Soil Aggregate Dynamics and Stability: Natural and Anthropogenic Drivers
Abstract
1. Introduction
2. Data Analysis
3. Soil Structural Stability: Theoretical Foundations
4. Function of Soil Aggregate Stability
4.1. Nutrient Cycling
4.2. Water Infiltration
4.3. Carbon Sequestration
4.4. Erosion Prevention
5. Soil Aggregation and Its Impact on Soil Health
6. Formation of Soil Aggregates
6.1. Natural Drivers
6.1.1. Mineralogical Composition
6.1.2. Soil Texture
6.1.3. Soil Organic Matter
6.1.4. Rhizosphere
6.1.5. Soil Organisms
6.1.6. Climate
6.1.7. Salinity
6.1.8. Soil Physico-Chemical Properties
6.2. Anthropogenic Drivers
6.2.1. Land Use Change
6.2.2. Tillage
6.2.3. Organic Amendments
6.2.4. Crop Rotation
6.2.5. Cover Crops
7. Recent Techniques in Assessment of Soil Aggregate Stability
8. Knowledge Gaps and Future Research Directions
8.1. Knowledge Gaps
8.2. Future Directions
9. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SOM | Soil Organic Matter |
| OM | Organic Matter |
| SOC | Soil Organic Carbon |
| OC | Organic Carbon |
| POM | Particulate Organic Matter |
| DOM | Dissolved Organic Matter |
| SSS | Soil Structure Stability |
| SAS | Soil Aggregate Stability |
| EPS | Extracellular Polymeric Substances |
| AMF | Arbuscular Mycorrhizal Fungi |
| SAR | Sodium Absorption Ratio |
| ECE | Cation Exchange Capacity |
References
- Devine, S.; Markewitz, D.; Hendrix, P.; Coleman, D. Soil aggregates and associated organic matter under conventional tillage, no-tillage, and forest succession after three decades. PLoS ONE 2014, 9, e84988. [Google Scholar] [CrossRef]
- Bolan, S.; Sharma, S.; Mukherjee, S.; Kumar, M.; Rao, C.S.; Nataraj, K.; Singh, G.; Vinu, A.; Bhowmik, A.; Sharma, H. Biochar modulating soil biological health: A review. Sci. Total Environ. 2024, 914, 169585. [Google Scholar] [CrossRef]
- Angers, D.; Carter, M. Aggregation and organic matter storage in cool, humid agricultural soils. In Structure and Organic Matter Storage in Agricultural Soils; CRC Press: Boca Raton, FL, USA, 2020; pp. 193–211. [Google Scholar]
- Bhaduri, D.; Sihi, D.; Bhowmik, A.; Verma, B.C.; Munda, S.; Dari, B. A review on effective soil health bio-indicators for ecosystem restoration and sustainability. Front. Microbiol. 2022, 13, 938481. [Google Scholar] [CrossRef]
- Kay, B. Soil structure and organic carbon: A review. In Soil Process. Carbon Cycle; CRC Press: Boca Raton, FL, USA, 2018; pp. 169–197. [Google Scholar] [CrossRef]
- Zhang, G.; Chan, K.; Oates, A.; Heenan, D.; Huang, G. Relationship between soil structure and runoff/soil loss after 24 years of conservation tillage. Soil Tillage Res. 2007, 92, 122–128. [Google Scholar] [CrossRef]
- Gautam, K.; Rajvanshi, M.; Chugh, N.; Dixit, R.B.; Kumar, G.R.K.; Kumar, C.; Sagaram, U.S.; Dasgupta, S. Microalgal applications toward agricultural sustainability: Recent trends and future prospects. In Microalgae; Academic Press: Cambridge, MA, USA, 2021; pp. 339–379. [Google Scholar]
- Jha, P.; Garg, N.; Lakaria, B.L.; Biswas, A.; Rao, A.S. Soil and residue carbon mineralization as affected by soil aggregate size. Soil Tillage Res. 2012, 121, 57–62. [Google Scholar] [CrossRef]
- Siddiky, M.R.K.; Schaller, J.; Caruso, T.; Rillig, M.C. Arbuscular mycorrhizal fungi and collembola non-additively increase soil aggregation. Soil Biol. Biochem. 2012, 47, 93–99. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Jia, G.; Wang, L.; Yu, X. Contributions of biotic and abiotic factors to soil aggregation under different thinning intensities. Ecol. Indic. 2022, 139, 108958. [Google Scholar] [CrossRef]
- Řezáčová, V.; Czakó, A.; Stehlík, M.; Mayerová, M.; Šimon, T.; Smatanová, M.; Madaras, M. Organic fertilization improves soil aggregation through increases in abundance of eubacteria and products of arbuscular mycorrhizal fungi. Sci. Rep. 2021, 11, 12548. [Google Scholar] [CrossRef] [PubMed]
- Gomiero, T. Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability 2016, 8, 281. [Google Scholar] [CrossRef]
- Rabbi, S.F.; Wilson, B.R.; Lockwood, P.V.; Daniel, H.; Young, I.M. Soil organic carbon mineralization rates in aggregates under contrasting land uses. Geoderma 2014, 216, 10–18. [Google Scholar] [CrossRef]
- Six, J.; Frey, S.D.; Thiet, R.K.; Batten, K. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 2006, 70, 555–569. [Google Scholar] [CrossRef]
- Guhra, T.; Stolze, K.; Totsche, K.U. Pathways of biogenically excreted organic matter into soil aggregates. Soil Biol. Biochem. 2022, 164, 108483. [Google Scholar] [CrossRef]
- Totsche, K.U.; Amelung, W.; Gerzabek, M.H.; Guggenberger, G.; Klumpp, E.; Knief, C.; Lehndorff, E.; Mikutta, R.; Peth, S.; Prechtel, A. Microaggregates in soils. J. Plant Nutr. Soil Sci. 2018, 181, 104–136. [Google Scholar] [CrossRef]
- Bucka, F.B.; Kölbl, A.; Uteau, D.; Peth, S.; Kögel-Knabner, I. Organic matter input determines structure development and aggregate formation in artificial soils. Geoderma 2019, 354, 113881. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H.-J. Soil structure as an indicator of soil functions: A review. Geoderma 2018, 314, 122–137. [Google Scholar] [CrossRef]
- Marshall, J.; Muhlack, R.; Morton, B.J.; Dunnigan, L.; Chittleborough, D.; Kwong, C.W. Pyrolysis temperature effects on biochar–water interactions and application for improved water holding capacity in vineyard soils. Soil Syst. 2019, 3, 27. [Google Scholar] [CrossRef]
- Hallett, P.D. A brief overview of the causes, impacts and amelioration of soil water repellency–a review. Soil Water Res. 2008, 3, 521–528. [Google Scholar] [CrossRef]
- Mao, J.; Zhang, K.; Chen, B. Linking hydrophobicity of biochar to the water repellency and water holding capacity of biochar-amended soil. Environ. Pollut. 2019, 253, 779–789. [Google Scholar] [CrossRef]
- Fallah, M.; Van De Wiel, M.; Holtzman, R. Hydrological vs. mechanical impacts of soil water repellency on erosion. Earth-Sci. Rev. 2025, 261, 105022. [Google Scholar] [CrossRef]
- Davis, P.; Park, D.M. Food security in a changing climate starts with managing soil water repellency. Geoderma 2024, 447, 116922. [Google Scholar] [CrossRef]
- Sarker, T.C.; Incerti, G.; Spaccini, R.; Piccolo, A.; Mazzoleni, S.; Bonanomi, G. Linking organic matter chemistry with soil aggregate stability: Insight from 13C NMR spectroscopy. Soil Biol. Biochem. 2018, 117, 175–184. [Google Scholar] [CrossRef]
- Cui, H.; Zhu, H.; Shutes, B.; Rousseau, A.N.; Feng, W.-D.; Hou, S.-N.; Ou, Y.; Yan, B.-X. Soil aggregate-driven changes in nutrient redistribution and microbial communities after 10-year organic fertilization. J. Environ. Manag. 2023, 348, 119306. [Google Scholar] [CrossRef]
- Yuan, Y.; Cao, C.; Feng, Y.; Miao, Y.; Zhou, Z.; Zhang, S. Influence of long-term ecological reclamation on carbon and nitrogen cycling in soil aggregates: The role of bacterial community structure and function. Sci. Total Environ. 2024, 954, 176729. [Google Scholar] [CrossRef]
- Wang, L.; Luo, X.; Xiong, X.; Chen, W.; Hao, X.; Huang, Q. Soil aggregate stratification of ureolytic microbiota affects urease activity in an inceptisol. J. Agric. Food Chem. 2019, 67, 11584–11590. [Google Scholar] [CrossRef] [PubMed]
- Fei, Y.; She, D.; Tang, S.; Wang, H.; Sun, X.; Han, X.; Liu, D. Assessing Roles of Aggregate Structure on Hydraulic Properties of Saline/Sodic Soils in Coastal Reclaimed Areas. Agronomy 2024, 14, 2877. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, Z.; Yu, P.; Yin, Z.; Li, A.; Zhou, X.; Qi, Z.; Wang, B. Soil aggregates and water infiltration performance of different water and soil conservation measures on phaeozems sloping farmland in northeast China. Agronomy 2024, 14, 2410. [Google Scholar] [CrossRef]
- Eggers, C.; Berli, M.; Accorsi, M.; Or, D. Permeability of deformable soft aggregated earth materials: From single pore to sample cross section. Water Resour. Res. 2007, 43, W08424. [Google Scholar] [CrossRef]
- Abdullatif, Y.; Soliman, E.; Hammad, S.; El-Ghamry, A.; Mansour, M. Impact of carbon nanoparticles on aggregation and carbon sequestration under soil degradation–a review. J. Soil Sci. Agric. Eng. 2024, 15, 85–92. [Google Scholar] [CrossRef]
- Menon, M.; Jia, X.; Lair, G.; Faraj, P.; Blaud, A. Analysing the impact of compaction of soil aggregates using X-ray microtomography and water flow simulations. Soil Tillage Res. 2015, 150, 147–157. [Google Scholar] [CrossRef]
- van Leer, M.D.; Zaadnoordijk, W.J.; Zech, A.; Buma, J.; Harting, R.; Bierkens, M.F.; Griffioen, J. Dominant factors determining the hydraulic conductivity of sedimentary aquitards: A random forest approach. J. Hydrol. 2023, 627, 130468. [Google Scholar] [CrossRef]
- Wu, L.; Swan, J.; Nieber, J.; Allmaras, R. Soil-macropore and layer influences on saturated hydraulic conductivity measured with borehole permeameters. Soil Sci. Soc. Am. J. 1993, 57, 917–923. [Google Scholar] [CrossRef]
- Dorner, J.; Sandoval, P.; Dec, D. The role of soil structure on the pore functionality of an Ultisol. J. Soil Sci. Plant Nutr. 2010, 10, 495–508. [Google Scholar] [CrossRef]
- Xu, P.; Wang, Q.; Duan, C.; Huang, G.; Dong, K.; Wang, C. Biochar addition promotes soil organic carbon sequestration dominantly contributed by macro-aggregates in agricultural ecosystems of China. J. Environ. Manag. 2024, 359, 121042. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, F.; Yang, L. Continuous straw returning enhances the carbon sequestration potential of soil aggregates by altering the quality and stability of organic carbon. J. Environ. Manag. 2024, 358, 120903. [Google Scholar] [CrossRef]
- Liu, B.; Fan, H.; Jiang, Y.; Ma, R. Evaluation of soil macro-aggregate characteristics in response to soil macropore characteristics investigated by X-ray computed tomography under freeze-thaw effects. Soil Tillage Res. 2023, 225, 105559. [Google Scholar] [CrossRef]
- Wang, T.; Hu, C.; Zhou, T.; Zhang, Y.; Hu, H.; Zou, L.; Zhou, W.; Gao, H.; Ren, X.; Wang, J. Artificial utilization of saline-sodic land promotes carbon stock: The importance of large macroaggregates. J. Environ. Manag. 2024, 354, 120343. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Xu, G.; Wang, X.; Li, P.; Dang, X.; Jiang, W.; Ma, T.; Wang, B.; Gu, F.; Li, Z. Contribution of soil aggregate particle size to organic carbon and the effect of land use on its distribution in a typical small watershed on Loess Plateau, China. Ecol. Indic. 2023, 155, 110988. [Google Scholar] [CrossRef]
- Chen, X.; Gsell, T.; Yunger, J.; Randa, L.; Peng, Y.; Carrington, M. Soil Aggregation, Aggregate Stability, and Associated Soil Organic Carbon in Huron Mountains Forests, Michigan, USA. Forests 2025, 16, 219. [Google Scholar] [CrossRef]
- Deeb, M.; Groffman, P.M.; Amato, M.; Cheng, Z.; Giménez, D. Characterization of soil aggregates in green bioswales in relation to carbon sequestration, aggregate stability, and microbial activity. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 14–19 April 2024; p. 21211. [Google Scholar]
- Li, H.; Zhang, Q.; Wu, J.; Zou, H.; Xia, X.; Dan, C.; Liu, C.; Guo, Z.; Zhang, Y.; Liu, G. Response of soil aggregate disintegration to antecedent moisture during splash erosion. Catena 2024, 234, 107633. [Google Scholar] [CrossRef]
- Pereira, M.G.; Loss, A.; Batista, I.; Melo, T.R.d.; Silva, E.C.d.; Pinto, L.A.d.S.R. Biogenic and physicogenic aggregates: Formation pathways, assessment techniques, and influence on soil properties. Rev. Bras. Ciência Solo 2021, 45, e0210108. [Google Scholar] [CrossRef]
- Hu, F.; Xu, C.; Ma, R.; Tu, K.; Yang, J.; Zhao, S.; Yang, M.; Zhang, F. Biochar application driven change in soil internal forces improves aggregate stability: Based on a two-year field study. Geoderma 2021, 403, 115276. [Google Scholar] [CrossRef]
- Gan, F.; Shi, H.; Gou, J.; Zhang, L.; Dai, Q.; Yan, Y. Responses of soil aggregate stability and soil erosion resistance to different bedrock strata dip and land use types in the karst trough valley of Southwest China. Int. Soil Water Conserv. Res. 2024, 12, 684–696. [Google Scholar] [CrossRef]
- Halder, M.; Liu, S.; Zhang, Z.; Guo, Z.; Peng, X. Effects of residue stoichiometric, biochemical and C functional features on soil aggregation during decomposition of eleven organic residues. Catena 2021, 202, 105288. [Google Scholar] [CrossRef]
- Morgan, R.P.C. Soil Erosion and Conservation; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Ye, L.; Ji, L.; Chen, H.; Chen, X.; Tan, W. Spatial contribution of environmental factors to soil aggregate stability in a small catchment of the Loess Plateau, China. Agronomy 2022, 12, 2557. [Google Scholar] [CrossRef]
- Ma, R.; Cai, C.; Li, Z.; Wang, J.; Xiao, T.; Peng, G.; Yang, W. Evaluation of soil aggregate microstructure and stability under wetting and drying cycles in two Ultisols using synchrotron-based X-ray micro-computed tomography. Soil Tillage Res. 2015, 149, 1–11. [Google Scholar] [CrossRef]
- Kandeler, E.; Marschner, P.; Tscherko, D.; Singh Gahoonia, T.; Nielsen, N.E. Microbial community composition and functional diversity in the rhizosphere of maize. Plant Soil 2002, 238, 301–312. [Google Scholar] [CrossRef]
- Muhammad, N.; Kader, M.A.; Al-Solaimani, S.G.; Abd El-Wahed, M.H.; Abohassan, R.A.; Charles, M.E. A review of impacts of hydrogels on soil water conservation in dryland agriculture. Farming Syst. 2025, 3, 100166. [Google Scholar] [CrossRef]
- Singh, D.; Singh, S.; Ghoshal, N. Soil aggregates: Formation, distribution and management. In New Approaches in Biological Research; Nova Science Publishers, Inc.: New York, NY, USA, 2017; pp. 185–189. [Google Scholar]
- Nair, P.R.; Nair, V.D.; Kumar, B.M.; Showalter, J.M. Carbon sequestration in agroforestry systems. Adv. Agron. 2010, 108, 237–307. [Google Scholar]
- Hussain, S.; Hussain, S.; Guo, R.; Sarwar, M.; Ren, X.; Krstic, D.; Aslam, Z.; Zulifqar, U.; Rauf, A.; Hano, C. Carbon sequestration to avoid soil degradation: A review on the role of conservation tillage. Plants 2021, 10, 2001. [Google Scholar] [CrossRef]
- Mulumba, L.N.; Lal, R. Mulching effects on selected soil physical properties. Soil Tillage Res. 2008, 98, 106–111. [Google Scholar] [CrossRef]
- Bayu, T. Systematic review on the role of microbial activities on nutrient cycling and transformation implication for soil fertility and crop productivity. bioRxiv 2024. bioRxiv:2024.2009.2002.610905. [Google Scholar] [CrossRef]
- Kamboj, N.; Dinkar, S.; Singh, S.; Kumar, M.; Deepak, S.; Singh, S. Soil Microbiome and Nutrient Cycling: Implications for Sustainable Agriculture. J. Sci. Res. Rep. 2025, 31, 241–251. [Google Scholar] [CrossRef]
- Xia, R.; Shi, D.; Ni, S.; Wang, R.; Zhang, J.; Song, G. Effects of soil erosion and soil amendment on soil aggregate stability in the cultivated-layer of sloping farmland in the Three Gorges Reservoir area. Soil Tillage Res. 2022, 223, 105447. [Google Scholar] [CrossRef]
- Galic, M.; Percin, A.; Bogunovic, I. Soil C-CO2 Emissions Across Different Land Uses in a Peri-Urban Area of Central Croatia. Land 2025, 14, 1876. [Google Scholar] [CrossRef]
- Li, Y.; Niu, W.; Cao, X.; Wang, J.; Zhang, M.; Duan, X.; Zhang, Z. Effect of soil aeration on root morphology and photosynthetic characteristics of potted tomato plants (Solanum lycopersicum) at different NaCl salinity levels. BMC Plant Biol. 2019, 19, 331. [Google Scholar] [CrossRef]
- Erktan, A.; Or, D.; Scheu, S. The physical structure of soil: Determinant and consequence of trophic interactions. Soil Biol. Biochem. 2020, 148, 107876. [Google Scholar] [CrossRef]
- Redmile-Gordon, M.; Gregory, A.; White, R.; Watts, C. Soil organic carbon, extracellular polymeric substances (EPS), and soil structural stability as affected by previous and current land-use. Geoderma 2020, 363, 114143. [Google Scholar] [CrossRef]
- Wang, B.; Brewer, P.E.; Shugart, H.H.; Lerdau, M.T.; Allison, S.D. Soil aggregates as biogeochemical reactors and implications for soil–atmosphere exchange of greenhouse gases—A concept. Glob. Change Biol. 2019, 25, 373–385. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, M.; Wenjie, F.; Donghui, X.; Xin, H. Reconstruction of soil particle composition during freeze-thaw cycling: A review. Pedosphere 2016, 26, 167–179. [Google Scholar] [CrossRef]
- Simonetti, G.; Francioso, O.; Dal Ferro, N.; Nardi, S.; Berti, A.; Morari, F. Soil porosity in physically separated fractions and its role in SOC protection. J. Soils Sediments 2017, 17, 70–84. [Google Scholar] [CrossRef]
- Hatten, J.; Liles, G. A ‘healthy’ balance–The role of physical and chemical properties in maintaining forest soil function in a changing world. In Developments in Soil Science; Elsevier: Amsterdam, The Netherlands, 2019; Volume 36, pp. 373–396. [Google Scholar]
- Daunoras, J.; Kačergius, A.; Gudiukaitė, R. Role of soil microbiota enzymes in soil health and activity changes depending on climate change and the type of soil ecosystem. Biology 2024, 13, 85. [Google Scholar] [CrossRef]
- Teng, J.; Hou, R.; Dungait, J.A.; Zhou, G.; Kuzyakov, Y.; Zhang, J.; Tian, J.; Cui, Z.; Zhang, F.; Delgado-Baquerizo, M. Conservation agriculture improves soil health and sustains crop yields after long-term warming. Nat. Commun. 2024, 15, 8785. [Google Scholar] [CrossRef]
- Raheem, A.; Bankole, O.O.; Danso, F.; Musa, M.O.; Adegbite, T.A.; Simpson, V.B. Physical Management Strategies for Enhancing Soil Resilience to Climate Change: Insights From Africa. Eur. J. Soil Sci. 2025, 76, e70030. [Google Scholar] [CrossRef]
- Futa, B.; Gmitrowicz-Iwan, J.; Skersienė, A.; Šlepetienė, A.; Parašotas, I. Innovative soil management strategies for sustainable agriculture. Sustainability 2024, 16, 9481. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Purohit, S.; Alam, E.; Islam, M.K. Advancements in soil management: Optimizing crop production through interdisciplinary approaches. J. Agric. Food Res. 2024, 18, 101528. [Google Scholar] [CrossRef]
- Pihlap, E.; Steffens, M.; Kögel-Knabner, I. Initial soil aggregate formation and stabilisation in soils developed from calcareous loess. Geoderma 2021, 385, 114854. [Google Scholar] [CrossRef]
- Tisdall, J. Formation of soil aggregates and accumulation of soil organic matter. In Structure and Organic Matter Storage in Agricultural Soils; CRC Press: Boca Raton, FL, USA, 2020; pp. 57–96. [Google Scholar]
- Morris, E.K.; Morris, D.; Vogt, S.; Gleber, S.; Bigalke, M.; Wilcke, W.; Rillig, M. Visualizing the dynamics of soil aggregation as affected by arbuscular mycorrhizal fungi. ISME J. 2019, 13, 1639–1646. [Google Scholar] [CrossRef] [PubMed]
- Borie, F.; Rubio, R.; Morales, A. Arbuscular mycorrhizal fungi and soil aggregation. In Proceedings of the Segundo Simposio Internacional Suelos, Ecología y Medioambiente Universidad de la Frontera, Temuco, Chile, 8–9 November 2008; p. 15. [Google Scholar]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Sarkar, B.; Singh, M.; Mandal, S.; Churchman, G.J.; Bolan, N.S. Clay minerals—Organic matter interactions in relation to carbon stabilization in soils. In The Future of Soil Carbon; Elsevier: Amsterdam, The Netherlands, 2018; pp. 71–86. [Google Scholar]
- Morais, L.; Cordão-Neto, M.; Tarantino, A. Aggregation process of kaolinite clay. In Proceedings of the E3S Web of Conferences, Milan, Italy, 13–15 February 2019; p. 03002. [Google Scholar]
- Xu, C.Y.; Li, H.; Hu, F.N.; Li, S.; Liu, X.M.; Li, Y. Non-classical polarization of cations increases the stability of clay aggregates: Specific ion effects on the stability of aggregates. Eur. J. Soil Sci. 2015, 66, 615–623. [Google Scholar] [CrossRef]
- Schaefer, C.E.G.; Fabris, J.D.; Ker, J. Minerals in the clay fraction of Brazilian Latosols (Oxisols): A review. Clay Miner. 2008, 43, 137–154. [Google Scholar] [CrossRef]
- Pessoa, T.N.; Cooper, M.; Nunes, M.R.; Uteau, D.; Peth, S.; Vaz, C.M.P.; Libardi, P.L. 2D and 3D techniques to assess the structure and porosity of Oxisols and their correlations with other soil properties. Catena 2022, 210, 105899. [Google Scholar] [CrossRef]
- Schaefer, C.E. Brazilian latosols and their B horizon microstructure as long-term biotic constructs. Soil Res. 2001, 39, 909–926. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Cerdà, A.; Arcenegui, V.; Jordán, A.; Zavala, L. Fire effects on soil aggregation: A review. Earth-Sci. Rev. 2011, 109, 44–60. [Google Scholar] [CrossRef]
- Silva, T.P.d.; Morais, I.d.S.; Santos, G.L.d.; Zonta, E.; Pinto, L.A.d.S.R.; Fagundes, H.d.S.; Pereira, M.G. Biogenic and physicogenic aggregates as indicators of quality in soils with sandy texture in areas of organic agriculture. Rev. Bras. Ciência Solo 2023, 47, e0230007. [Google Scholar] [CrossRef]
- Tawornpruek, S.; Kheoruenromne, I.; Suddhiprakarn, A.; Gilkes, R. Microstructure and water retention of Oxisols in Thailand. Soil Res. 2005, 43, 973–986. [Google Scholar] [CrossRef]
- Cao, G.; Chang, B.; Zhou, Z.; Hu, L.; Du, W.; Lv, J. Soil Aggregate Breakdown with Colloidal Particles Release and Transport in Soil: A Perspective from Column Experiments. Agriculture 2022, 12, 2155. [Google Scholar] [CrossRef]
- Kome, G.K.; Enang, R.K.; Tabi, F.O.; Yerima, B.P.K. Influence of clay minerals on some soil fertility attributes: A review. Open J. Soil Sci. 2019, 9, 155–188. [Google Scholar] [CrossRef]
- Xue, B.; Huang, L.; Li, X.; Lu, J.; Gao, R.; Kamran, M.; Fahad, S. Effect of clay mineralogy and soil organic carbon in aggregates under straw incorporation. Agronomy 2022, 12, 534. [Google Scholar] [CrossRef]
- Fernández-Ugalde, O.; Barré, P.; Hubert, F.; Virto, I.; Girardin, C.; Ferrage, E.; Caner, L.; Chenu, C. Clay mineralogy differs qualitatively in aggregate-size classes: Clay-mineral-based evidence for aggregate hierarchy in temperate soils. Eur. J. Soil Sci. 2013, 64, 410–422. [Google Scholar] [CrossRef]
- Yu, M.; Tariq, S.M.; Yang, H. Engineering clay minerals to manage the functions of soils. Clay Miner. 2022, 57, 51–69. [Google Scholar] [CrossRef]
- Hu, F.; Li, S.; Xu, C.; Gao, X.; Miao, S.; Ding, W.; Liu, X.; Li, H. Effect of soil particle interaction forces in a clay-rich soil on aggregate breakdown and particle aggregation. Eur. J. Soil Sci. 2019, 70, 268–277. [Google Scholar] [CrossRef]
- Plaza, C.; Courtier-Murias, D.; Fernández, J.M.; Polo, A.; Simpson, A.J. Physical, chemical, and biochemical mechanisms of soil organic matter stabilization under conservation tillage systems: A central role for microbes and microbial by-products in C sequestration. Soil Biol. Biochem. 2013, 57, 124–134. [Google Scholar] [CrossRef]
- Ge, N.; Wei, X.; Wang, X.; Liu, X.; Shao, M.; Jia, X.; Li, X.; Zhang, Q. Soil texture determines the distribution of aggregate-associated carbon, nitrogen and phosphorous under two contrasting land use types in the Loess Plateau. Catena 2019, 172, 148–157. [Google Scholar] [CrossRef]
- Ding, S.; Zhang, X.; Yang, W.; Xin, X.; Zhu, A.; Huang, S. Soil nutrients and aggregate composition of four soils with contrasting textures in a long-term experiment. Eurasian Soil Sci. 2021, 54, 1746–1755. [Google Scholar] [CrossRef]
- Huang, B.; Yuan, Z.; Li, D.; Zheng, M.; Nie, X.; Liao, Y. Effects of soil particle size on the adsorption, distribution, and migration behaviors of heavy metal (loid) s in soil: A review. Environ. Sci. Process. Impacts 2020, 22, 1596–1615. [Google Scholar] [CrossRef]
- Schweizer, S.A.; Bucka, F.B.; Graf-Rosenfellner, M.; Kögel-Knabner, I. Soil microaggregate size composition and organic matter distribution as affected by clay content. Geoderma 2019, 355, 113901. [Google Scholar] [CrossRef]
- Virto, I.; Moni, C.; Swanston, C.; Chenu, C. Turnover of intra-and extra-aggregate organic matter at the silt-size scale. Geoderma 2010, 156, 1–10. [Google Scholar] [CrossRef]
- Verchot, L.V.; Dutaur, L.; Shepherd, K.D.; Albrecht, A. Organic matter stabilization in soil aggregates: Understanding the biogeochemical mechanisms that determine the fate of carbon inputs in soils. Geoderma 2011, 161, 182–193. [Google Scholar] [CrossRef]
- Le Bissonnais, Y. Soil characteristics and aggregate stability. In Soil Erosion, Conservation, and Rehabilitation; CRC Press: Boca Raton, FL, USA, 2023; pp. 41–60. [Google Scholar]
- Pronk, G.J.; Heister, K.; Kögel-Knabner, I. Iron oxides as major available interface component in loamy arable topsoils. Soil Sci. Soc. Am. J. 2011, 75, 2158–2168. [Google Scholar] [CrossRef]
- Sedláčková, K.; Ševelová, L.; Igaz, D.; Aydın, E. Determination of Particle Size Distribution: Comparison of Standard Hydrometer Method and Laser Diffraction Analysis for Use in Forestry. Forests 2024, 15, 327. [Google Scholar] [CrossRef]
- Sedláčková, K.; Ševelová, L. Comparison of laser diffraction method and hydrometer method for soil particle size distribution analysis. Acta Hortic. Regiotect. 2021, 24, 49–55. [Google Scholar] [CrossRef]
- Faé, G.S.; Montes, F.; Bazilevskaya, E.; Añó, R.M.; Kemanian, A.R. Making soil particle size analysis by laser diffraction compatible with standard soil texture determination methods. Soil Sci. Soc. Am. J. 2019, 83, 1244–1252. [Google Scholar] [CrossRef]
- McCarthy, J.F.; Ilavsky, J.; Jastrow, J.D.; Mayer, L.M.; Perfect, E.; Zhuang, J. Protection of organic carbon in soil microaggregates via restructuring of aggregate porosity and filling of pores with accumulating organic matter. Geochim. Cosmochim. Acta 2008, 72, 4725–4744. [Google Scholar] [CrossRef]
- Hagedorn, F.; Machwitz, M. Controls on dissolved organic matter leaching from forest litter grown under elevated atmospheric CO2. Soil Biol. Biochem. 2007, 39, 1759–1769. [Google Scholar] [CrossRef]
- Voltolini, M.; Taş, N.; Wang, S.; Brodie, E.L.; Ajo-Franklin, J.B. Quantitative characterization of soil micro-aggregates: New opportunities from sub-micron resolution synchrotron X-ray microtomography. Geoderma 2017, 305, 382–393. [Google Scholar] [CrossRef]
- Steffens, M.; Rogge, D.M.; Mueller, C.W.; Höschen, C.; Lugmeier, J.; Kölbl, A.; Kögel-Knabner, I. Identification of distinct functional microstructural domains controlling C storage in soil. Environ. Sci. Technol. 2017, 51, 12182–12189. [Google Scholar] [CrossRef] [PubMed]
- Even, R.J.; Cotrufo, M.F. The ability of soils to aggregate, more than the state of aggregation, promotes protected soil organic matter formation. Geoderma 2024, 442, 116760. [Google Scholar] [CrossRef]
- Yang, H.; Lei, B.; Xie, L.; Hu, C.; Liu, J. Experimental study on water and salt migration and the aggregate insulating effect in coarse-grained saline soil subgrade under freeze–thaw cycles. Appl. Sci. 2024, 14, 8970. [Google Scholar] [CrossRef]
- Kleber, M.; Bourg, I.C.; Coward, E.K.; Hansel, C.M.; Myneni, S.C.; Nunan, N. Dynamic interactions at the mineral–organic matter interface. Nat. Rev. Earth Environ. 2021, 2, 402–421. [Google Scholar] [CrossRef]
- Lu, W.; Zha, Q.; Zhang, H.; Chen, H.Y.; Yu, J.; Tu, F.; Ruan, H. Changes in soil microbial communities and priming effects induced by rice straw pyrogenic organic matter produced at two temperatures. Geoderma 2021, 400, 115217. [Google Scholar] [CrossRef]
- Haq, I.U.; Zhang, M.; Yang, P.; van Elsas, J.D. The interactions of bacteria with fungi in soil: Emerging concepts. Adv. Appl. Microbiol. 2014, 89, 185–215. [Google Scholar] [PubMed]
- Ahmadi, K.; Zarebanadkouki, M.; Ahmed, M.A.; Ferrarini, A.; Kuzyakov, Y.; Kostka, S.J.; Carminati, A. Rhizosphere engineering: Innovative improvement of root environment. Rhizosphere 2017, 3, 176–184. [Google Scholar] [CrossRef]
- Wang, X.; Sale, P.; Hayden, H.; Tang, C.; Clark, G.; Armstrong, R. Plant roots and deep-banded nutrient-rich amendments influence aggregation and dispersion in a dispersive clay subsoil. Soil Biol. Biochem. 2020, 141, 107664. [Google Scholar] [CrossRef]
- Sher, Y.; Baker, N.R.; Herman, D.; Fossum, C.; Hale, L.; Zhang, X.; Nuccio, E.; Saha, M.; Zhou, J.; Pett-Ridge, J. Microbial extracellular polysaccharide production and aggregate stability controlled by switchgrass (Panicum virgatum) root biomass and soil water potential. Soil Biol. Biochem. 2020, 143, 107742. [Google Scholar] [CrossRef]
- Costa, O.Y.; Raaijmakers, J.M.; Kuramae, E.E. Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Front. Microbiol. 2018, 9, 1636. [Google Scholar] [CrossRef]
- See, C.R.; Keller, A.B.; Hobbie, S.E.; Kennedy, P.G.; Weber, P.K.; Pett-Ridge, J. Hyphae move matter and microbes to mineral microsites: Integrating the hyphosphere into conceptual models of soil organic matter stabilization. Glob. Change Biol. 2022, 28, 2527–2540. [Google Scholar] [CrossRef]
- Baumert, V.L.; Forstner, S.J.; Zethof, J.H.; Vogel, C.; Heitkötter, J.; Schulz, S.; Kögel-Knabner, I.; Mueller, C.W. Root-induced fungal growth triggers macroaggregation in forest subsoils. Soil Biol. Biochem. 2021, 157, 108244. [Google Scholar] [CrossRef]
- Roy, S.; Bagchi, S. Large mammalian herbivores and the paradox of soil carbon in grazing ecosystems: Role of microbial decomposers and their enzymes. Ecosystems 2022, 25, 976–988. [Google Scholar] [CrossRef]
- Biesgen, D.; Frindte, K.; Maarastawi, S.; Knief, C. Clay content modulates differences in bacterial community structure in soil aggregates of different size. Geoderma 2020, 376, 114544. [Google Scholar] [CrossRef]
- Krause, L.; Biesgen, D.; Treder, A.; Schweizer, S.A.; Klumpp, E.; Knief, C.; Siebers, N. Initial microaggregate formation: Association of microorganisms to montmorillonite-goethite aggregates under wetting and drying cycles. Geoderma 2019, 351, 250–260. [Google Scholar] [CrossRef]
- Rillig, M.C.; Mardatin, N.F.; Leifheit, E.F.; Antunes, P.M. Mycelium of arbuscular mycorrhizal fungi increases soil water repellency and is sufficient to maintain water-stable soil aggregates. Soil Biol. Biochem. 2010, 42, 1189–1191. [Google Scholar] [CrossRef]
- Leifheit, E.F.; Veresoglou, S.D.; Lehmann, A.; Morris, E.K.; Rillig, M.C. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—A meta-analysis. Plant Soil 2014, 374, 523–537. [Google Scholar] [CrossRef]
- Rillig, M.C.; Mummey, D.L. Mycorrhizas and soil structure. New Phytol. 2006, 171, 41–53. [Google Scholar] [CrossRef]
- Chaudhary, A.; Poudyal, S.; Kaundal, A. Role of Arbuscular Mycorrhizal Fungi in Maintaining Sustainable Agroecosystems. Appl. Microbiol. 2025, 5, 6. [Google Scholar] [CrossRef]
- Felde, V.J.; Schweizer, S.A.; Biesgen, D.; Ulbrich, A.; Uteau, D.; Knief, C.; Graf-Rosenfellner, M.; Kögel-Knabner, I.; Peth, S. Wet sieving versus dry crushing: Soil microaggregates reveal different physical structure, bacterial diversity and organic matter composition in a clay gradient. Eur. J. Soil Sci. 2021, 72, 810–828. [Google Scholar] [CrossRef]
- Miltner, A.; Bombach, P.; Schmidt-Brücken, B.; Kästner, M. SOM genesis: Microbial biomass as a significant source. Biogeochemistry 2012, 111, 41–55. [Google Scholar] [CrossRef]
- Baldock, J. Interactions of organic materials and microorganisms with minerals in the stabilization of soil structure. In Interactions Between Soil Particles and Microorganisms; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Lemtiri, A.; Colinet, G.; Alabi, T.; Cluzeau, D.; Zirbes, L.; Haubruge, É.; Francis, F. Impacts of earthworms on soil components and dynamics. A review. Biotechnol. Agron. Société Environ. 2014, 18, 121–133. [Google Scholar]
- Kautz, T.; Lüsebrink, M.; Pätzold, S.; Vetterlein, D.; Pude, R.; Athmann, M.; Küpper, P.M.; Perkons, U.; Köpke, U. Contribution of anecic earthworms to biopore formation during cultivation of perennial ley crops. Pedobiologia 2014, 57, 47–52. [Google Scholar] [CrossRef]
- Li, H.; Wang, C.; Li, X.; Christie, P.; Dou, Z.; Zhang, J.; Xiang, D. Impact of the earthworm Aporrectodea trapezoides and the arbuscular mycorrhizal fungus Glomus intraradices on 15 N uptake by maize from wheat straw. Biol. Fertil. Soils 2013, 49, 263–271. [Google Scholar] [CrossRef]
- Coleman, D.C.; Geisen, S.; Wall, D. Soil fauna: Occurrence, biodiversity, and roles in ecosystem function. In Soil Microbiology, Ecology and Biochemistry; Elsevier: Amsterdam, The Netherlands, 2024; pp. 131–159. [Google Scholar]
- Chen, Y.; Cao, T.; Lv, M.; Fang, Y.; Liu, R.; Luo, Y.; Xu, C.; Tian, X. Grazing effects of soil fauna on white-rot fungi: Biomass, enzyme production and litter decomposition ability. J. Fungi 2022, 8, 348. [Google Scholar] [CrossRef]
- Angst, G.; Potapov, A.; Joly, F.-X.; Angst, Š.; Frouz, J.; Ganault, P.; Eisenhauer, N. Conceptualizing soil fauna effects on labile and stabilized soil organic matter. Nat. Commun. 2024, 15, 5005. [Google Scholar] [CrossRef]
- Brown, G.G.; Silva, E.d.; Thomazini, M.J.; Niva, C.C.; Decaëns, T.; Cunha, L.F.; Nadolny, H.S.; Demetrio, W.C.; Santos, A.; Ferreira, T. The Role of Soil Fauna in Soil Health and Delivery of Ecosystem Services; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2018. [Google Scholar]
- Bimüller, C.; Kreyling, O.; Kölbl, A.; von Lützow, M.; Kögel-Knabner, I. Carbon and nitrogen mineralization in hierarchically structured aggregates of different size. Soil Tillage Res. 2016, 160, 23–33. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Q.; Lü, Y.; Zhang, X.; Liang, W. Contributions of soil biota to C sequestration varied with aggregate fractions under different tillage systems. Soil Biol. Biochem. 2013, 62, 147–156. [Google Scholar] [CrossRef]
- Gao, Z.; Karlsson, I.; Geisen, S.; Kowalchuk, G.; Jousset, A. Protists: Puppet masters of the rhizosphere microbiome. Trends Plant Sci. 2019, 24, 165–176. [Google Scholar] [CrossRef]
- Rodger, S.; Bengough, A.; Griffiths, B.; Stubbs, V.; Young, I. Does the presence of detached root border cells of Zea mays alter the activity of the pathogenic nematode Meloidogyne incognita? Phytopathology 2003, 93, 1111–1114. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.L.; Schjønning, P.; Watts, C.W.; Christensen, B.T.; Peltre, C.; Munkholm, L.J. Relating soil C and organic matter fractions to soil structural stability. Geoderma 2019, 337, 834–843. [Google Scholar] [CrossRef]
- Skvortsova, E.; Shein, E.; Abrosimov, K.; Romanenko, K.; Yudina, A.; Klyueva, V.; Khaidapova, D.; Rogov, V. The impact of multiple freeze–thaw cycles on the microstructure of aggregates from a soddy-podzolic soil: A microtomographic analysis. Eurasian Soil Sci. 2018, 51, 190–198. [Google Scholar] [CrossRef]
- Song, Y.; Zou, Y.; Wang, G.; Yu, X. Altered soil carbon and nitrogen cycles due to the freeze-thaw effect: A meta-analysis. Soil Biol. Biochem. 2017, 109, 35–49. [Google Scholar] [CrossRef]
- Naylor, D.; McClure, R.; Jansson, J. Trends in microbial community composition and function by soil depth. Microorganisms 2022, 10, 540. [Google Scholar] [CrossRef]
- Xu, H.; Huang, L.; Chen, J.; Zhou, H.; Wan, Y.; Qu, Q.; Wang, M.; Xue, S. Changes in soil microbial activity and their linkages with soil carbon under global warming. Catena 2023, 232, 107419. [Google Scholar] [CrossRef]
- Zeng, Q.; Darboux, F.; Man, C.; Zhu, Z.; An, S. Soil aggregate stability under different rain conditions for three vegetation types on the Loess Plateau (China). Catena 2018, 167, 276–283. [Google Scholar] [CrossRef]
- Gui-Yuan, L.; Hao-Ming, F. Effect of freeze-thaw on water stability of aggregates in a black soil of Northeast China. Pedosphere 2014, 24, 285–290. [Google Scholar] [CrossRef]
- Chai, Y.; Zeng, X.; E, S.; Bai, L.; Su, S.; Huang, T. Effects of freeze–thaw on aggregate stability and the organic carbon and nitrogen enrichment ratios in aggregate fractions. Soil Use Manag. 2014, 30, 507–516. [Google Scholar] [CrossRef]
- Regelink, I.C.; Stoof, C.R.; Rousseva, S.; Weng, L.; Lair, G.J.; Kram, P.; Nikolaidis, N.P.; Kercheva, M.; Banwart, S.; Comans, R.N. Linkages between aggregate formation, porosity and soil chemical properties. Geoderma 2015, 247, 24–37. [Google Scholar] [CrossRef]
- Thomaz, E.L.; Araujo-Junior, C.F.; Vendrame, P.R.; de Melo, T.R. Mechanisms of aggregate breakdown in (sub) tropical soils: Effects of the hierarchical resistance. Catena 2022, 216, 106377. [Google Scholar] [CrossRef]
- Papadopoulos, A. Soil aggregates, structure, and stability. In Encyclopedia of Agrophysics; Springer: Berlin/Heidelberg, Germany, 2011; pp. 736–740. [Google Scholar]
- Li, W.; Yang, J.; Yao, R.; Wang, X.; Xie, W.; Xiao, P. Interactive effects of salinity and straw on the soil aggregate stability and organic carbon sequestration in saline soils in the Hetao area, China. Land Degrad. Dev. 2024, 35, 1685–1698. [Google Scholar] [CrossRef]
- Mostakhdeminhosseini, F.; Rafiei, Y.; Sharifi, M. Visual investigation of swelling and migration behavior of bentonite and kaolinite clays at elevated temperature using micromodels. Sci. Rep. 2025, 15, 16763. [Google Scholar] [CrossRef]
- Xie, Y.; Ning, H.; Zhang, X.; Zhou, W.; Xu, P.; Song, Y.; Li, N.; Wang, X.; Liu, H. Reducing the Sodium Adsorption Ratio Improves the Soil Aggregates and Organic Matter in Brackish-Water-Irrigated Cotton Fields. Agronomy 2024, 14, 2169. [Google Scholar] [CrossRef]
- Vieira, C.B.; Silva, G.H.M.C.; Almeida, B.G.d.; Pessoa, L.G.M.; Freire, F.J.; de Souza Junior, V.S.; Melo, H.F.d.; Lima, L.G.G.d.; Paiva, R.F.d.N.; Ferreira, J.F.d.S. Saturated Hydraulic Conductivity of Nine Soils According to Water Quality, Soil Texture, and Clay Mineralogy. Agronomy 2025, 15, 864. [Google Scholar] [CrossRef]
- Li, Y.; Shen, C.; Wang, Y.; Xu, L.; Zhao, Y.; Yi, S.; Zuo, W.; Yao, R.; Zhang, X.; Gu, C. Alleviated environmental constraints and restructured fungal microbiome facilitate aggregate formation and stabilization in coastal mudflat saline soil amended by sewage sludge. Land Degrad. Dev. 2023, 34, 3064–3075. [Google Scholar] [CrossRef]
- Ben-Hur, M.; Yolcu, G.; Uysal, H.; Lado, M.; Paz, A. Soil structure changes: Aggregate size and soil texture effects on hydraulic conductivity under different saline and sodic conditions. Soil Res. 2009, 47, 688–696. [Google Scholar] [CrossRef]
- Siddiky, M.R.K. Soil Biota Interactions and Soil Aggregation; Freie Universität Berlin: Berlin, Germany, 2011. [Google Scholar]
- Nciizah, A.D.; Wakindiki, I.I. Aggregate breakdown mechanisms as affected by soil texture and organic matter in soils dominated by primary minerals. South Afr. J. Plant Soil 2014, 31, 213–218. [Google Scholar] [CrossRef]
- Almajmaie, A.; Hardie, M.; Doyle, R.; Birch, C.; Acuna, T. Influence of soil properties on the aggregate stability of cultivated sandy clay loams. J. Soils Sediments 2017, 17, 800–809. [Google Scholar] [CrossRef]
- Ahad, T.; Kanth, T.; Nabi, S. Soil bulk density as related to texture, organic matter content and porosity in kandi soils of district Kupwara (Kashmir Valley), India. Geography 2015, 4, 198–200. [Google Scholar]
- Fernández, R.; Frasier, I.; Quiroga, A.; Noellemeyer, E. Pore morphology reveals interaction of biological and physical processes for structure formation in soils of the semiarid Argentinean Pampa. Soil Tillage Res. 2019, 191, 256–265. [Google Scholar] [CrossRef]
- Shi, P.; Thorlacius, S.; Keller, T.; Keller, M.; Schulin, R. Soil aggregate breakdown in a field experiment with different rainfall intensities and initial soil water contents. Eur. J. Soil Sci. 2017, 68, 853–863. [Google Scholar] [CrossRef]
- Wu, X.; Wei, Y.; Wang, J.; Wang, D.; She, L.; Wang, J.; Cai, C. Effects of soil physicochemical properties on aggregate stability along a weathering gradient. Catena 2017, 156, 205–215. [Google Scholar] [CrossRef]
- Lawal, H.; Ogunwole, J.O.; Uyovbisere, E.O. Changes in soil aggregate stability and carbon sequestration mediated by land use practices in a degraded dry savanna Alfisol. Trop. Subtrop. Agroecosystems 2009, 10, 423–429. [Google Scholar]
- Beheshti, A.; Raiesi, F.; Golchin, A. Soil properties, C fractions and their dynamics in land use conversion from native forests to croplands in northern Iran. Agric. Ecosyst. Environ. 2012, 148, 121–133. [Google Scholar] [CrossRef]
- Jiang, W.; Li, Z.; Xie, H.; Ouyang, K.; Yuan, H.; Duan, L. Land use change impacts on red slate soil aggregates and associated organic carbon in diverse soil layers in subtropical China. Sci. Total Environ. 2023, 856, 159194. [Google Scholar] [CrossRef] [PubMed]
- Linsler, D.; Geisseler, D.; Loges, R.; Taube, F.; Ludwig, B. Temporal dynamics of soil organic matter composition and aggregate distribution in permanent grassland after a single tillage event in a temperate climate. Soil Tillage Res. 2013, 126, 90–99. [Google Scholar] [CrossRef]
- Cheng-Liang, L.; Jiang-Bing, X.; Yuan-Qiu, H.; Yan-Li, L.; Jian-Bo, F. Dynamic relationship between biologically active soil organic carbon and aggregate stability in long-term organically fertilized soils. Pedosphere 2012, 22, 616–622. [Google Scholar] [CrossRef]
- Adesodun, J.; Adeyemi, E.; Oyegoke, C. Distribution of nutrient elements within water-stable aggregates of two tropical agro-ecological soils under different land uses. Soil Tillage Res. 2007, 92, 190–197. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, L.; Wu, F. Tillage–impact on infiltration of the Loess Plateau of China. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2014, 64, 341–349. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Zhang, Z. Influences of intensive tillage on water-stable aggregate distribution on a steep hillslope. Soil Tillage Res. 2015, 151, 82–92. [Google Scholar] [CrossRef]
- Helgason, B.; Walley, F.; Germida, J. No-till soil management increases microbial biomass and alters community profiles in soil aggregates. Appl. Soil Ecol. 2010, 46, 390–397. [Google Scholar] [CrossRef]
- Yilmaz, E.; Sönmez, M. The role of organic/bio–fertilizer amendment on aggregate stability and organic carbon content in different aggregate scales. Soil Tillage Res. 2017, 168, 118–124. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Q.; Zhang, X.; Wei, K.; Chen, L.; Liang, W. Effects of conservation tillage on soil aggregation and aggregate binding agents in black soil of Northeast China. Soil Tillage Res. 2012, 124, 196–202. [Google Scholar] [CrossRef]
- Phefadu, K.C.; Munjonji, L. Assessing the impact of no-tillage duration on soil aggregate size distribution, stability and aggregate associated organic carbon. Agronomy 2024, 14, 2482. [Google Scholar] [CrossRef]
- Li, G.-L.; Pang, X.-M. Effect of land-use conversion on C and N distribution in aggregate fractions of soils in the southern Loess Plateau, China. Land Use Policy 2010, 27, 706–712. [Google Scholar] [CrossRef]
- Obour, P.B.; Keller, T.; Jensen, J.L.; Edwards, G.; Lamandé, M.; Watts, C.W.; Sørensen, C.G.; Munkholm, L.J. Soil water contents for tillage: A comparison of approaches and consequences for the number of workable days. Soil Tillage Res. 2019, 195, 104384. [Google Scholar] [CrossRef]
- Sharma, B.; Kumari, P.; Kumari, R.; Tripathi, S. Soil tillage and alteration of soil properties by tillage operation. In Current Research in Soil Science; AkiNik Publications: New Delhi, India, 2018; pp. 107–114. [Google Scholar]
- Cakpo, S.S.; Aostăcioaei, T.G.; Mihu, G.-D.; Molocea, C.-C.; Ghelbere, C.; Ursu, A.; Țopa, D.C. Long-Term Effect of Tillage Practices on Soil Physical Properties and Winter Wheat Yield in North-East Romania. Agriculture 2025, 15, 989. [Google Scholar] [CrossRef]
- Goebel, M.-O.; Woche, S.K.; Bachmann, J. Quantitative analysis of liquid penetration kinetics and slaking of aggregates as related to solid–liquid interfacial properties. J. Hydrol. 2012, 442, 63–74. [Google Scholar] [CrossRef]
- Singh, S.; Mishra, R.; Singh, A.; Ghoshal, N.; Singh, K. Soil physicochemical properties in a grassland and agroecosystem receiving varying organic inputs. Soil Sci. Soc. Am. J. 2009, 73, 1530–1538. [Google Scholar] [CrossRef]
- Yu, K.; Dong, Q.; Chen, H.; Feng, H.; Zhao, Y.; Si, B.; Li, Y.; Hopkins, D. Incorporation of pre-treated straw improves soil aggregate stability and increases crop productivity. Agron. J. 2017, 109, 2253–2265. [Google Scholar] [CrossRef]
- Zhang, M.; Cheng, G.; Feng, H.; Sun, B.; Zhao, Y.; Chen, H.; Chen, J.; Dyck, M.; Wang, X.; Zhang, J. Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China. Environ. Sci. Pollut. Res. 2017, 24, 10108–10120. [Google Scholar] [CrossRef] [PubMed]
- Kahlon, M.S.; Lal, R.; Ann-Varughese, M. Twenty two years of tillage and mulching impacts on soil physical characteristics and carbon sequestration in Central Ohio. Soil Tillage Res. 2013, 126, 151–158. [Google Scholar] [CrossRef]
- Oliveira, M.; Barré, P.; Trindade, H.; Virto, I. Different efficiencies of grain legumes in crop rotations to improve soil aggregation and organic carbon in the short-term in a sandy Cambisol. Soil Tillage Res. 2019, 186, 23–35. [Google Scholar] [CrossRef]
- Sánchez-Navarro, V.; Zornoza, R.; Faz, A.; Fernandez, J.A. Comparing legumes for use in multiple cropping to enhance soil organic carbon, soil fertility, aggregates stability and vegetables yields under semi-arid conditions. Sci. Hortic. 2019, 246, 835–841. [Google Scholar] [CrossRef]
- Annabi, M.; Houot, S.; Francou, C.; Poitrenaud, M.; Bissonnais, Y.L. Soil aggregate stability improvement with urban composts of different maturities. Soil Sci. Soc. Am. J. 2007, 71, 413–423. [Google Scholar] [CrossRef]
- Abiven, S.; Menasseri, S.; Chenu, C. The effects of organic inputs over time on soil aggregate stability–A literature analysis. Soil Biol. Biochem. 2009, 41, 1–12. [Google Scholar] [CrossRef]
- Leroy, B.; Herath, H.; Sleutel, S.; De Neve, S.; Gabriels, D.; Reheul, D.; Moens, M. The quality of exogenous organic matter: Short-term effects on soil physical properties and soil organic matter fractions. Soil Use Manag. 2008, 24, 139–147. [Google Scholar] [CrossRef]
- Ojeda, G.; Alcañiz, J.; Le Bissonnais, Y. Differences in aggregate stability due to various sewage sludge treatments on a Mediterranean calcareous soil. Agric. Ecosyst. Environ. 2008, 125, 48–56. [Google Scholar] [CrossRef]
- Annabi, M.; Le Bissonnais, Y.; Le Villio-Poitrenaud, M.; Houot, S. Improvement of soil aggregate stability by repeated applications of organic amendments to a cultivated silty loam soil. Agric. Ecosyst. Environ. 2011, 144, 382–389. [Google Scholar] [CrossRef]
- Darwish, O.; Persaud, N.; Martens, D. Effect of long-term application of animal manure on physical properties of three soils. Plant Soil 1995, 176, 289–295. [Google Scholar] [CrossRef]
- Whalen, J.K.; Chang, C. Macroaggregate characteristics in cultivated soils after 25 annual manure applications. Soil Sci. Soc. Am. J. 2002, 66, 1637–1647. [Google Scholar] [CrossRef]
- N’dayegamiye, A.; Angers, D. Organic matter characteristics and water-stable aggregation of a sandy loam soil after 9 years of wood-residue applications. Can. J. Soil Sci. 1993, 73, 115–122. [Google Scholar] [CrossRef]
- Diaz, E.; Roldan, A.; Lax, A.; Albaladejo, J. Formation of stable aggregates in degraded soil by amendment with urban refuse and peat. Geoderma 1994, 63, 277–288. [Google Scholar] [CrossRef]
- Aggelides, S.; Londra, P. Effects of compost produced from town wastes and sewage sludge on the physical properties of a loamy and a clay soil. Bioresour. Technol. 2000, 71, 253–259. [Google Scholar] [CrossRef]
- Sharma, S.; Vashisht, B.B.; Singh, P.; Singh, Y. Changes in soil aggregate-associated organic carbon, enzymatic activity, and biological pools under conservation agriculture based practices in rice–wheat system. Biomass Convers. Biorefinery 2023, 13, 13977–13994. [Google Scholar] [CrossRef]
- Rivier, P.-A.; Jamniczky, D.; Nemes, A.; Makó, A.; Barna, G.; Uzinger, N.; Rékási, M.; Farkas, C. Short-term effects of compost amendments to soil on soil structure, hydraulic properties, and water regime. J. Hydrol. Hydromech. 2022, 70, 74–88. [Google Scholar] [CrossRef]
- Horel, Á.; Barna, G.; Makó, A. Soil physical properties affected by biochar addition at different plant phaenological phases. Part I. Int. Agrophysics 2019, 33, 255–262. [Google Scholar] [CrossRef]
- Kou, T.; Zhu, P.; Huang, S.; Peng, X.; Song, Z.; Deng, A.; Gao, H.; Peng, C.; Zhang, W. Effects of long-term cropping regimes on soil carbon sequestration and aggregate composition in rainfed farmland of Northeast China. Soil Tillage Res. 2012, 118, 132–138. [Google Scholar] [CrossRef]
- Niu, Z.; An, F.; Su, Y.; Li, J.; Liu, T. Effects of cropping patterns on the distribution, carbon contents, and nitrogen contents of aeolian sand soil aggregates in Northwest China. Sci. Rep. 2024, 14, 1498. [Google Scholar] [CrossRef] [PubMed]
- Gallage, P.; Bandara, M.; Knight, J.D. Influence of pulse–wheat crop rotations on aggregate size distribution dynamics in the brown soil zone in southern Alberta, Canada. Can. J. Soil Sci. 2023, 103, 556–566. [Google Scholar] [CrossRef]
- Lu, Z.-R.; Li, Y.-M.; Yang, C.-H.; Xia, Z.-T.; Cheng, W.-W.; Wang, Z.-L.; Zhao, J.-X.; Fan, M.-P. Effects of Continuous Annual Crop Rotation and Fallow on Soil Aggregate Stability and Organic Carbon. Huan Jing Ke Xue = Huanjing Kexue 2024, 45, 1644–1654. [Google Scholar]
- Are, M.; Kaart, T.; Selge, A.; Reintam, E. The effects of crops together with winter cover crops on the content of soil water-stable aggregates in organic farming. Agriculture 2021, 11, 1035. [Google Scholar] [CrossRef]
- Williams, J.D.; Reardon, C.L.; Wuest, S.B.; Long, D.S. Soil wet aggregate stability in dryland Pacific Northwest intensified crop rotations. Soil Sci. Soc. Am. J. 2018, 82, 455–462. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration and aggregation by cover cropping. J. Soil Water Conserv. 2015, 70, 329–339. [Google Scholar] [CrossRef]
- Delgado, A.; Gomez, J.A. The soil. Physical, chemical and biological properties. In Principles of Agronomy for Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2017; pp. 15–26. [Google Scholar]
- Castro Filho, C.d.; Lourenço, A.; Guimarães, M.d.F.; Fonseca, I. Aggregate stability under different soil management systems in a red latosol in the state of Parana, Brazil. Soil Tillage Res. 2002, 65, 45–51. [Google Scholar] [CrossRef]
- Shu, X.; Zou, Y.; Shaw, L.J.; Todman, L.; Tibbett, M.; Sizmur, T. Cover crop residue diversity enhances microbial activity and biomass with additive effects on microbial structure. Soil Res. 2021, 60, 349–359. [Google Scholar] [CrossRef]
- Cnudde, V.; Boone, M.N. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Sci. Rev. 2013, 123, 1–17. [Google Scholar] [CrossRef]
- Helliwell, J.; Sturrock, C.; Grayling, K.; Tracy, S.; Flavel, R.; Young, I.; Whalley, W.; Mooney, S. Applications of X-ray computed tomography for examining biophysical interactions and structural development in soil systems: A review. Eur. J. Soil Sci. 2013, 64, 279–297. [Google Scholar] [CrossRef]
- Ghosh, T.; Maity, P.P.; Rabbi, S.M.; Das, T.; Bhattacharyya, R. Application of X-ray computed tomography in soil and plant-a review. Front. Environ. Sci. 2023, 11, 1216630. [Google Scholar] [CrossRef]
- Holbrook, R.D.; Galyean, A.A.; Gorham, J.M.; Herzing, A.; Pettibone, J. Overview of nanomaterial characterization and metrology. In Frontiers of Nanoscience; Elsevier: Amsterdam, The Netherlands, 2015; Volume 8, pp. 47–87. [Google Scholar]
- Jurina, T.; Cvetnić, T.S.; Šalić, A.; Benković, M.; Valinger, D.; Kljusurić, J.G.; Zelić, B.; Jurinjak Tušek, A. Application of spectroscopy techniques for monitoring (bio) catalytic processes in continuously operated microreactor systems. Catalysts 2023, 13, 690. [Google Scholar] [CrossRef]
- Gong, Y.; Chen, X.; Wu, W. Application of fourier transform infrared (FTIR) spectroscopy in sample preparation: Material characterization and mechanism investigation. Adv. Sample Prep. 2024, 11, 100122. [Google Scholar] [CrossRef]
- Fisher, P.; Aumann, C.; Chia, K.; O’Halloran, N.; Chandra, S. Adequacy of laser diffraction for soil particle size analysis. PLoS ONE 2017, 12, e0176510. [Google Scholar] [CrossRef]
- Hu, W.; Cichota, R.; Beare, M.; Müller, K.; Drewry, J.; Eger, A. Soil structural vulnerability: Critical review and conceptual development. Geoderma 2023, 430, 116346. [Google Scholar] [CrossRef]
- Zhang, S.; Li, L.; Zhu, Z.; Zhang, P. Spatial distribution and relationship between slope micro-topography changes and soil aggregate stability under rainfall conditions. Water 2024, 16, 648. [Google Scholar] [CrossRef]
- Agyei, B.; Sprunger, C.D.; Anderson, E.; Curell, C.; Singh, M.P. Farm-level variability in soil biological health indicators in Michigan is dependent on management and soil properties. Soil Sci. Soc. Am. J. 2024, 88, 326–338. [Google Scholar] [CrossRef]
- Liu, S.; Lin, Z.; Duan, X.; Deng, Y. Effects of soil microorganisms on aggregate stability during vegetation recovery in degraded granitic red soil areas. Appl. Soil Ecol. 2024, 204, 105734. [Google Scholar] [CrossRef]
- Buss, W.; Ferguson, S.; Carrillo, Y.; Borevitz, J. Linking stable soil carbon and microbes using rapid fractionation and metagenomics assays–First results screening fungal inoculants under wheat crops. Agric. Ecosyst. Environ. 2025, 393, 109798. [Google Scholar] [CrossRef]



| Function of Soil Aggregates | Mechanism | Effect on Soil Health and Ecosystem | References |
|---|---|---|---|
| Water Infiltration and Retention | Aggregate improves soil porosity by maintaining macro and micropores. Improves water flow and retention. | Improves drought resistance, reduces runoff and leaching, increases the plant available water | [19,53] |
| Carbon Sequestration | The OM is physically protected by macro-aggregates while organo-mineral association protects the SOC | Reduction in greenhouse gas emission, protection of SOC for long-term | [54,55,56] |
| Nutrient Cycling, | Decomposition, mineralization and nutrient availability are regulated by microbial habitats within aggregates. | Enhances nutrient use efficiency, maintenance of crop productivity and economises fertilizer application. | [57,58,59] |
| Soil Erosion and Prevention | When soil aggregates are weak and unstable, the soil becomes more susceptible to erosion, particularly runoff and interrail erosion, as the loose particles are easily transported away by water. Aggregate stability reduces dispersion, detachment and slaking of particles | Improve land restoration by maintaining topsoil fertility and reducing the erosion risk | [32,60] |
| Soil Aeration and Gas Exchange | Soil aggregate stability improves the soil porosity and maintains O2 and CO2 flux | Support the soil, root, and microbial respiration. | [30,61,62] |
| Soil Habitats | Soil aggregate provides the niches for the microbial community for their protection | Increase soil biodiversity and improve the nutrient cycling, and carbon storage | [63,64,65] |
| Soil Resilience under Stress | Aggregate structure stability, balanced the salinity and temperature and reduced soil compaction | Improves adaptation to climate variability, sustains long-term soil health. | [18,66,67] |
| Tillage | Effect on Soil | Effect on Soil Aggregation |
|---|---|---|
| Physical Effects | Soil breakdown, loosening of soil surface and changes in soil surface contours. | Mechanical rupture of macro-aggregate bonding points, loss of pore continuity, exposure of micro-aggregate interiors that accelerates breakdown; repeated disturbance limits the reformation of stable aggregates |
| Hydrological Effects | Improved water infiltration under optimal moisture levels Increased soil compaction under suboptimal moisture levels | Aggregates formed under stable moisture regimes are destabilized when tillage induces rapid wetting and drying cycles, which increases slaking and dispersion; compaction under moist conditions reduces the formation of new bio-porous aggregates |
| Biological Effects | Redistribution of mineral and organic matter and soil fauna increased microbial activity, decomposition of protected OM | Loss of slow-cycling binding agents such as fungal glomalin and earthworm-derived casts; faster C mineralization decreases organic cementing material needed for long-term aggregate persistence |
| Organic matter redistribution | Relocation of particulate and mineral-associated organic matter from deeper to surface layers | Exposure of occluded organic matter within macro-aggregates enhances decomposition, reducing internal binding strength, leads to a gradual shift from macro-aggregate-dominated structure toward micro-aggregate-dominated structure |
| Aggregate-size Effects | Tillage may also reduce the proportion of water-stable macro-aggregates and disrupt large aggregates physically. | Transition from stable macro-aggregates to micro-aggregates and silt-clay particles that are more prone to dispersion; long-term tillage narrows the aggregate size spectrum and reduces heterogeneity |
| Erosion effects | Tillage may increase soil erosion by increasing the proportion of fine, easily erodible particles. | Selective removal of weak aggregates and organic-rich fine fractions further weakens surface stability; erosion depletes binding agents and reduces the soil’s capacity to rebuild stable aggregate structures |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamza, A.; Karčauskienė, D.; Mockevičienė, I.; Repšienė, R.; Tahir, M.A.; Manzoor, M.Z.; Kousar, S.; Lodhi, S.S.; Rasool, N.; Ullah, I. Soil Aggregate Dynamics and Stability: Natural and Anthropogenic Drivers. Agriculture 2025, 15, 2500. https://doi.org/10.3390/agriculture15232500
Hamza A, Karčauskienė D, Mockevičienė I, Repšienė R, Tahir MA, Manzoor MZ, Kousar S, Lodhi SS, Rasool N, Ullah I. Soil Aggregate Dynamics and Stability: Natural and Anthropogenic Drivers. Agriculture. 2025; 15(23):2500. https://doi.org/10.3390/agriculture15232500
Chicago/Turabian StyleHamza, Ameer, Danutė Karčauskienė, Ieva Mockevičienė, Regina Repšienė, Mukkram Ali Tahir, Muhammad Zeeshan Manzoor, Shehnaz Kousar, Sumaira Salahuddin Lodhi, Nazima Rasool, and Ikram Ullah. 2025. "Soil Aggregate Dynamics and Stability: Natural and Anthropogenic Drivers" Agriculture 15, no. 23: 2500. https://doi.org/10.3390/agriculture15232500
APA StyleHamza, A., Karčauskienė, D., Mockevičienė, I., Repšienė, R., Tahir, M. A., Manzoor, M. Z., Kousar, S., Lodhi, S. S., Rasool, N., & Ullah, I. (2025). Soil Aggregate Dynamics and Stability: Natural and Anthropogenic Drivers. Agriculture, 15(23), 2500. https://doi.org/10.3390/agriculture15232500

