Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = European plum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1525 KiB  
Article
A New Set of SSR Markers Combined in One Reaction for Efficient Genotyping of the Hexaploid European Plum (Prunus domestica L.)
by Jana Čmejlová, Kamila Pluhařová, Boris Krška and Radek Čmejla
Plants 2025, 14(15), 2281; https://doi.org/10.3390/plants14152281 - 24 Jul 2025
Viewed by 288
Abstract
The European plum (Prunus domestica L.) is a hexaploid species that is grown worldwide for its tasty fruits. Many pomological forms and varieties exist, and thus it is important for genebank curators, breeders, growers, and/or control authorities to distinguish them with certainty. [...] Read more.
The European plum (Prunus domestica L.) is a hexaploid species that is grown worldwide for its tasty fruits. Many pomological forms and varieties exist, and thus it is important for genebank curators, breeders, growers, and/or control authorities to distinguish them with certainty. The purpose of this study was to select and verify a set of simple sequence repeat (SSR) markers for reliable genotyping, and to optimize their use in a one-reaction format for easy routine practice. After testing 78 SSR markers from different diploid Prunus species, 8 SSR markers were selected, multiplexed, and successfully verified as being able to distinguish all 242 unique genotypes tested. The selected markers were relatively easily scored and highly heterogenic, giving more than 35 alleles/genotype on average. The allele atlas was created to become a valuable tool for allele calling that should lead to standardized and reliable genotyping results between laboratories. The population analysis confirmed high diversity of the Czech germplasm collection used. The kit was also successfully tested for diploid “plums” of various origins and interspecies hybrids, as these are sometimes phenotypically indistinguishable from hexaploid European plums. The one-tube approach substantially simplified the plum genotyping laboratory workflow, minimizes errors, and saves labor, time, and money. Full article
Show Figures

Figure 1

12 pages, 1384 KiB  
Article
Candidate Gene Variants Linked to Brown Rot Susceptibility in the European Plum Genome
by Raminta Antanynienė, Monika Kurgonaitė, Vidmantas Bendokas and Birutė Frercks
Agronomy 2025, 15(7), 1562; https://doi.org/10.3390/agronomy15071562 - 26 Jun 2025
Viewed by 350
Abstract
European plum (Prunus domestica) is among the most important stone fruits cultivated worldwide. However, its production is significantly affected by fungal brown rot disease, caused by Monilinia spp. pathogens, which threaten the crop throughout the entire vegetation period. This study aimed [...] Read more.
European plum (Prunus domestica) is among the most important stone fruits cultivated worldwide. However, its production is significantly affected by fungal brown rot disease, caused by Monilinia spp. pathogens, which threaten the crop throughout the entire vegetation period. This study aimed to visually assess brown rot resistance and susceptibility in European plum and to perform whole-genome sequencing (WGS) of selected cultivars and hybrids grown in Lithuania, with the goal of identifying candidate single-nucleotide polymorphisms (SNPs) associated with disease response. WGS was performed for 20 European plum cultivars and hybrids with known resistance or susceptibility profiles, generating over 1,4 million SNPs. These SNPs were filtered to identify genetic variants associated with brown rot disease. Three candidate SNPs were found to be significantly associated with disease response (located on chromosomes G5 and G8) and one linked to susceptibility (on chromosome G5). Identified SNPs were located in genes encoding alcohol dehydrogenase family enzymes (resistant cultivars, G5 chromosome) and beta-glucosidase family enzymes (variants found in both resistant and susceptible cultivars, G5 chromosome), which are important for plant biotic stress response. The findings of this study provide a valuable foundation for the development of molecular markers for identifying resistant and susceptible cultivars and may inform future European plum breeding programs. Full article
Show Figures

Figure 1

23 pages, 3021 KiB  
Article
The Combination of Start-Codon-Targeted (SCoT) and Falling Stone (FaSt) Transposon-Specific Primers Provides an Efficient Marker Strategy for Prunus Species
by Beti Ivanovska, Thanyarat Onlamun, Júlia Halász and Attila Hegedűs
Int. J. Mol. Sci. 2025, 26(9), 3972; https://doi.org/10.3390/ijms26093972 - 23 Apr 2025
Viewed by 590
Abstract
A novel primer (FaSt-R) targeting the Prunus-specific Falling Stone (FaSt) non-autonomous transposon was combined with start-codon-targeted (SCoT) primers to assess genetic diversity in 12 cultivars from six Prunus species and 28 cultivars of European plum. Compared to SCoT-only analyses, the [...] Read more.
A novel primer (FaSt-R) targeting the Prunus-specific Falling Stone (FaSt) non-autonomous transposon was combined with start-codon-targeted (SCoT) primers to assess genetic diversity in 12 cultivars from six Prunus species and 28 cultivars of European plum. Compared to SCoT-only analyses, the SCoT–FaSt combination produced fewer total bands but a higher percentage of polymorphic bands, while maintaining comparable values for polymorphism information content, resolving power, gene diversity, and Shannon’s index. SCoT–FaSt markers generated bands across a broader size range, which made gel patterns less dense, enabling the more accurate detection of differentially amplified fragments. Neighbor-joining and principal component analyses confirmed that SCoT–FaSt markers provided sufficient phylogenetic resolution at both interspecific and intraspecific levels. The sequencing of 32 SCoT–FaSt amplicons revealed FaSt elements in 26 fragments, with SCoT primers preferentially annealing to GC-rich exonic and intergenic regions. Seventeen protein-coding and one RNA-coding gene were partially identified, with FaSt elements localized in UTRs and introns of genes with key physiological functions. Comparative analysis indicated a biased distribution of FaSt elements between the Cerasus and Prunus subgenera. In silico findings suggest that FaSt elements are more fragmented in cherry species, potentially contributing to subgeneric divergence. Overall, the SCoT–FaSt marker system is effective for evaluating Prunus genetic diversity, reconstructing phylogenetic relationships, and elucidating the genomic impact of an active Mutator-like transposon. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

20 pages, 3137 KiB  
Article
Productive, Physiological, and Soil Microbiological Responses to Severe Water Stress During Fruit Maturity in a Super High-Density European Plum Orchard
by Arturo Calderón-Orellana, Gonzalo Plaza-Rojas, Macarena Gerding, Gabriela Huepe, Mathias Kuschel-Otárola, Richard M. Bastías, Tamara Alvear, Andrés Olivos and Mauricio Calderón-Orellana
Plants 2025, 14(8), 1222; https://doi.org/10.3390/plants14081222 - 16 Apr 2025
Viewed by 647
Abstract
The super high-density (SHD) production system has recently been introduced to the Chilean European plum (Prunus domestica L.) industry, but the potential of applying regulated deficit irrigation (RDI) in this system remains unexplored. As irrigation water availability in Chile has been strongly [...] Read more.
The super high-density (SHD) production system has recently been introduced to the Chilean European plum (Prunus domestica L.) industry, but the potential of applying regulated deficit irrigation (RDI) in this system remains unexplored. As irrigation water availability in Chile has been strongly jeopardized by climate change, there is an urgent need to validate water-conserving practices in modern production systems. A field study was conducted in a commercial SHD European plum orchard (cv. French grafted on Rootpac-20 rootstock) for two consecutive seasons in Peralillo, O’Higgins Region, Chile. The objective of this study was to assess the impact of a late water deficit (LD) on water productivity, fruit quality, plant water relations, and soil microbiota. The results showed that implementing LD enhanced water productivity by 40% without compromising fresh and dry fruit quality. Moderate to severe water stress induced no changes in physiological parameters such as stomatal conductance and photochemical efficiency. Additionally, the LD treatment significantly reduced soil moisture but increased the abundance of certain groups of beneficial soil microbiota and fine roots. These results highlight the potential of LD as a viable water-conserving practice in modern SHD European plum orchards, particularly in regions facing water scarcity due to climate change. Full article
(This article belongs to the Special Issue Plant Fruit Development and Abiotic Stress)
Show Figures

Figure 1

16 pages, 2217 KiB  
Article
Time-Series Transcriptome Analysis of the European Plum Response to Pathogen Monilinia fructigena
by Raminta Antanynienė, Monika Kurgonaitė, Ingrida Mažeikienė and Birutė Frercks
Agriculture 2025, 15(7), 788; https://doi.org/10.3390/agriculture15070788 - 6 Apr 2025
Cited by 3 | Viewed by 586
Abstract
European plum production is affected by mostly harm Monilinia spp., causing full pathogen brown-rot infections. The plums are the susceptible to the Monilinia fructigena pathogen, which is the most common in Europe. This study aims to analyze the gene expression profiles and signaling [...] Read more.
European plum production is affected by mostly harm Monilinia spp., causing full pathogen brown-rot infections. The plums are the susceptible to the Monilinia fructigena pathogen, which is the most common in Europe. This study aims to analyze the gene expression profiles and signaling pathways of the European plum, cv. Victoria, inoculated with the M. fructigena pathogen at 24, 48, and 72 h post inoculation. By transcriptome sequencing, the number of differentially expressed genes (DEGs) increased over time, with the highest number at 72 hpi, showing the tendency to involve more genes in the response to prolonged exposure to the pathogen. Pathogenesis-related (PR) family and mildew resistance locus O (MLO-like) proteins were expressed the most during plum response to the pathogen. The plum initiates complex defense responses by significantly activating 23 pathways according to Kyoto Encyclopedia of Genes and Genomes (KEGG). In this study, expressed genes over the infection were in response to stress, defense, cell death, and disease resistance. The findings of this study could be used as the basis for further research of markers linked to resistance or susceptibility to disease in plum hybrids at an early age, which will improve the plum breeding process. Full article
Show Figures

Figure 1

15 pages, 4136 KiB  
Article
Unlocking Nature’s Microbial Defenders: Genetic Mechanisms and Potential Against Monilinia spp. Pathogens
by Augustina Kolytaitė, Ingrida Mažeikienė, Monika Kurgonaitė, Saulė Raklevičiūtė, Gabija Paškevičiūtė and Birutė Frercks
Microorganisms 2025, 13(4), 818; https://doi.org/10.3390/microorganisms13040818 - 3 Apr 2025
Cited by 1 | Viewed by 544
Abstract
Monilinia spp., which causes brown rot, is one of the most damaging pathogens in stone fruits. Researchers are exploring epiphytic and endophytic microorganisms with the potential to suppress pathogens, control pathogenic microorganisms, and/or promote plant growth. In this study, microorganisms with antagonistic activity [...] Read more.
Monilinia spp., which causes brown rot, is one of the most damaging pathogens in stone fruits. Researchers are exploring epiphytic and endophytic microorganisms with the potential to suppress pathogens, control pathogenic microorganisms, and/or promote plant growth. In this study, microorganisms with antagonistic activity against three Monilinia species were isolated from plum orchard soil and plum fruits. Antagonism tests in vitro showed strong antagonistic properties of six strains of bacteria and two yeast-like fungi against M. fructigena, M. fructicola, and M. laxa, with growth inhibition from 45.5 to 84.6%. The antagonists were identified and characterized at the genetic level using whole genome sequencing (WGS). Genes involved in antibiotic resistance, virulence, secondary metabolite synthesis, and plant growth promotion were identified and characterized through genome mapping, gene prediction, and annotation. None of the microorganisms studied were predicted to be pathogenic to humans. The results of this study indicate that the bacteria Bacillus pumilus, B. velezensis, two strains of Lysinibacillus agricola, Pseudomonas chlororaphis isolated from stone fruit orchard soil, and the yeast-like fungus Aureobasidium pullulans, isolated from plums, are promising candidates for the biological control of Monilinia spp. Full article
Show Figures

Figure 1

23 pages, 4007 KiB  
Article
Ageing of Red Wine (cv. Negroamaro) in Mediterranean Areas: Impact of Different Barrels and Apulian Traditional Amphorae on Phenolic Indices, Volatile Composition and Sensory Analysis
by Ilaria Prezioso, Giuseppe Corcione, Chiara Digiorgio, Gabriele Fioschi and Vito Michele Paradiso
Foods 2025, 14(4), 650; https://doi.org/10.3390/foods14040650 - 14 Feb 2025
Cited by 4 | Viewed by 846
Abstract
This study investigated the impact of different ageing containers on the volatile composition and quality of Negroamaro wine, a key variety from Apulia, Italy. Seven vessel types were evaluated: traditional Apulian amphorae (ozza), five types of oak barrels (American oak, French oak, European [...] Read more.
This study investigated the impact of different ageing containers on the volatile composition and quality of Negroamaro wine, a key variety from Apulia, Italy. Seven vessel types were evaluated: traditional Apulian amphorae (ozza), five types of oak barrels (American oak, French oak, European oak, a French + European oak and a multi-wood mix) and glass bottles as the control. The impact of the vessels was evaluated after 6 months of ageing through the characterization of phenolic, volatile and sensory profiles. Amphorae allowed a specific evolution of the wine’s primary aromas, such as fruity and floral notes, while enhancing volatile compounds like furaneol, which contributed to caramel and red fruit nuances, and also 3-methyl-2,4-nonanedione, a key compound related to anise, plum and premature ageing, depending on its concentration. This container also demonstrated effectiveness in stabilizing anthocyanin–tannin complexes, supporting color stabilization. Oak barrels allowed different outcomes to be obtained in terms of color stabilization, volatile profile, aroma and astringency. French oak exhibited the highest phenolic and tannin levels, enhancing anthocyanin stabilization and color intensity. European oak followed closely, while American oak excelled in color stabilization, with tannins less reactive to polymers. Mixed wood barrels showed lower phenolic extraction and the best astringency evolution. Full article
Show Figures

Figure 1

13 pages, 1409 KiB  
Article
Chemical Characterization of Pruning Wood Extracts from Six Japanese Plum (Prunus salicina Lindl.) Cultivars and Their Antitumor Activity
by Juan Ortega-Vidal, Nuria Mut-Salud, José M. de la Torre, Joaquín Altarejos and Sofía Salido
Molecules 2024, 29(16), 3887; https://doi.org/10.3390/molecules29163887 - 16 Aug 2024
Viewed by 1206
Abstract
The Japanese plum tree (Prunus salicina Lindl.) is mainly cultivated in temperate areas of China and some European countries. Certain amounts of wood (from pruning works) are generated every year from this crop of worldwide commercial significance. The main objective of this [...] Read more.
The Japanese plum tree (Prunus salicina Lindl.) is mainly cultivated in temperate areas of China and some European countries. Certain amounts of wood (from pruning works) are generated every year from this crop of worldwide commercial significance. The main objective of this work was to value this agricultural woody residue, for which the chemical composition of pruning wood extracts from six Japanese plum cultivars was investigated, and the antiproliferative activity of extracts and pure phenolics present in those extracts was measured. For the chemical characterization, total phenolic content and DPPH radical-scavenging assays and HPLC‒DAD/ESI‒MS analyses were performed, with the procyanidin (−)-ent-epicatechin-(2α→O→7,4α→8)-epicatechin (5) and the propelargonidin (+)-epiafzelechin-(2β→O→7,4β→8)-epicatechin (7) being the major components of the wood extracts. Some quantitative differences were found among plum cultivars, and the content of proanthocyanidins ranged from 1.50 (cv. ‘Fortune’) to 4.44 (cv. ‘Showtime’) mg/g of dry wood. Regarding the antitumoral activity, eight wood extracts and four phenolic compounds were evaluated in MCF-7 cells after 48 h of induction, showing the wood extract from cv. ‘Songold’ and (‒)-annphenone (3), the best antiproliferative activity (IC50: 424 μg/mL and 405 μg/mL, respectively). Full article
(This article belongs to the Special Issue Effect of Natural Products in the Cancer Therapy Mechanism)
Show Figures

Figure 1

11 pages, 1082 KiB  
Article
Genetic Characterization of European Plum (Prunus domestica L.) Accessions from Norway Using ECPGR-Selected SSR Markers
by Mekjell Meland, Oddmund Frøynes, Milica Fotirić Akšić, Naris Pojskić, Belma Kalamujić Stroil, Merima Miralem, Almira Konjić and Fuad Gasi
Agronomy 2024, 14(4), 732; https://doi.org/10.3390/agronomy14040732 - 2 Apr 2024
Cited by 1 | Viewed by 1701
Abstract
In order to ensure the long-term sustainability of the conservation process of Norwegian plum germplasm, as well as to enhance the possibility of its utilization, a central plum heritage cultivar collection was established in 2020. In this study, 40 plum accessions maintained at [...] Read more.
In order to ensure the long-term sustainability of the conservation process of Norwegian plum germplasm, as well as to enhance the possibility of its utilization, a central plum heritage cultivar collection was established in 2020. In this study, 40 plum accessions maintained at the Ullensvang plum heritage cultivar collection were genetically characterized using a set of nine microsatellite markers recently approved by the ECPGR Prunus working group. The obtained molecular data were used to investigate the genetic identity, diversity, and structure among the analyzed accessions. No redundancies were detected among the plum accessions, which is in stark contrast to the previous molecular study on plum samples collected through an on-farm inventory of Southern Norway. Furthermore, the obtained data indicate that the Ullensvang collection contains a significant genetic diversity of Norwegian plum germplasm, previously held in decentralized sites. With that in mind, this collection can certainly be considered for the role of the National Clonal Plum Germplasm Repository. The nine microsatellite markers, recommended by ECPGR, revealed a genetic structure not entirely tied to previously proposed pomological groups, possibly indicating a history of hybridization among members of the various groups. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

29 pages, 14746 KiB  
Article
Revealing a Novel Potential Pest of Plum Trees in the Caucasus: A Species Resembling the European Leaf-Mining Stigmella plagicolella, Nepticulidae
by Jonas R. Stonis, Arūnas Diškus, Svetlana Orlovskytė and Viktorija Dobrynina
Insects 2024, 15(3), 198; https://doi.org/10.3390/insects15030198 - 15 Mar 2024
Cited by 1 | Viewed by 2178
Abstract
In instances of severe infestations, Nepticulidae larvae can inflict damage on cultivated plants. Previously, it was assumed that the Prunus-feeding Nepticulidae have continuous distribution from Europe to the neighboring Caucasus. During recent fieldwork in the Caucasus, leaf mines were found on plum [...] Read more.
In instances of severe infestations, Nepticulidae larvae can inflict damage on cultivated plants. Previously, it was assumed that the Prunus-feeding Nepticulidae have continuous distribution from Europe to the neighboring Caucasus. During recent fieldwork in the Caucasus, leaf mines were found on plum trees that initially resembled those of Stigmella plagicolella (Stainton) in Europe. However, upon rearing the adults, significant differences emerged, leading to the hypothesis that a different Prunus-feeding species exists in the Caucasus; this challenges previous records in Western Asia. This paper presents the outcomes of our morphological, molecular, and statistical investigations, unveiling S. colchica sp. nov., a previously unknown potential plum-tree pest. Distinguished by male genitalia characteristics, the new species differs from S. plagicolella. The inter- and intraspecific divergences between S. colchica sp. nov. and S. plagicolella range from 3.5% to 6.02%. Moreover, the utilized delimitation algorithms reliably clustered two species separately, as does our mitotype network. A statistical analysis also shows a discernible trend between the leaf mines of S. colchica sp. nov. and S. plagicolella. This unexpected discovery not only documents a new potential pest, enhancing our understanding of the Caucasian fauna, but also contributes to the broader biological inventory. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

15 pages, 3937 KiB  
Article
Salicylic and Jasmonic Acid Synergism during Black Knot Disease Progression in Plums
by Ranjeet Shinde, Murali-Mohan Ayyanath, Mukund Shukla, Walid El Kayal, Praveen Kumar Saxena and Jayasankar Subramanian
Plants 2024, 13(2), 292; https://doi.org/10.3390/plants13020292 - 18 Jan 2024
Cited by 4 | Viewed by 1737
Abstract
Black knot (BK) is a deadly disease of European (Prunus domestica) and Japanese (Prunus salicina) plums caused by the hemibiotrophic fungus Apiosporina morbosa. Generally, phytopathogens hamper the balance of primary defense phytohormones, such as salicylic acid (SA)–jasmonic acid (JA) [...] Read more.
Black knot (BK) is a deadly disease of European (Prunus domestica) and Japanese (Prunus salicina) plums caused by the hemibiotrophic fungus Apiosporina morbosa. Generally, phytopathogens hamper the balance of primary defense phytohormones, such as salicylic acid (SA)–jasmonic acid (JA) balance, for disease progression. Thus, we quantified the important phytohormone titers in tissues of susceptible and resistant genotypes belonging to European and Japanese plums at five different time points. Our previous results suggested that auxin-cytokinins interplay driven by A. morbosa appeared to be vital in disease progression by hampering the plant defense system. Here, we further show that such hampering of disease progression is likely mediated by perturbance in SA, JA, and, to some extent, gibberellic acid. The results further indicate that SA and JA in plant defense are not always necessarily antagonistic as most of the studies suggest but can be different, especially in woody perennials. Together, our results suggest that the changes in phytohormone levels, especially in terms of SA and JA content due to BK infection and progression in plums, could be used as phytohormonal markers in the identification of BK-resistant cultivars. Full article
(This article belongs to the Special Issue Genetics of Disease Resistance in Horticultural Crops)
Show Figures

Figure 1

14 pages, 2548 KiB  
Article
Hormonal Interplay Leading to Black Knot Disease Establishment and Progression in Plums
by Ranjeet Shinde, Murali-Mohan Ayyanath, Mukund Shukla, Walid El Kayal, Praveen Saxena and Jayasankar Subramanian
Plants 2023, 12(20), 3638; https://doi.org/10.3390/plants12203638 - 21 Oct 2023
Cited by 5 | Viewed by 1778
Abstract
Black Knot (BK) is a deadly disease of European (Prunus domestics) and Japanese (Prunus salicina) plums caused by the hemibiotrophic fungus Apiosporina morbosa. After infection, the appearance of warty black knots indicates a phytohormonal imbalance in infected tissues. [...] Read more.
Black Knot (BK) is a deadly disease of European (Prunus domestics) and Japanese (Prunus salicina) plums caused by the hemibiotrophic fungus Apiosporina morbosa. After infection, the appearance of warty black knots indicates a phytohormonal imbalance in infected tissues. Based on this hypothesis, we quantified phytohormones such as indole-3-acetic acid, tryptophan, indoleamines (N-acetylserotonin, serotonin, and melatonin), and cytokinins (zeatin, 6-benzyladenine, and 2-isopentenyladenine) in temporally collected tissues of susceptible and resistant genotypes belonging to European and Japanese plums during of BK progression. The results suggested auxin-cytokinins interplay driven by A. morbosa appears to be vital in disease progression by hampering the plant defense system. Taken together, our results indicate the possibility of using the phytohormone profile as a biomarker for BK resistance in plums. Full article
(This article belongs to the Special Issue Advances in Plant-Fungal Pathogen Interaction)
Show Figures

Figure 1

11 pages, 2477 KiB  
Article
Alternative Ecological Products for Aphid Control on Plum
by Claudiu Moldovan, Ioan Zagrai, Georgeta Maria Guzu, Zsolt Jakab-Ilyefalvi, Luminita Antonela Zagrai, Stefania Mirela Mang and Aurel Maxim
Plants 2023, 12(18), 3316; https://doi.org/10.3390/plants12183316 - 20 Sep 2023
Cited by 2 | Viewed by 2183
Abstract
Ecological farming is increasing worldwide, as more and more consumers prefer chemical-free fruits. As a result, ecological farming is becoming increasingly appealing to European farmers, including those in Romania. However, implementing an effective ecological phytosanitary program remains a challenge for farmers due to [...] Read more.
Ecological farming is increasing worldwide, as more and more consumers prefer chemical-free fruits. As a result, ecological farming is becoming increasingly appealing to European farmers, including those in Romania. However, implementing an effective ecological phytosanitary program remains a challenge for farmers due to limited options and a lack of information about their effectiveness. Romania is a major producer of plums and ranks second in the world after China. Aphids are common pests of plum, and some species are vectors of the damaging Plum pox virus, and therefore require special attention regarding their control. Eight ecological products were tested both in the field and laboratory for a duration of three vegetative periods to determine their efficiency in aphid control. The effects of ecological products were compared with five chemical insecticides known to be effective against aphids. Observations were made 24 and 48 h after spraying. Two of the eight ecological products tested were proven to be efficient in aphid control, Ovipron Top and Prev-Am, with a mortality rate over 90%. The results indicate that these two ecological products are comparable in effectiveness to chemical insecticides and could be suitable candidates for both ecological and conventional treatment programs. Full article
Show Figures

Graphical abstract

30 pages, 5232 KiB  
Article
Breakthrough Analysis of Chemical Composition and Applied Chemometrics of European Plum Cultivars Grown in Norway
by Milica Fotirić Akšić, Živoslav Tešić, Milica Kalaba, Ivanka Ćirić, Lato Pezo, Biljana Lončar, Uroš Gašić, Biljana Dojčinović, Tomislav Tosti and Mekjell Meland
Horticulturae 2023, 9(4), 477; https://doi.org/10.3390/horticulturae9040477 - 11 Apr 2023
Cited by 10 | Viewed by 3074
Abstract
The aim of this study was to find the chemical parameters for the differentiation of plum cultivars grown along the fjord areas of Western Norway and Eastern Norway, having specific agroclimatic conditions. Chemical analysis of the fruits confirmed the contents of 13 quantified [...] Read more.
The aim of this study was to find the chemical parameters for the differentiation of plum cultivars grown along the fjord areas of Western Norway and Eastern Norway, having specific agroclimatic conditions. Chemical analysis of the fruits confirmed the contents of 13 quantified elements, 22 sugar compounds, 11 organic acids, 19 phenolic compounds, and antioxidant activity in 68 plum cultivars. Dominated contents were noted for nitrogen (with the maximum mean value of 3.11%), potassium (8055.80 mg/kg), and phosphorous (7878.88 mg/kg). Averagely, the highest level of sugars was determined for glucose (244.46 g/kg), fructose (197.92 g/kg), sucrose (208.25 g/kg), and sorbitol (98.02 g/kg), organic acids for malic acid (24.06 g/kg), and for polyphenol compounds were 5-O-caffeoylquinic acid (66.31 mg/kg), and rutin (58.06 mg/kg). Applied principal component analysis has been useful for distinguishing the plum cultivars from three areas in Norway where copper, iron, potassium, magnesium, manganese, and sodium; sucrose, ribose, maltose, and raffinose; p-hydroxybenzoic acid, rutin, ferulic acid, kaempferol 7-O-glucoside, p-coumaric acid, and 5-O-caffeoylquinic acid were the most influential. In regard to human health and future breeding work that will have the aim to produce functional food with high health-related compounds, the plum cultivar ‘Mallard’ should be underlined due to the high level of elements, ‘Valor’ due to high sugar content, ‘Helgøyplomme’ due to content of organic acids, and ‘Diamond’ due to the content of phenolic compounds. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

14 pages, 4868 KiB  
Article
The Mechanism of Resistance of EUROPEAN Plum to Plum pox virus Mediated by Hypersensitive Response Is Linked to VIRAL NIa and Its Protease Activity
by Bernardo Rodamilans, Johannes Hadersdorfer, Zita Berki, Beatriz García, Michael Neumüller and Juan Antonio García
Plants 2023, 12(8), 1609; https://doi.org/10.3390/plants12081609 - 10 Apr 2023
Cited by 6 | Viewed by 2085
Abstract
Plum pox virus (PPV) infects Prunus trees across the globe, causing the serious Sharka disease. Breeding programs in the past 20 years have been successful, generating plum varieties hypersensitive to PPV that show resistance in the field. Recently, a single tree displaying typical [...] Read more.
Plum pox virus (PPV) infects Prunus trees across the globe, causing the serious Sharka disease. Breeding programs in the past 20 years have been successful, generating plum varieties hypersensitive to PPV that show resistance in the field. Recently, a single tree displaying typical PPV symptoms was detected in an orchard of resistant plums. The tree was eradicated, and infected material was propagated under controlled conditions to study the new PPV isolate. Performing overlapping PCR analysis, the viral sequence was reconstructed, cloned and tested for infectivity in different ‘Jojo’-based resistant plums. The results confirmed that the isolate, named PPV-D ‘Herrenberg’ (PPVD-H), was able to infect all these varieties. Analyses of chimeras between PPVD-H and a PPV-D standard isolate (PPVD) revealed that the NIa region of PPD-H, carrying three amino acid changes, was enough to break the resistance of these plums. Experiments with single and double mutants showed that all changes were essential to preserve the escaping phenotype. Additionally, one of the changes at the VPg-NIapro junction suggested the involvement of controlled endopeptidase cleavage in the viral response. Transient expression experiments in Nicotiana benthamiana confirmed that NIa cleavage in PPVD-H was reduced, compared to PPVD, linking the observed behavior to an NIa cleavage modulation. Full article
(This article belongs to the Special Issue Advances in Plant Viral Diseases)
Show Figures

Figure 1

Back to TopTop