catena 2022, 211, 105971. [Google Scholar] [CrossRef]
- Liu, J.X.; Liu, G.B.; Flanagan, D.C.; Wang, B.; Wang, Z.Y.; Xiao, J. Effects of soil-incorporated plant litter morphological characteristics on the soil detachment process in grassland on the Loess Plateau of China. Sci. Total Environ. 2020, 705, 134651. [Google Scholar] [CrossRef]
- Yao, C.; Zhang, Q.W.; Mo, J.J.; Zhang, P.X.; Wang, H.; Wu, F.Q. Effect of wheat straw incorporation on soil detachment capacity on sloping farmland in the agricultural region of the Loess Plateau, China. J. Soils Sediments 2022, 22, 2105–2116. [Google Scholar] [CrossRef]
- Brown, L.C.; West, L.T.; Beasley, D.B.; Foster, G.R. Rill erosion one year after incorporation of crop residue. Trans. Asae 1990, 33, 1531–1540. [Google Scholar] [CrossRef]
- Knapen, A.; Poesen, J.; Govers, G.; Gyssels, G.; Nachtergaele, J. Resistance of soils to concentrated flow erosion: A review. Earth Sci. Rev. 2007, 80, 75–109. [Google Scholar] [CrossRef]
- Bajracharya, R.M.; Lal, R.S. Crusting effects on erosion processes under simulated rainfall on a tropical Alfisol. Hydrol. Process. 1998, 12, 1927–1938. [Google Scholar] [CrossRef]
- Gime’nez, R.; Govers, G. Flow Detachment by Concentrated Flow on Smooth and Irregular Beds. Soil Sci. Soc. Am. J. 2002, 66, 1475–1483. [Google Scholar] [CrossRef]
- Parhizkar, M.; Shabanpour, M.; Khaledian, M.; Asadi, H. The evaluation of soil detachment capacity induced by vegetal species based on the comparison between natural and planted forests. J. Hydrol. 2021, 595, 126041. [Google Scholar] [CrossRef]
- Zhang, G.H.; Liu, G.B.; Nearing, M.A.; Huang, C.H.; Zhang, K.L. Soil detachment by shallow flow. Trans. ASAE 2002, 45, 351–357. [Google Scholar]
- Liu, F.; Zhang, G.H.; Sun, L.; Wang, H. Effects of biological soil crusts on soil detachment process by overland flow in the Loess Plateau of China. Earth Surf. Process. Landf. 2016, 41, 875–883. [Google Scholar] [CrossRef]
- Knapen, A.; Poesen, J.; Baets, S.D. Seasonal variations in soil erosion resistance during concentrated flow for a loess-derived soil under two contrasting tillage practices. Soil Tillage Res. 2007, 94, 425–440. [Google Scholar] [CrossRef]
- Zhang, B.J.; Zhang, G.H.; Zhu, P.Z.; Yang, H.Y. Temporal variations in soil erodibility indicators of vegetation-restored steep gully slopes on the Loess Plateau of China. Agric. Ecosyst. Environ. 2019, 286, 106661. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, G.H. Temporal variation in soil erodibility indices for five typical land use types on the Loess Plateau of China. Geoderma 2020, 381, 114695. [Google Scholar] [CrossRef]
- Chamizo, S.; Rodríguez-Caballero, E.; Cantón, Y.; Asensio, C.; Domingo, F. Penetration resistance of biological soil crusts and its dynamics after crust removal: Relationships with runoff and soil detachment. Catena 2015, 126, 164–172. [Google Scholar] [CrossRef]
- Getahun, G.T.; Katterer, T.; Munkholm, L.J.; Parvage, M.M.; Keller, T.; Rychel, K.; Kirchmann, H. Short-term effects of loosening and incorporation of straw slurry into the upper subsoil on soil physical properties and crop yield. Soil Tillage Res. 2018, 184, 62–67. [Google Scholar] [CrossRef]
Soil Texture | Mean Weight Diameter | Soil Organic Matter | Median Particle Size | ||
---|---|---|---|---|---|
Sand Content | Silt Content | Clay Content | |||
10.20% | 61.60% | 28.20% | 0.96 mm | 21.26 g kg−1 | 50.70 μm |
Straw Incorporation Rates (kg m−2) | Min | Max | Mean Values | n | Coefficient of Variation |
---|---|---|---|---|---|
0 | 6.12 × 10−3 | 1.84 | 0.33 | 20 | 1.41 |
0.2 | 1.18 × 10−2 | 0.49 | 0.17 | 20 | 0.97 |
0.4 | 1.09 × 10−2 | 0.37 | 0.13 | 20 | 0.75 |
0.6 | 5.41 × 10−3 | 0.45 | 0.16 | 20 | 0.82 |
0.8 | 1.05 × 10−2 | 0.62 | 0.17 | 20 | 1.10 |
1.2 | 5.44 × 10−3 | 0.77 | 0.20 | 20 | 1.03 |
Straw Incorporation Rate (kg m−2) | Soil Consolidation | Mechanical Effect | Straw Incorporation |
---|---|---|---|
0.2 | 82.42 | 50.09 | 91.22 |
0.4 | 82.42 | 60.04 | 92.97 |
0.6 | 82.42 | 51.41 | 91.46 |
0.8 | 82.42 | 49.51 | 91.12 |
1.2 | 82.42 | 39.16 | 89.30 |
Source | Sum of Squares | df | Mean Square | F Value | p-Value Prob > F |
---|---|---|---|---|---|
Model | 5.91 | 5 | 1.18 | 105.74 | <0.0001 |
A-stream power | 0.56 | 1 | 0.56 | 49.96 | <0.0001 |
B-incorporation rates | 0.19 | 1 | 0.19 | 16.84 | <0.0001 |
AB | 0.24 | 1 | 0.24 | 21.43 | <0.0001 |
B2 | 0.68 | 1 | 0.68 | 61.17 | <0.0001 |
AB2 | 0.78 | 1 | 0.78 | 69.37 | <0.0001 |
Residual | 1.27 | 114 | 0.011 | ||
Cor Total | 7.18 | 119 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, C.; Ye, S.; Chen, S.; Gu, Z.; Yan, W.; Zhu, M.; Song, L.; Zhang, M.; Wu, F. The Short-Term Efficacy of Straw Incorporation on Soil Detachment in Sloping Farmland. Agriculture 2025, 15, 822. https://doi.org/10.3390/agriculture15080822
Yao C, Ye S, Chen S, Gu Z, Yan W, Zhu M, Song L, Zhang M, Wu F. The Short-Term Efficacy of Straw Incorporation on Soil Detachment in Sloping Farmland. Agriculture. 2025; 15(8):822. https://doi.org/10.3390/agriculture15080822
Chicago/Turabian StyleYao, Chong, Songzhu Ye, Siyuan Chen, Zhijia Gu, Wei Yan, Ming Zhu, Li Song, Mingjun Zhang, and Faqi Wu. 2025. "The Short-Term Efficacy of Straw Incorporation on Soil Detachment in Sloping Farmland" Agriculture 15, no. 8: 822. https://doi.org/10.3390/agriculture15080822
APA StyleYao, C., Ye, S., Chen, S., Gu, Z., Yan, W., Zhu, M., Song, L., Zhang, M., & Wu, F. (2025). The Short-Term Efficacy of Straw Incorporation on Soil Detachment in Sloping Farmland. Agriculture, 15(8), 822. https://doi.org/10.3390/agriculture15080822