Optimizing Soybean Productivity: A Comparative Analysis of Tillage and Sowing Methods and Their Effects on Yield and Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
- (1)
- Plowed tillage + conventional row sowing (PCR) with plots number: 102, 203, 302 and 401 (Figure 2).
- (2)
- Plowed tillage + strip-drill sowing (PSD) with plots number: 101, 202, 303 and 404
- (3)
- No-plow tillage + strip-drill (NSD) with plots number: 103, 204, 301 and 403
- (4)
2.2. Plant and Seed Assessment
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Księżak, J.; Bojarszczuk, J. The Productivity of Selected Soybean Cultivars Grown Using Various Cultivation Methods. J. Water Land Dev. 2024, 62, 88–96. [Google Scholar] [CrossRef]
- Medic, J.; Atkinson, C.; Hurburgh, C.R. Current Knowledge in Soybean Composition. J. Am. Oil Chem. Soc. 2014, 91, 363–384. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Misra, A.K. Soybean—A Consummate Functional Food: A Review. J. Food Sci. Technol. 2005, 42, 111–119. [Google Scholar]
- Panasiewicz, K. Chemical Composition of Lupin (Lupinus spp.) as Influenced by Variety and Tillage System. Agriculture 2022, 12, 263. [Google Scholar] [CrossRef]
- Hartman, G.L.; West, E.D.; Herman, T.K. Crops That Feed the World 2. Soybean—Worldwide Production, Use, and Constraints Caused by Pathogens and Pests. Food Secur. 2011, 3, 5–17. [Google Scholar] [CrossRef]
- US Soybean Export Council. How the Global Oilseed and Grain Trade Works; Soyatech, LLC: Southwest Harbor, ME, USA, 2008; Available online: https://ussec.org/resources/how-the-global-oilseed-and-grain-trade-works/ (accessed on 5 February 2010).
- El-Shemy, H.A. (Ed.) Soybean Physiology and Biochemistry; IntechOpen: Rijeka, Croatia, 2011. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global Food Demand and the Sustainable Intensification of Agriculture. Proc. Natl. Acad. Sci USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed]
- Rusinamhodzi, L.; Corbeels, M.; Nyamangara, J.; Giller, K.E. Maize-grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in central Mozambique. Field Crops Res. 2012, 136, 12–22. [Google Scholar] [CrossRef]
- Wysokinski, A.; Wysokińska, A.; Noulas, C.; Wysokińska, A. Optimal Nitrogen Fertilizer Rates for Soybean Cultivation. Agronomy 2024, 14, 1375. [Google Scholar] [CrossRef]
- Różewicz, M.; Grabiński, J.; Wyzińska, M. Effect of Strip-Till and Cultivar on Photosynthetic Parameters and Grain Yield of Winter Wheat. Int. Agrophys. 2024, 38, 279–291. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Hobbs, P.R.; Sayre, K.; Gupta, R. The Role of Conservation Agriculture in Sustainable Agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 543–555. [Google Scholar] [CrossRef]
- Górski, D.; Gaj, R.; Ulatowska, A.; Miziniak, W. Effect of Strip-Till and Variety on Yield and Quality of Sugar Beet against Conventional Tillage. Agriculture 2022, 12, 166. [Google Scholar] [CrossRef]
- Różewicz, M. Review of Current Knowledge on Strip-Till Cultivation and Possibilities of Its Popularization in Poland. Polish J. Agron. 2022, 49, 20–30. [Google Scholar] [CrossRef]
- ISTA. International Rules for Seed Testing; International Seed Testing Association: Bassersdorf, Switzerland, 2013. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Horwitz, W., Latimer, G.W., Jr., Eds.; Revision 4; AOAC International: Gaithersburg, MD, USA, 2011. [Google Scholar]
- Van Soest, P.J. Use of Detergents in the Analysis of Fibrous Feeds. II. A Rapid Method of Determination of Fibre and Lignin. J. AOAC 1963, 46, 82. [Google Scholar]
- Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Rusinamhodzi, L.; Corbeels, M.; van Wijk, M.T.; Rufino, M.C.; Nyamangara, J.; Giller, K.E. A Meta-Analysis of Long-Term Effects of Conservation Agriculture on Maize Grain Yield under Rain-Fed Conditions. Agron. Sustain. Dev. 2011, 31, 657–673. [Google Scholar] [CrossRef]
- Farmaha, B.S.; Fernández, F.G.; Nafziger, E.D. Soybean Seed Composition, Aboveground Growth, and Nutrient Accumulation with Phosphorus and Potassium Fertilization in No-Till and Strip-Till. Agron. J. 2012, 104, 1006–1015. [Google Scholar] [CrossRef]
- Fecák, P.; Šariková, D.; Černý, I. Influence of Tillage System and Starting N Fertilization on Seed Yield and Quality of Soybean Glycine max (L.) Merrill. Plant Soil Environ. 2010, 56, 105–110. [Google Scholar] [CrossRef]
- Šariková, D.; Fecák, P. Effect of Different Tillage Systems and Fertilization on Soybean Seed Yield and Quality. Proc. Res. Inst. Agroecol. Michalovce 2007, 23, 161–169. (In Slovak) [Google Scholar]
- Sudarić, A.; Matoša Kočar, M.; Duvnjak, T.; Zdunić, Z.; Markulj Kulundžić, A. Improving Seed Quality of Soybean Suitable for Growing in Europe. In Soybean for Human Consumption and Animal Feed; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar] [CrossRef]
- Długosz, J.; Dębska, B.; Piotrowska-Długosz, A. The Effect of Soil Tillage Systems on the Soil Microbial and Enzymatic Properties under Soybean (Glycine max L. Merrill) Cultivation—Implications for Sustainable Soil Management. Sustainability 2024, 16, 11140. [Google Scholar] [CrossRef]
- Döttinger, C.A.; Steige, K.A.; Hahn, V.; Leiser, W.L.; Bachteler, K.; Würschum, T. Towards Higher Agrobiodiversity—Evaluating the Effects of Undersowing Different Flowering Species on Soybean Productivity. Field Crops Res. 2025, 322, 109761. [Google Scholar] [CrossRef]
- Tang, Z.; Lu, J.; Xiang, Y.; Shi, H.; Sun, T.; Zhang, W.; Wang, H.; Zhang, X.; Li, Z.; Zhang, F. Farmland Mulching and Optimized Irrigation Increase Water Productivity and Seed Yield by Regulating Functional Parameters of Soybean (Glycine max L.) Leaves. Agric. Water Manag. 2024, 298, 108875. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature Extremes: Effect on Plant Growth and Development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef]
- Govaerts, B.; Verhulst, N.; Castellanos-Navarrete, A.; Sayre, K.D.; Dixon, J.; Dendooven, L. Conservation Agriculture and Soil Carbon Sequestration: Between Myth and Farmer Reality. Crit. Rev. Plant Sci. 2009, 28, 97–122. [Google Scholar] [CrossRef]
- Blevins, R.L.; Frye, W.W. Conservation Tillage: An Ecological Approach to Soil Management. Adv. Agron. 1993, 51, 33–78. [Google Scholar] [CrossRef]
- Luo, Y.; Iqbal, A.; He, L.; Zhao, Q.; Wei, S.; Ali, I.; Ullah, S.; Yan, B.; Jiang, L. Long-Term No-Tillage and Straw Retention Management Enhances Soil Bacterial Community Diversity and Soil Properties in Southern China. Agronomy 2020, 10, 1233. [Google Scholar] [CrossRef]
- Carrera, C.S.; Dardanelli, J.L. Water Deficit Modulates the Relationship between Temperature and Unsaturated Fatty Acid Profile in Soybean Seed Oil. Crop Sci. 2017, 57, 3179–3189. [Google Scholar] [CrossRef]
- TeKrony, D.M.; Egli, D.B. Relationship of Seed Vigor to Crop Yield: A Review. Crop Sci. 1991, 31, 816–822. [Google Scholar] [CrossRef]
- Singh, R.J.; Nelson, R.L.; Chung, G. Soybean (Glycine max) Genetic Resources and Crop Improvement. In Genetic Resources, Chromosome Engineering, and Crop Improvement: Oilseed Crops; Gupta, P.K., Ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 487–522. [Google Scholar]
- Board, J.E.; Kahlon, C.S. Soybean Yield Formation: What Controls It and How It Can Be Improved. In Soybean; IntechOpen: Rijeka, Croatia, 2011. [Google Scholar] [CrossRef]
- Kelly, F.R.; Bond, J.A.; Bryant, C.J.; Irby, J.T.; Cook, D.R.; Krutz, L.J. Agronomic Performance of Soybean with Varied Planting Dates, Row Configurations, and Seeding Rates on Two Different Soil Textures. Crop Forage Turfgrass Manag. 2024, 10, e70001. [Google Scholar] [CrossRef]
- Manhas, S.; Singh, J.; Manuja, S.; Saini, A.; Kumawat, R.; Dahiya, P.; Mehta, S.; Sahoo, C.; Johnson, R.; Puthur, J.T.; et al. Assessing the Impact of Tillage Practices and Nutrient Levels on the Growth and Productivity of Ethiopian Mustard (Brassica carinata L.)-Soybean (Glycine max (L.) Merr.) Cropping System. BMC Plant Biol. 2024, 24, 1059. [Google Scholar] [CrossRef]
- Meena, S.N.; Sharma, S.K.; Singh, P.; Meena, B.P.; Ram, A.; Meena, R.L.; Singh, D.; Meena, R.B.; Nogiya, M.; Jain, D.; et al. Comparative Analysis of Soil Quality and Enzymatic Activities under Different Tillage-Based Nutrient Management Practices in Soybean–Wheat Cropping Sequence in Vertisols. Sci. Rep. 2024, 14, 6840. [Google Scholar] [CrossRef]
Chemical Soil Properties | |
---|---|
pH in 1 M KCl | 6.80 |
C (g kg−1) | 7.93 |
N (g kg−1) | 0.75 |
P (available mg kg−1) | 125 |
K (available mg kg−1) | 103 |
Mg (available mg kg−1) | 40.1 |
Day of Month | Mean Air Temperature (°C) | Rainfall Sum (mm) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Month/Year | ||||||||||||||
Apr | May | Jun | Jul | Aug | Sep | Apr | May | Jun | Jul | Aug | Sep | ∑ | ||
2017 | ||||||||||||||
1st–10th | 10.6 | 8.8 | 16.5 | 16.9 | 21.1 | 14.8 | 14.8 | 3.0 | 26.8 | 45.7 | 31.9 | 89.6 | 35.4 | 232.4 |
11th–20th | 5.9 | 15.6 | 18.1 | 18.4 | 18.3 | 13.0 | 14.9 | 19.6 | 1.1 | 14.7 | 27.2 | 53.1 | 8.3 | 124.0 |
21st–30th/31st | 6.7 | 17.5 | 18.3 | 19.9 | 17.4 | 13.1 | 15.5 | 3.1 | 21.3 | 45.6 | 101.7 | 7.9 | 11.1 | 190.7 |
*/∑ ** | 7.7 * | 14.0 | 17.7 | 18.4 | 18.9 | 13.6 | 15.0 | 25.7 ** | 49.2 | 106.0 | 160.8 | 150.6 | 54.8 | 547.1 |
2018 | ||||||||||||||
1st–10th | 10.0 | 15.1 | 20.8 | 19.6 | 24.8 | 18.1 | 18.1 | 14.4 | 6.7 | 19.7 | 10.8 | 0.1 | 8.5 | 60.2 |
11th–20th | 14.6 | 16.4 | 19.4 | 19.1 | 21.1 | 18.0 | 18.1 | 34.2 | 12.5 | 2.2 | 124.1 | 10.4 | 9.1 | 192.5 |
21st–30th/31st | 14.1 | 19.8 | 17.0 | 23.4 | 18.4 | 11.7 | 17.4 | 16.7 | 0.0 | 9.6 | 0.0 | 9.5 | 43.1 | 78.9 |
*/∑ ** | 12.9 * | 17.1 | 19.1 | 20.7 | 21.4 | 15.9 | 17.8 | 65.3 ** | 19.2 | 31.5 | 134.9 | 20.0 | 60.7 | 331.6 |
2019 | ||||||||||||||
1st–10th | 9.4 | 9.0 | 21.2 | 17.0 | 20.2 | 16.4 | 15.5 | 0.0 | 12.3 | 0.7 | 5.4 | 13.1 | 28.6 | 60.1 |
11th–20th | 7.8 | 12.1 | 23.2 | 18.2 | 19.5 | 13.1 | 15.6 | 4.7 | 41.1 | 1.4 | 25.2 | 9.7 | 8.1 | 90.2 |
21st–30th/31st | 13.9 | 14.9 | 22.6 | 22.6 | 22.3 | 14.0 | 18.4 | 7.2 | 24.4 | 6.3 | 32.7 | 5.4 | 27.1 | 103.1 |
*/∑ ** | 10.4 * | 12.0 | 22.3 | 19.3 | 20.7 | 14.3 | 16.5 | 11.9 ** | 77.8 | 8.4 | 63.3 | 28.2 | 63.8 | 253.4 |
Long term mean value | 8.2 | 13.3 | 16.7 | 18.3 | 17.7 | 13.5 | 14.6 | 37.7 | 56.4 | 64.8 | 84.1 | 66.9 | 48.3 | 358.2 |
ST/SM | Specification | ||||||
---|---|---|---|---|---|---|---|
PN | PP | PS | PSP | WTS | SPAD | GC | |
SD | 2.59 | 1.02 | 1.76 | 0.06 | 2.46 | 8.89 | 1.90 |
PCR | 73.4 | 13.2 | 22.3 | 1.7 | 173.0 | 428.3 | 69.5 |
PSD | 69.1 | 14.6 | 22.7 | 1.6 | 179.7 | 498.7 | 75.2 |
NSD | 76.0 | 15.3 | 23.5 | 1.5 | 167.2 | 493.3 | 58.2 |
ZSD | 78.3 | 12.6 | 21.1 | 1.7 | 167.3 | 471.7 | 68.6 |
LSD value | 5.32 ** | 2.09 * | ns | 0.13 * | 5.05 ** | 22.29 * | 3.90 ** |
ST/SM | Chemical Component | ||||
---|---|---|---|---|---|
Crude Protein | Crude Lipids | Crude Fiber | Crude Ash | N-Free Extract | |
SD | 5.94 | 3.64 | 6.03 | 0.40 | 5.08 |
PCR | 365.5 | 221.1 | 84.1 | 55.8 | 273.3 |
PSD | 369.9 | 221.1 | 87.4 | 56.3 | 265.3 |
NSD | 368.6 | 219.6 | 93.6 | 56.6 | 261.5 |
ZSD | 376.5 | 215.9 | 93.6 | 57.4 | 256.4 |
LSD value | ns | ns | ns | 0.89 * | 16.50 ** |
ST/SM | Year (Y) | |||
---|---|---|---|---|
2017 | 2018 | 2019 | Mean | |
Seed Yield | ||||
PCR | 2.7 | 3.0 | 1.5 | 2.4 |
PSD | 2.7 | 3.4 | 1.2 | 2.4 |
NSD | 2.4 | 3.3 | 1.2 | 2.3 |
ZSD | 2.5 | 3.0 | 1.9 | 2.5 |
LSD value | 0.22 * | ns | 0.41 * | ns |
Mean | 2.6 | 3.2 | 1.4 | - |
Synthesis LSD value | Y − 0.26 **; T × Y − 0.44 ** |
ST/SM | Year (Y) | |||
---|---|---|---|---|
2017 | 2018 | 2019 | Mean | |
Protein Yield | ||||
PCR | 835.6 | 928.1 | 453.2 | 739.0 |
PSD | 864.6 | 1057.2 | 390.3 | 770.7 |
NSD | 746.8 | 954.9 | 385.2 | 695.6 |
ZSD | 809.8 | 1121.6 | 600.1 | 843.8 |
LSD value | 74.06 * | 146.90 ** | 143.66 * | 78.10 ** |
Mean | 814.2 | 1019.1 | 458.5 | - |
Synthesis LSD value | Y − 71.54 **; T × Y –135.27 ** |
ST/SM | Year (Y) | |||
---|---|---|---|---|
2017 | 2018 | 2019 | Mean | |
Fat Yield | ||||
PCR | 508.5 | 564.4 | 274.2 | 449.1 |
PSD | 516.8 | 632.4 | 233.5 | 460.9 |
NSD | 443.1 | 618.9 | 230.4 | 430.8 |
ZSD | 463.5 | 545.5 | 339.1 | 449.3 |
LSD value | 56.56 * | Ns | 71.44 * | ns |
Mean | 483.0 | 590.3 | 269.3 | - |
Synthesis LSD value | Y − 63.79 **; T × Y − 89.20 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faligowska, A.; Panasiewicz, K.; Szymańska, G.; Ratajczak, K. Optimizing Soybean Productivity: A Comparative Analysis of Tillage and Sowing Methods and Their Effects on Yield and Quality. Agriculture 2025, 15, 626. https://doi.org/10.3390/agriculture15060626
Faligowska A, Panasiewicz K, Szymańska G, Ratajczak K. Optimizing Soybean Productivity: A Comparative Analysis of Tillage and Sowing Methods and Their Effects on Yield and Quality. Agriculture. 2025; 15(6):626. https://doi.org/10.3390/agriculture15060626
Chicago/Turabian StyleFaligowska, Agnieszka, Katarzyna Panasiewicz, Grażyna Szymańska, and Karolina Ratajczak. 2025. "Optimizing Soybean Productivity: A Comparative Analysis of Tillage and Sowing Methods and Their Effects on Yield and Quality" Agriculture 15, no. 6: 626. https://doi.org/10.3390/agriculture15060626
APA StyleFaligowska, A., Panasiewicz, K., Szymańska, G., & Ratajczak, K. (2025). Optimizing Soybean Productivity: A Comparative Analysis of Tillage and Sowing Methods and Their Effects on Yield and Quality. Agriculture, 15(6), 626. https://doi.org/10.3390/agriculture15060626