Time-Series Transcriptome Analysis of the European Plum Response to Pathogen Monilinia fructigena
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inoculation of Plum Fruits with M. fructigena
2.2. RNA Isolation and Transcriptome Analysis
2.3. Data Analysis
2.4. Quantitative Real-Time PCR Validation
3. Results
3.1. Transcriptome Sequencing Results
3.2. Evaluation of Expressed Genes Across Sampling Points
3.3. Comparative Analysis of Differentially Expressed Genes (DEGs)
3.4. Functional Annotation and Classification of DEGs by GO Enrichment Analysis
3.5. Functional Annotation and Classification of DEGs by KEGG Enrichment Analysis
3.6. Genes Involved in Infection Response
3.7. Validation of RNA-Seq Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DEGs | Differentially expressed genes |
PR | Pathogenesis-related |
MLO-like | Mildew resistance locus O |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
MAPK | Mitogen-activated protein kinase |
LRCAF IH | Lithuanian Research Centre for Agriculture and Forestry Institute of Horticulture |
ITS | Internal transcribed spacer |
hpi | Hours post inoculation |
GO | Gene Ontology |
qRT-PCR | Quantitative real-time PCR |
PCA | Principal component analysis |
BP | Biological process |
CC | Cellular component |
MF | Molecular function |
EIP | Environmental information processing |
GIP | Genetic information processing |
M | Metabolism |
Appendix A
Sample Library | Raw Reads | Raw Bases, G | Clean Reads | Clean Bases, G | Error Rate, % | Q20 | GC pct, % |
---|---|---|---|---|---|---|---|
C_24 | 43,077,636.00 | 6,46 | 42,109,142.00 | 6.32 | 0.01 | 98.49 | 45.33 |
46,969,746.00 | 7.05 | 45,559,624.00 | 6.83 | 0.01 | 98.50 | 44.49 | |
44,588,494.00 | 6.69 | 42,679,676.00 | 6.40 | 0.01 | 98.70 | 45.80 | |
Average | 44,878,625.33 | 6.73 | 43,449,480.67 | 6.52 | 0.01 | 98.56 | 45.21 |
C_48 | 40,840,226.00 | 6.13 | 40,081,022.00 | 6.01 | 0.01 | 98.63 | 45.93 |
41,759,202.00 | 6.26 | 40,218,422.00 | 6.03 | 0.01 | 98.53 | 46.08 | |
41,459,352.00 | 6.22 | 39,908,394.00 | 5.99 | 0.01 | 98.75 | 45.38 | |
Average | 41,352,926.67 | 6.20 | 40,069,279.33 | 6.01 | 0.01 | 98.64 | 45.80 |
C_72 | 48,350,406.00 | 7.25 | 47,224,864.00 | 7.08 | 0.01 | 98.64 | 44.86 |
41,882,526.00 | 6.28 | 40,893,806.00 | 6.13 | 0.01 | 98.69 | 45.83 | |
42,733,784.00 | 6.41 | 41,984,820.00 | 6.30 | 0.01 | 98.54 | 44.97 | |
Average | 44,322,238.67 | 6.65 | 43,367,830.00 | 6.50 | 0.01 | 98.62 | 45.22 |
F_24 | 42,799,956.00 | 6.42 | 41,868,796.00 | 6.28 | 0.01 | 98.46 | 45.61 |
42,027,560.00 | 6.30 | 40,638,812.00 | 6.10 | 0.01 | 98.72 | 45.86 | |
48,588,966.00 | 7.29 | 47,264,042.00 | 7.09 | 0.01 | 98.67 | 45.10 | |
Average | 44,472,160.67 | 6.67 | 43,257,216.67 | 6.49 | 0.01 | 98.62 | 45.52 |
F_48 | 41,425,328.00 | 6.21 | 40,386,776.00 | 6.06 | 0.01 | 98.76 | 45.24 |
40,753,924.00 | 6.11 | 39,872,974.00 | 5.98 | 0.01 | 98.52 | 46.01 | |
41,746,662.00 | 6.26 | 40,747,272.00 | 6.11 | 0.01 | 98.49 | 45.49 | |
Average | 41,308,638.00 | 6.19 | 40,335,674,00 | 6.05 | 0.01 | 98.59 | 45.58 |
F_72 | 42,496,534.00 | 6.37 | 41,609,950.00 | 6.24 | 0.01 | 98.49 | 46.26 |
41,317,856.00 | 6.20 | 40,546,588.00 | 6.08 | 0.01 | 98.60 | 46.21 | |
44,757,260.00 | 6.71 | 43,730,384.00 | 6.56 | 0.01 | 98.77 | 46.39 | |
Average | 42,857,216.67 | 6.43 | 41,962,307.33 | 6.29 | 0.01 | 98.62 | 46.29 |
Total | 777,575,418.00 | 116.62 | 757,325,364.00 | 113.59 | N/A | N/A | N/A |
References
- Ionica, M.E.; Nour, V.; Trandafir, I.; Cosmulescu, S.; Botu, M. Physical and Chemical Properties of Some European Plum Cultivars (Prunus Domestica L.). Not. Bot. Horti Agrobot. Cluj-Napoca 2013, 41, 499–503. [Google Scholar] [CrossRef]
- Petri, C.; Alburquerque, N.; Faize, M.; Scorza, R.; Dardick, C. Current Achievements and Future Directions in Genetic Engineering of European Plum (Prunus Domestica L.). Transgenic Res. 2018, 27, 225–240. [Google Scholar]
- Topp, B.L.; Russell, D.M.; Neumüller, M.; Dalbó, M.A.; Liu, W. Plum. In Fruit Breeding, 2nd ed.; Badenes, M.L., Byrne, D.H., Eds.; Springer: Boston, MA, USA, 2012; pp. 571–621. [Google Scholar]
- FAOSTAT. Food and Agriculture Organization of the United Nations. FAOSTAT Statistical Database. Available online: https://www.fao.org/faostat/en/#home (accessed on 1 February 2025).
- Hrustic, J.; Mihajlovic, M.; Grahovac, M.; Delibasic, G.; Bulajic, A.; Krstic, B.; Tanovic, B. Genus Monilinia on Pome and Stone Fruit Species. Pestic. Phytomedicine 2012, 27, 283–297. [Google Scholar] [CrossRef]
- Casals, C.; Torres, R.; Teixidó, N.; De Cal, A.; Segarra, J.; Usall, J. Brown rot on stone fruit: From epidemiology studies to the development of effective control strategies. Sci. Hortic. 2022, 301, 111096. [Google Scholar]
- CABI. Monilinia fructigena (brown rot). In CABI Compendium; CABI: Wallingford, UK, 2009. [Google Scholar] [CrossRef]
- Landi, L.; De Miccolis Angelini, R.M.; Pollastro, S.; Abate, D.; Faretra, F.; Romanazzi, G. Genome Sequence of the Brown Rot Fungal Pathogen Monilinia Fructigena. BMC Res. Notes 2018, 11, 10–12. [Google Scholar]
- Martini, C.; Mari, M. Monilinia Fructicola, Monilinia Laxa (Monilinia Rot, Brown Rot). In Postharvest Decay; Bautista-Baños, S., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 223–265. [Google Scholar]
- Balsells-Llauradó, M.; Silva, C.J.; Usall, J.; Vall-llaura, N.; Serrano-Prieto, S.; Teixidó, N.; Mesquida-Pesci, S.D.; de Cal, A.; Blanco-Ulate, B.; Torres, R. Depicting the Battle between Nectarine and Monilinia Laxa: The Fruit Developmental Stage Dictates the Effectiveness of the Host Defenses and the Pathogen’s Infection Strategies. Hortic. Res. 2020, 7, 1–15. [Google Scholar]
- Cheng, C.; Yan, C.Y.; Qi, C.T.; Zhao, X.L.; Liu, L.X.; Guo, Y.Y.; Leng, P.; Sun, J.; Liu, J.; Liu, Y.G. Metabolome and Transcriptome Analysis of Postharvest Peach Fruit in Response to Fungal Pathogen Monilinia Fructicola Infection. LWT Food Sci. Technol. 2023, 173, 114301. [Google Scholar] [CrossRef]
- Usall, J.; Casals, C.; Sisquella, M.; Palou, L.; De Cal, A. Alternative technologies to control postharvest diseases of stone fruits. Stewart Postharvest Rev. 2015, 11, 1–6. [Google Scholar]
- Li, S.; Xu, J.; Cai, Z.X.; Ma, R.; Yu, M.; Shen, Z. Comparative Transcriptomics of Monilinia Fructicola—Resistant and—Susceptible Peach Fruit Reveals Gene Networks Associated with Peach Resistance to Brown Rot Disease. Postharvest Biol. Technol. 2025, 219, 113254. [Google Scholar]
- Cantin, C.; Ballestero, M.; Moreno, M.; Val, J.; Martínez-García, P.J.; Barriuso, J. Influence of Fruit Cuticle Anatomy on Peach Susceptibility to Monilinia Fructicola Infection. Acta Hortic. 2022, 1352, 107–112. [Google Scholar]
- Gradziel, T.M.; Bostock, R.M.; Adaskaveg, J.E. Resistance to brown rot disease in peach is determined by multiple structural and biochemical components. Acta Hortic. 2003, 622, 347–352. [Google Scholar] [CrossRef]
- Obi, V.I.; Barriuso, J.J.; Gogorcena, Y. Peach Brown Rot: Still In Search of an Ideal Management Option. Agriculture 2018, 8, 125. [Google Scholar] [CrossRef]
- Tsalgatidou, P.C.; Boutsika, A.; Papageorgiou, A.G.; Dalianis, A.; Michaliou, M.; Chatzidimopoulos, M.; Delis, C.; Tsitsigiannis, D.I.; Paplomatas, E.; Zambounis, A. Global Transcriptome Analysis of the Peach (Prunus Persica) in the Interaction System of Fruit–Chitosan–Monilinia Fructicola. Plants 2024, 13, 567. [Google Scholar] [CrossRef] [PubMed]
- Guidarelli, M.; Zubini, P.; Nanni, V.; Bonghi, C.; Rasori, A.; Bertolini, P.; Baraldi, E. Gene Expression Analysis of Peach Fruit at Different Growth Stages and with Different Susceptibility to Monilinia Laxa. Eur. J. Plant Pathol. 2014, 140, 503–513. [Google Scholar] [CrossRef]
- Lamas, A.; Regal, P.; Vázquez, B.; Miranda, J.M.; Franco, C.M.; Cepeda, A. Transcriptomics: A Powerful Tool to Evaluate the Behavior of Foodborne Pathogens in the Food Production Chain. Food Res. Int. 2019, 125, 108543. [Google Scholar] [CrossRef]
- Moldovan, C.; Roşu-Mareş, S.D.; Georgeta Maria, G.; Zagrai, L.A.; Zagrai, I.; Chiorean, A.M.; Maxim, A. The Behaviour of Some Plum Cultivars to Brown Rot Fruit Infection in Northern Transylvania. Rom. J. Hortic. 2023, 4, 85–90. [Google Scholar] [CrossRef]
- Postman, J.; Volk, G.; Aldwinckle, H. Standardized Plant Disease Evaluations Will Enhance Resistance Gene Discovery. HortScience 2010, 45, 1317–1320. [Google Scholar] [CrossRef]
- Côté, M.; Tardif, M.; Meldrum, A. Polystroma on Inoculated and Naturally Infected Fruit Using Multiplex PCR. Plant Dis. 2004, 88, 1219–1225. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A Fast Spliced Aligner with Low Memory Requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar]
- The Gene Ontology Consortium. The Gene Ontology resource: Enriching a GOld mine. Nucleic Acids Res. 2021, 49, D325–D334. [Google Scholar]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [PubMed]
- Yu, G. Thirteen Years of ClusterProfiler. Innovation 2024, 5, 100722. [Google Scholar]
- Littell, R.C.; Henry, P.R.; Ammerman, C.B. Statistical analysis of repeated measures data using SAS procedures. J. Anim. Sci. 1998, 76, 1216–1231. [Google Scholar] [PubMed]
- Tang, D.; Chen, M.; Huang, X.; Zhang, G.; Zeng, L.; Zhang, G.; Wu, S.; Wang, Y. SRplot: A Free Online Platform for Data Visualization and Graphing. PLoS ONE 2023, 18, e0294236. [Google Scholar] [CrossRef]
- R Studio Team. A Language and Environment for Statistical Computing, 2021, 3. Available online: https://cran.r-project.org/doc/manuals/r-release/fullrefman.pdf (accessed on 1 February 2025).
- Jarošová, J.; Kundu, J.K. Simultaneous detection of stone fruit tree viruses by one-step multiplex RT-PCR. Sci. Hortic. 2010, 125, 68–72. [Google Scholar]
- Menzel, W.; Jelkmann, W.; Maiss, E. Detection of Four Apple Viruses by Multiplex RT-PCR Assays with Coamplification of Plant MRNA as Internal Control. J. Virol. Methods 2002, 99, 81–92. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Abbott, A.; Georgi, L.; Yvergniaux, D.; Wang, Y.; Blenda, A.; Reighard, G.; Inigo, M.; Sosinski, B. Peach: The model genome for Rosaceae. Acta Hortic. 2002, 575, 145–155. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information (NCBI). Available online: https://www.ncbi.nlm.nih.gov/ (accessed on 1 February 2025).
- Yin, L.F.; Chen, S.N.; Chen, G.K.; Schnabel, G.; Du, S.F.; Chen, C.; Li, G.Q.; Luo, C.X. Identification and Characterization of Three Monilinia Species from Plum in China. Plant Dis. 2015, 99, 1775–1783. [Google Scholar]
- Kumar, V.; Bhatt, V.; Kumar, N. Amides From Plants: Structures and Biological Importance. In Studies in Natural Products Chemistry, 2nd ed.; Rahman, A., Ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2018; Volume 56, pp. 1–478. [Google Scholar]
- Zhang, D.; Lu, Y.; Chen, H.; Wu, C.; Zhang, H.; Chen, L.; Chen, X. Antifungal Peptides Produced by Actinomycetes and Their Biological Activities against Plant Diseases. J. Antibiot. 2020, 73, 265–282. [Google Scholar]
- Hoffmann-Sommergruber, K. Pathogenesis-Related (PR)-Proteins Identified as Allergens. Biochem. Soc. Trans. 2002, 30, 930–935. [Google Scholar] [CrossRef] [PubMed]
- El-Kereamy, A.; Jayasankar, S.; Taheri, A.; Errampalli, D.; Paliyath, G. Expression Analysis of a Plum Pathogenesis Related 10 (PR10) Protein during Brown Rot Infection. Plant Cell Rep. 2009, 28, 95–102. [Google Scholar]
- Coram, T.E.; Settles, M.L.; Chen, X. Transcriptome Analysis of High-temperature Adult-plant Resistance Conditioned by Yr39 during the Wheat– Puccinia Striiformis f. Sp. Tritici Interaction. Mol. Plant Pathol. 2008, 9, 479–493. [Google Scholar] [PubMed]
- Somssich, I.E.; Schmelzer, E.; Bollmann, J.; Hahlbrock, K. Rapid Activation by Fungal Elicitor of Genes Encoding “Pathogenesis-Related” Proteins in Cultured Parsley Cells. Proc. Natl. Acad. Sci. USA 1986, 83, 2427–2430. [Google Scholar] [CrossRef]
- Ribeiro, S.; Label, P.; Garcia, D.; Montoro, P.; Pujade-Renaud, V. Transcriptome Profiling in Susceptible and Tolerant Rubber Tree Clones in Response to Cassiicolin Cas1, a Necrotrophic Effector from Corynespora Cassiicola. PLoS ONE 2021, 16, e0254541. [Google Scholar]
- Bonasera, J.M.; Kim, J.F.; Beer, S.V. PR Genes of Apple: Identification and Expression in Response to Elicitors and Inoculation with Erwinia Amylovora. BMC Plant Biol. 2006, 6, 23. [Google Scholar] [CrossRef]
- Besbes, F.; Habegger, R.; Schwab, W. Induction of PR-10 Genes and Metabolites in Strawberry Plants in Response to Verticillium Dahliae Infection. BMC Plant Biol. 2019, 19, 128. [Google Scholar]
- Zubini, P. Tolleranza a Monilinia Laxa Nel Corso Dell ’Accrescimento Delle Pesche e Variazione Dell’ Espressione Genica. Ph.D. Thesis, Universita’ di Bologna, Bologna, Italy, 2008. [Google Scholar]
- Jagodzik, P.; Tajdel-Zielinska, M.; Ciesla, A.; Marczak, M.; Ludwikow, A. Mitogen-Activated Protein Kinase Cascades in Plant Hormone Signaling. Front. Plant Sci. 2018, 9, 1387. [Google Scholar] [CrossRef]
- Wasternack, C.; Hause, B. Jasmonates: Biosynthesis, Perception, Signal Transduction and Action in Plant Stress Response, Growth and Development. An Update to the 2007 Review in Annals of Botany. Ann. Bot. 2013, 111, 1021–1058. [Google Scholar] [CrossRef]
- Verma, V.; Ravindran, P.; Kumar, P.P. Plant Hormone-Mediated Regulation of Stress Responses. BMC Plant Biol. 2016, 16, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sood, M. Jasmonates: “The Master Switch” for Regulation of Developmental and Stress Responses in Plants. J. Plant Growth Regul. 2023, 42, 5247–5265. [Google Scholar]
- Zhu, Q.; Jiang, S.; Wei, Y.; Chen, Y.; Ye, J.; Ding, P.; Shao, X. Activation Mechanism of Fatty Acids on Membrane-Bound Polyphenol Oxidase in Peach Fruit: Conformational Change Analysis and Molecular Docking Simulation. Food Biosci. 2024, 61, 104509. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antanynienė, R.; Kurgonaitė, M.; Mažeikienė, I.; Frercks, B. Time-Series Transcriptome Analysis of the European Plum Response to Pathogen Monilinia fructigena. Agriculture 2025, 15, 788. https://doi.org/10.3390/agriculture15070788
Antanynienė R, Kurgonaitė M, Mažeikienė I, Frercks B. Time-Series Transcriptome Analysis of the European Plum Response to Pathogen Monilinia fructigena. Agriculture. 2025; 15(7):788. https://doi.org/10.3390/agriculture15070788
Chicago/Turabian StyleAntanynienė, Raminta, Monika Kurgonaitė, Ingrida Mažeikienė, and Birutė Frercks. 2025. "Time-Series Transcriptome Analysis of the European Plum Response to Pathogen Monilinia fructigena" Agriculture 15, no. 7: 788. https://doi.org/10.3390/agriculture15070788
APA StyleAntanynienė, R., Kurgonaitė, M., Mažeikienė, I., & Frercks, B. (2025). Time-Series Transcriptome Analysis of the European Plum Response to Pathogen Monilinia fructigena. Agriculture, 15(7), 788. https://doi.org/10.3390/agriculture15070788