Advances and Future Trends in Electrified Agricultural Machinery for Sustainable Agriculture
Abstract
1. Introduction
1.1. Research Background and Objectives
1.2. The Composition of This Paper
1.3. Literature Search Strategy and Selection Criteria
2. Electrical Systems of EAM
2.1. Power Supply System
2.1.1. Increase the Energy Density of the Battery
2.1.2. Improve the Charging Efficiency of the Battery
2.2. Electric Drive System
2.2.1. Motor Technologies
2.2.2. Inverter and Power Electronics
2.3. Electric Control System
2.3.1. Distributed and Dynamic Control
2.3.2. Fault Prediction and Intelligent Control
3. Powertrain Systems of EAM
3.1. Battery Electric Powertrain System
3.2. Hybrid Electric Powertrain Systems
3.2.1. Series Hybrid Electric Powertrain System
3.2.2. Parallel Hybrid Electric Powertrain System
3.2.3. Series-Parallel Hybrid Electric Powertrain Systems
4. Energy Management Strategy of EAM
4.1. Rule-Based Control Strategy
4.1.1. Deterministic Rule-Based EMSs
4.1.2. Fuzzy Rule-Based EMSs
4.2. Optimization-Based Control Strategy
4.2.1. Global-Based Optimization EMSs
4.2.2. Online-Based Optimization EMSs
4.3. Learning-Based Control Strategy
4.3.1. Unsupervised Learning EMSs
4.3.2. Supervised Learning EMSs
4.3.3. Reinforcement Learning EMSs
5. EAM for Different Agricultural Operation Stages
5.1. EAM for Land Preparation and Tillage Operation Stage
5.2. EAM for Seeding and Planting Operation Stage
5.3. EAM for Crop Management Operation Stage
5.4. EAM for Harvesting Operation Stage
6. Challenges and Future Trends
- Benefiting from rapid NEV advances, current EAM research often transfers NEV technologies without fully accounting for the harsh environmental adaptability, continuous high-load endurance, distinct power and torque profiles, and multi-system coordination between traction and implements of agricultural machinery. This limits practical applicability and heightens demands on protection, reliability, and maintainability of electrical systems. Future work should prioritize dedicated power supply, electric drive, and control architectures specifically designed for EAM. To cope with pronounced seasonality, batteries with high specific energy, high power density, and superior charge–discharge efficiency are needed to enable long-range traction, fast charging, and gradual deployment of purpose-built charging infrastructure. High-efficiency electric motors must match EAM’s low-speed, high-torque profiles while maximizing power density, vibration resistance, and durability under heavy loads. Likewise, control systems should coordinate motors, batteries, and the full powertrain in real time, integrating optimized layouts, state monitoring, fault prediction, and reliability verification. Such comprehensive optimization will ensure efficient, stable, and safe EAM operation under demanding agricultural conditions.
- The exclusive use of batteries in EAM has been constrained by high-power and long-duration agricultural tasks; consequently, hybrid electric powertrains are increasingly regarded as a critical transitional pathway. Series configurations have been predominantly adopted because their architecture and control are simpler and more reliable, whereas parallel and power-split systems remain uncommon in large-scale equipment owing to greater complexity and component requirements. Nevertheless, most existing hybrids have merely been retrofitted from conventional fuel-based platforms, thereby limiting the integration of distributed electric drives and the establishment of robust electrical protection schemes. It has therefore been proposed that future research should focus on universal hybrid platforms adaptable to multiple field operations. Particular attention is expected to be directed to the electrification of implements through mechanical–electrical composite interfaces and quick-swap mechanisms, together with the resolution of coordination bottlenecks between traction and working systems. Moreover, advanced power-allocation strategies and energy-management systems reflecting dynamic agricultural load profiles, as well as multi-power output coordination methods, are anticipated to enhance operational performance and energy efficiency.
- Despite notable progress, EMS development for EAM still encounters intertwined challenges. The nonlinear and coupled nature of hybrid and battery-electric powertrains demands simultaneous satisfaction of propulsion and implement-power needs under highly variable loads, making real-time control difficult. Short sampling periods, numerous state variables, and model uncertainties reduce the effectiveness of both global and online optimization. Rule-based strategies are simple but require extensive expert calibration and adapt poorly to diverse conditions, whereas optimization-based methods offer near-optimality yet are hindered by computational cost and model dependence on low-power processors. Learning-based approaches, especially DRL, provide adaptive decision-making but face robustness and data-scarcity issues. Future research should integrate rule-based heuristics, model-based optimization, and learning-based prediction, supported by high-precision sensing, predictive mapping, big-data analytics, and edge computing to enrich state information. Expanding EMS objectives beyond fuel economy to include dynamic response, battery health, lifecycle cost, and coordinated power allocation will enable scenario-aware, field-ready systems that enhance efficiency, longevity, and environmental performance across EAM applications.
- Across the agricultural production chain, EAM has advanced in electrification, hybridization and intelligent control, yet still faces cross-cutting challenges. Limited integration of agronomic requirements restricts operational versatility, leaving most prototypes without large-scale, multi-crop validation to demonstrate economic and environmental benefits. Future research should move from isolated component optimization toward fully integrated, data-driven systems that embed agronomic considerations from the outset, thereby improving environmental adaptability, expanding task coverage, lowering farmers’ investment costs and accelerating large-scale adoption. In land preparation, intelligent EMSs coupled with real-time soil sensing, cooperative multi-machine operation and digital agriculture platforms can enable autonomous, energy-efficient traction under fluctuating loads. In seeding and planting, lightweight modular equipment and AI-driven decision algorithms enhance adaptability and technology transfer. In crop management, multi-sensor fusion and adaptive control optimize spraying and weeding. In harvesting, deeper hybrid-electric integration, high-energy-density storage and resilient control systems underpin fully autonomous, precise and sustainable operations.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balai, P.S.; Sheikh, A.; Rabha, G.; Das, S.; Kuli, B.K.; Raj, M. Revolutionizing Agricultural Machinery: The Role of AI, IoT, and Renewable Energy in Enhancing Efficiency and Sustainability. Int. J. Sci. Res. Sci. Technol. 2025, 12, 813–830. [Google Scholar] [CrossRef]
- Gorjian, S.; Ebadi, H.; Trommsdorff, M.; Sharon, H.; Demant, M.; Schindele, S. The Advent of Modern Solar-Powered Electric Agricultural Machinery: A Solution for Sustainable Farm Operations. J. Clean. Prod. 2021, 292, 126030. [Google Scholar] [CrossRef]
- Platis, D.P.; Anagnostopoulos, C.D.; Tsaboula, A.D.; Menexes, G.C.; Kalburtji, K.L.; Mamolos, A.P. Energy Analysis, and Carbon and Water Footprint for Environmentally Friendly Farming Practices in Agroecosystems and Agroforestry. Sustainability 2019, 11, 1664. [Google Scholar] [CrossRef]
- Gorjian, S.; Singh, R.; Shukla, A.; Mazhar, A.R. On-farm applications of solar PV systems. In On-Farm Applications of Solar PV Systems; Academic Press: Cambridge, MA, USA, 2020; pp. 147–190. [Google Scholar]
- Yu, Q.; He, X.; Liu, L.; Tan, Y.; Jiang, Z.; Pan, X.; Zhang, M.; Zhang, Z.; Xie, B.; Wen, C.; et al. A Review on the Powertrains and Energy Management Strategies of Electric Tractors. Innov. Energy 2025, 2, 100064-1–100064-19. [Google Scholar] [CrossRef]
- Wu, H.; Wu, C.; Zhou, H.; Hu, X.; Fang, X. Research of Innovation Directions and Implementation Path for Developing New Quality Productivity of Agricultural Equipment. Agric. Eng. 2025, 15, 1–6. [Google Scholar]
- Shen, Y.; Shen, Y.; Zhang, Y.; Huo, C.; Shen, Z.; Su, W.; Liu, H. Research Progress on Path Planning and Tracking Control Methods for Orchard Mobile Robots in Complex Scenarios. Agriculture 2025, 15, 1917. [Google Scholar] [CrossRef]
- Ling, L.; Xiao, Y.; Huang, X.; Wu, G.; Li, L.; Yan, B.; Geng, D. Design and Testing of Electric Drive System for Maize Precision Seeder. Agriculture 2024, 14, 1778. [Google Scholar] [CrossRef]
- Jiang, L.; Xu, B.; Husnain, N.; Wang, Q. Overview of Agricultural Machinery Automation Technology for Sustainable Agriculture. Agronomy 2025, 15, 1471. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, S.; Tang, S.; Gao, Q. Research Progress and Applications of Artificial Intelligence in Agricultural Equipment. Agriculture 2025, 15, 1703. [Google Scholar] [CrossRef]
- Aarif, K.O.M.; Alam, A.; Hotak, Y. Smart Sensor Technologies Shaping the Future of Precision Agriculture: Recent Advances and Future Outlooks. J. Sens. 2025, 2025, 2460098. [Google Scholar] [CrossRef]
- Wang, J.; Mo, P.; Yin, B.; Huang, Y.; Zhu, Y. Simulation of the Energy Management Strategy for Six-Row Hybrid Cotton Pickers. Trans. Chin. Soc. Agric. Eng. 2024, 40, 126–134. [Google Scholar]
- Wu, H.; Wang, X.; Chen, X.; Zhang, Y.; Zhang, Y. Review on Key Technologies for Autonomous Navigation in Field Agricultural Machinery. Agriculture 2025, 15, 1297. [Google Scholar] [CrossRef]
- Zhu, Z.; Chai, X.; Xu, L.; Quan, L.; Yuan, C.; Tian, S. Design and Performance of a Distributed Electric Drive System for a Series Hybrid Electric Combine Harvester. Biosyst. Eng. 2023, 236, 160–174. [Google Scholar] [CrossRef]
- Yang, Y.; Wen, Y.; Sun, X.; Wang, R.; Dong, Z. A Review of Green Agriculture and Energy Management Strategies for Hybrid Tractors. Energies 2025, 18, 3224. [Google Scholar] [CrossRef]
- Lagnelöv, O.; Dhillon, S.; Larsson, G.; Nilsson, D.; Larsolle, A.; Hansson, P.A. Cost Analysis of Autonomous Battery Electric Field Tractors in Agriculture. Biosyst. Eng. 2021, 204, 358–376. [Google Scholar] [CrossRef]
- Mathusoothanaa, T.S.; Zindani, D.; Das, G.; Singh, G. Ranking of Structural Composite Batteries for Sustainable Agricultural Equipment. Mater. Today Proc. 2022, 71, 270–275. [Google Scholar] [CrossRef]
- Nasajpour-Esfahani, N.; Garmestani, H.; Bagheritabar, M.; Jasim, D.J.; Toghraie, D.; Dadkhah, S.; Firoozeh, H. Comprehensive Review of Lithium-Ion Battery Materials and Development Challenges. Renew. Sustain. Energy Rev. 2024, 203, 114783. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, J.; Zhao, J.; Shi, K.; Dong, P.; Wang, S.; Liu, Y.; Guo, W.; Liu, X. Comparative Study on Fuel Saving Potential of Series-Parallel Hybrid Transmission and Series Hybrid Transmission. Energy Convers. Manag. 2022, 252, 114970. [Google Scholar] [CrossRef]
- Lajunen, A.; Kivekäs, K.; Freyermuth, V.; Vijayagopal, R.; Kim, N. Simulation-Based Assessment of Energy Consumption of Alternative Powertrains in Agricultural Tractors. World Electr. Veh. J. 2024, 15, 86. [Google Scholar] [CrossRef]
- Liu, J.; Xia, C.; Jiang, D.; Sun, Y. Development and Testing of the Power Transmission System of a Crawler Electric Tractor for Greenhouses. Appl. Eng. Agric. 2020, 36, 797–805. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, B.; Pan, S.; Ye, Y.; Wang, E.; Mao, H. Task Allocation of Multi-Machine Collaborative Operation for Agricultural Machinery Based on the Improved Fireworks Algorithm. Agronomy 2024, 14, 710. [Google Scholar] [CrossRef]
- Zhu, Z.; Zeng, L.; Chen, L.; Zou, R.; Cai, Y. Fuzzy Adaptive Energy Management Strategy for a Hybrid Agricultural Tractor Equipped with HMCVT. Agriculture 2022, 12, 1986. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, Y.; Wang, D.; Cai, Y.; Lai, L. Energy Saving Performance of Agricultural Tractor Equipped with Mechanic-Electronic-Hydraulic Powertrain System. Agriculture 2022, 12, 436. [Google Scholar] [CrossRef]
- Wang, B.; Du, X.; Wang, Y.; Mao, H. Multi-Machine Collaboration Realization Conditions and Precise and Efficient Production Mode of Intelligent Agricultural Machinery. Int. J. Agric. Biol. Eng. 2024, 17, 27–36. [Google Scholar] [CrossRef]
- Yin, B.; Yun, L.; Xie, X.; Wang, J.; Huang, Y. Optimized Fuzzy Control Energy Management Strategy for Hybrid Tractors Considering Working Conditions Adaptation. J. Mech. Sci. Technol. 2025, 39, 1–13. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, J.; Yan, X.; Zhao, S.; Wu, Y.; Liu, M. Review of Research for Agricultural Equipment Electrification Technology. Trans. Chin. Soc. Agric. Mach. 2023, 54, 1–12. [Google Scholar]
- Luo, Y.; Wei, L.; Xu, L.; Zhang, Q.; Liu, J.; Cai, Q.; Zhang, W. Stereo-Vision-Based Multi-Crop Harvesting Edge Detection for Precise Automatic Steering of Combine Harvester. Biosyst. Eng. 2022, 215, 115–128. [Google Scholar] [CrossRef]
- Hu, J.; Pan, J.; Dai, B.; Chai, X.; Sun, Y.; Xu, L. Development of an Attitude Adjustment Crawler Chassis for Combine Harvester and Experiment of Adaptive Leveling System. Agronomy 2022, 12, 717. [Google Scholar] [CrossRef]
- Wei, W.; Xiao, M.; Duan, W.; Wang, H.; Zhu, Y.; Zhai, C.; Geng, G. Research Progress on Autonomous Operation Technology for Agricultural Equipment in Large Fields. Agriculture 2024, 14, 1473. [Google Scholar] [CrossRef]
- Li, H.; Chen, L.; Zhang, Z. A Study on the Utilization Rate and Influencing Factors of Small Agricultural Machinery: Evidence from 10 Hilly and Mountainous Provinces in China. Agriculture 2022, 13, 51. [Google Scholar] [CrossRef]
- Chai, X.; Hu, J.; Ma, T.; Liu, P.; Shi, M.; Zhu, L.; Zhang, M.; Xu, L. Construction and Characteristic Analysis of Dynamic Stress Coupling Simulation Models for the Attitude-Adjustable Chassis of a Combine Harvester. Agronomy 2024, 14, 1874. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, H.; Jing, T.; Liu, S.; Shen, C. Centroid Swinging Property of a Machine Body Undergoing Longitudinal Excitation in a Straw Compression Baler. Eng. Agrícola 2024, 44, e20230109. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Ji, K.; Zhu, R. A Fault Diagnosis Method for a Differential Inverse Gearbox of a Crawler Combine Harvester Based on Order Analysis. Agriculture 2022, 12, 1300. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, M.; Liu, M.; Wang, D.; Yan, X.; Xu, L.; Wu, Y. Design Method of Dual-Motor Electric Tractor Drive System Based on Mass Constraint Algorithm Under Uncertainty Using Mass. Energy 2025, 322, 135140. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, J.; Wang, J.; Cai, L.; Jin, Y.; Zhao, S.; Xie, B. Realtime Picking Point Decision Algorithm of Trellis Grape for High-Speed Robotic Cut-and-Catch Harvesting. Agronomy 2023, 13, 1618. [Google Scholar] [CrossRef]
- Yuan, L.; Tang, Z.; Liu, S.; Wang, T.; Ding, Z. Design for Copying Grouser and Bionic Convex Hull Patterns on Track Surfaces of Crawler Combine Harvesters. Agriculture 2024, 14, 1079. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, Y.; Yang, Y.; Feng, K.; Han, X.; Li, P.; Zhu, Y.; Song, Q. Optimization of Operating Parameters for Straw Returning Machine Based on Vibration Characteristic Analysis. Agronomy 2024, 14, 2388. [Google Scholar] [CrossRef]
- Wang, X.; Yao, S.; Li, P.; Chen, Y.; Hao, Q.; Huang, S.; Zhao, Y. Optimal Sizing of Fuel Cell Hybrid Electric Heavy-Duty Tractor with Minimum of Unit Mileage Cost. Energy Convers. Manag. 2025, 330, 119674. [Google Scholar] [CrossRef]
- Wang, S.; Wu, X.; Zhao, X.; Zhang, S.; Wang, S.; Zhu, M.; Xie, B.; Song, Z.; Wang, D. A Novel Energy Management Strategy Based on Game Theory for Distributed Hybrid Electric Tractor to Reduce Equivalent Fuel Consumption and Improve Traction Efficiency. Comput. Electron. Agric. 2025, 239, 110922. [Google Scholar] [CrossRef]
- Scolaro, E.; Beligoj, M.; Estevez, M.P.; Alberti, L.; Renzi, M.; Mattetti, M. Electrification of Agricultural Machinery: A Review. IEEE Access 2021, 9, 164520–164541. [Google Scholar] [CrossRef]
- Mocera, F.; Somà, A.; Martelli, S.; Martini, V. Trends and Future Perspective of Electrification in Agricultural Tractor-Implement Applications. Energies 2023, 16, 6601. [Google Scholar] [CrossRef]
- Liu, H.; Cheng, S.; Hu, L.; Chang, C.; Cao, G. Research Progress and Development Trend of Electric Agricultural Equipment. Trans. Chin. Soc. Agric. Eng. 2024, 40, 39–51. [Google Scholar]
- Anuradha, S.; Manimegalai, R.; Devasena, M. Challenges in Recycling Lead Acid Battery and Lithium-Ion Battery: A Comprehensive Review. In Proceedings of the 2024 International Conference on Smart Systems for Electrical, Electronics, Communication and Computer Engineering (ICSSEECC), Coimbatore, India, 28–29 June 2024; IEEE: New York, NY, USA, 2024; pp. 101–106. [Google Scholar]
- Moreda, G.P.; Muñoz-García, M.A.; Barreiro, P. High Voltage Electrification of Tractor and Agricultural Machinery—A Review. Energy Convers. Manag. 2016, 115, 117–131. [Google Scholar] [CrossRef]
- Fuchs, C.; Poehls, A.; Skau, K.; Kasten, J. Economics of Battery Use in Agriculture: Economic Viability of Renewable Energy Complemented with Batteries in Agriculture. Energies 2021, 14, 2430. [Google Scholar] [CrossRef]
- Jiangyi, H.; Fan, W. Design and Testing of a Small Orchard Tractor Driven by a Power Battery. Eng. Agríc. 2023, 43, e20220195. [Google Scholar] [CrossRef]
- Hu, X.; Wang, Y.; Feng, X.; Wang, L.; Ouyang, M.; Zhang, Q. Thermal Stability of Ionic Liquids for Lithium-Ion Batteries: A Review. Renew. Sustain. Energy Rev. 2025, 207, 114949. [Google Scholar] [CrossRef]
- Carey, J. Solid-State Batteries Could Revolutionize EVs and More—If They Can Surmount Technical and Financial Hurdles. Proc. Natl. Acad. Sci. USA 2024, 121, e2425219121. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, J.; Lu, P.; Hu, G.; Xia, S.; Zhang, S.; Wang, Z.; Zhou, Z.; Yan, W.; Xia, W.; et al. Challenges and Strategies of Low-Pressure All-Solid-State Batteries. Adv. Mater. 2025, 37, 2413499. [Google Scholar] [CrossRef]
- Machín, A.; Cotto, M.C.; Díaz, F.; Duconge, J.; Morant, C.; Márquez, F. Environmental Aspects and Recycling of Solid-State Batteries: A Comprehensive Review. Batteries 2024, 10, 255. [Google Scholar] [CrossRef]
- Kebede, A.A.; Coosemans, T.; Messagie, M.; Jemal, T.; Behabtu, H.A.; Van Mierlo, J.; Berecibar, M. Techno-Economic Analysis of Lithium-Ion and Lead-Acid Batteries in Stationary Energy Storage Application. J. Energy Storage 2021, 40, 102748. [Google Scholar] [CrossRef]
- Zentani, A.; Almaktoof, A.; Kahn, M.T. A Comprehensive Review of Developments in Electric Vehicles Fast Charging Technology. Appl. Sci. 2024, 14, 4728. [Google Scholar] [CrossRef]
- Yao, Y.X.; Xu, L.; Yan, C.; Zhang, Q. Principles and Trends in Extreme Fast Charging Lithium-Ion Batteries. EES Batteries 2025, 1, 9–22. [Google Scholar] [CrossRef]
- Ji, G.; He, L.; Wu, T.; Cui, G. The Design of Fast Charging Strategy for Lithium-Ion Batteries and Intelligent Application: A Comprehensive Review. Appl. Energy 2025, 377, 124538. [Google Scholar] [CrossRef]
- Vani, B.V.; Kishan, D.; Ahmad, M.W.; Reddy, B.N.K. An Efficient Battery Swapping and Charging Mechanism for Electric Vehicles Using Bat Algorithm. Comput. Electr. Eng. 2024, 118, 109357. [Google Scholar] [CrossRef]
- Olt, J.; Ihnatiev, Y.; Lillerand, T.; Virro, I. Development of a Battery Swapping and Charging Unit in Servicing Station for Farming Robot: A Review. In International Symposium on Farm Machinery and Processes Management in Sustainable Agriculture; Springer Nature: Cham, Switzerland, 2024; pp. 333–345. [Google Scholar]
- Vyas, S.D.; Subash, V.K.; Mepani, M.; Venkatesh, S.; Sinha, A.; Guha, A.; Dey, S. Energy-and Safety-Aware Operation of Battery-Powered Autonomous Robots in Agriculture. IEEE Trans. AgriFood Electron. 2024, 2, 51–58. [Google Scholar] [CrossRef]
- Lappalainen, T.; Petrov, I.; Pyrhönen, J. Agricultural Tractor Electrical Propulsion Concept. Energy Convers. Manag. X 2025, 26, 100935. [Google Scholar] [CrossRef]
- Yang, S.; Zhai, C.; Gao, Y.; Dou, H.; Zhao, X.; He, Y.; Wang, X. Planting Uniformity Performance of Motor-Driven Maize Precision Seeding Systems. Int. J. Agric. Biol. Eng. 2022, 15, 101–108. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, X.; Liu, W.; Yao, M.; Zhao, J. Development of a Seeding Control Method Based on Seed Height in the Hopper of a Precision Wheat Drill. Appl. Eng. Agric. 2021, 37, 1131–1138. [Google Scholar] [CrossRef]
- Gao, Y.; Feng, K.; Yang, S.; Han, X.; Wei, X.; Zhu, Q.; Chen, L. Design and Experiment of an Unmanned Variable-Rate Fertilization Control System with Self-Calibration of Fertilizer Discharging Shaft Speed. Agronomy 2024, 14, 2336. [Google Scholar] [CrossRef]
- Yaacob, A.Z.; Jamaluddin, M.H.; Shukor, A.Z.; Mansor, M.R. Powertrain Conversion of a Small Agricultural Tractor from Diesel Engine to Permanent Magnet Synchronous Motor. Int. J. Robot. Control Syst. 2025, 5, 1374–1421. [Google Scholar] [CrossRef]
- Morya, A.K.; Gardner, M.C.; Anvari, B.; Liu, L.; Yepes, A.G.; Doval-Gandoy, J.; Toliyat, H.A. Wide Bandgap Devices in AC Electric Drives: Opportunities and Challenges. IEEE Trans. Transp. Electrif. 2019, 5, 3–20. [Google Scholar] [CrossRef]
- Kumar, A.; Moradpour, M.; Losito, M.; Franke, W.T.; Ramasamy, S.; Baccoli, R.; Gatto, G. Wide Band Gap Devices and Their Application in Power Electronics. Energies 2022, 15, 9172. [Google Scholar] [CrossRef]
- Häberlen, O.; Deboy, G.; Friedrichs, P. Wide-Bandgap Power Semiconductors: Key Components to Save Our Planet. IEEE Electron Device Mag. 2025, 2, 22–29. [Google Scholar] [CrossRef]
- Baek, S.M.; Jeon, H.H.; Kim, W.S.; Kim, Y.S.; Kim, Y.J. Design and Analysis of a Power Transmission System for 55 kW Electric Tractor Using Agricultural Workload Data. Sci. Rep. 2025, 15, 28028. [Google Scholar] [CrossRef]
- Zhao, Z.; Huang, H.; Yin, J.; Yang, S.X. Dynamic Analysis and Reliability Design of Round Baler Feeding Device for Rice Straw Harvest. Biosyst. Eng. 2018, 174, 10–19. [Google Scholar] [CrossRef]
- Qian, Y.; Quan, L. Cooperative Control Strategy of Multi-Component Speed of Distributed Electric Drive Combine Harvester. Appl. Eng. Agric. 2025, 41, 205–215. [Google Scholar] [CrossRef]
- Baek, S.Y.; Baek, S.M.; Jeon, H.H.; Kim, W.S.; Kim, Y.S.; Sim, T.Y.; Choi, K.H.; Hong, S.J.; Kim, H.; Kim, Y.J. Traction Performance Evaluation of the Electric All-Wheel-Drive Tractor. Sensors 2022, 22, 785. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, C.; Li, R. Research on Distributed Dual-Wheel Electric-Drive Fuzzy PI Control for Agricultural Tractors. Agriculture 2024, 14, 1442. [Google Scholar] [CrossRef]
- Deng, X.; Sun, H.; Lu, Z.; Cheng, Z.; An, Y.; Chen, H. Research on Dynamic Analysis and Experimental Study of the Distributed Drive Electric Tractor. Agriculture 2022, 13, 40. [Google Scholar] [CrossRef]
- Liu, H.; Yan, S.; Shen, Y.; Li, C.; Zhang, Y.; Hussain, F. Model Predictive Control System Based on Direct Yaw Moment Control for 4WID Self-Steering Agriculture Vehicle. Int. J. Agric. Biol. Eng. 2021, 14, 175–181. [Google Scholar] [CrossRef]
- Yu, Y.; Hao, S.; Guo, S.; Tang, Z.; Chen, S. Motor Torque Distribution Strategy for Different Tillage Modes of Agricultural Electric Tractors. Agriculture 2022, 12, 1373. [Google Scholar] [CrossRef]
- Li, Y.; Qi, B.; Bao, E.; Tang, Z.; Lian, Y.; Sun, M. Design and Analysis of a Sowing Depth Detection and Control Device for a Wheat Row Planter Based on Fuzzy PID and Multi-Sensor Fusion. Agronomy 2025, 15, 1490. [Google Scholar] [CrossRef]
- Liu, M.; Xu, L.; Zhou, Z. Design of a Load Torque-Based Control Strategy for Improving Electric Tractor Motor Energy Conversion Efficiency. Math. Probl. Eng. 2016, 2016, 2548967. [Google Scholar] [CrossRef]
- Deng, X.; Wang, Z.; Lu, Z.; Zhang, K.; Sun, X.; Huang, X. Real-Time Energy-Efficient Control Strategy for Distributed Drive Electric Tractor Based on Operational Speed Prediction. Agriculture 2025, 15, 1398. [Google Scholar] [CrossRef]
- Feng, G.; Zhang, J.; Yan, X.; Dong, C.; Liu, M.; Xu, L. Research on Energy-Saving Control of Agricultural Hybrid Tractors Integrating Working Condition Prediction. PLoS ONE 2024, 19, e0299658. [Google Scholar] [CrossRef]
- Zhang, S.; Zang, C.; Yang, Z.; Tang, L.; Wang, K.; Wang, A.; Chen, W.; Song, Q.; Wei, X. Research on Fault Prediction and Speed Control System for Unmanned Combine Harvesters Based on IPSO-SVM and Fuzzy Logic. Front. Plant Sci. 2025, 16, 1577175. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, X.; Huang, X.; Shi, Y.; Zhang, X.; Wang, Y.; Wang, D.; Wang, J.; Zhang, J. Adaptive Control System of Header for Cabbage Combine Harvester Based on IPSO-Fuzzy PID Controller. Comput. Electron. Agric. 2025, 232, 110044. [Google Scholar] [CrossRef]
- Liang, S.; Liu, P.; Zhang, Z.; Wu, Y. Research on Fault Diagnosis of Agricultural IoT Sensors Based on Improved Dung Beetle Optimization–Support Vector Machine. Sustainability 2024, 16, 10001. [Google Scholar] [CrossRef]
- Zou, X.; Liu, W.; Huo, Z.; Wang, S.; Chen, Z.; Xin, C.; Bai, Y.; Liang, Z.; Gong, Y.; Qian, Y.; et al. Current Status and Prospects of Research on Sensor Fault Diagnosis of Agricultural Internet of Things. Sensors 2023, 23, 2528. [Google Scholar] [CrossRef]
- Yukun, T.; Wang, X.; Zhang, L.; Bao, X.; Xue, H.; Yue, H.; Feng, H.; Yang, D. Fault Diagnosis of In-Wheel Motors Used in Electric Vehicles: State of the Art, Challenges, and Future Directions. Machines 2025, 13, 711. [Google Scholar] [CrossRef]
- Mansoor, S.; Iqbal, S.; Popescu, S.M.; Kim, S.L.; Chung, Y.S.; Baek, J.H. Integration of Smart Sensors and IoT in Precision Agriculture: Trends, Challenges, and Future Prospects. Front. Plant Sci. 2025, 16, 1587869. [Google Scholar] [CrossRef]
- Ramos, M.D.F.; Brandao, D.A.D.L.; Galo, D.P.; Cardoso Filho, B.D.J.; Pires, I.A.; Maia, T.A. A Study on the Performance of the Electrification of Hydraulic Implements in a Compact Non-Road Mobile Machine: A Case Applied to a Backhoe Loader. World Electr. Veh. J. 2024, 15, 127. [Google Scholar] [CrossRef]
- Herranz-Matey, I.; Ruiz-Garcia, L. Agricultural Tractor Efficiency Development as a Sustainable Model and Evaluating the Implementation of Its Automation Operations: A Case Study. Int. J. Agric. Sustain. 2025, 23, 2546703. [Google Scholar] [CrossRef]
- Xu, W.; Zhu, Y.; Zhang, Y.; Xiao, M.; Xu, L.; Wei, W.; Wang, H. Multi-Objective Optimization Design of the Transmission System Parameters of a Dual-Motor-Driven Electric Tractor Based on Improved Deep Deterministic Policy Gradient Algorithm. Int. J. Agric. Biol. Eng. 2025, 18, 100–114. [Google Scholar]
- Liu, H.; Du, Z.; Shen, Y.; Du, W.; Zhang, X. Development and Evaluation of an Intelligent Multivariable Spraying Robot for Orchards and Nurseries. Comput. Electron. Agric. 2024, 222, 109056. [Google Scholar] [CrossRef]
- Sun, Y.; Cao, Z.; Yan, W.; Lv, X.; Zhang, Z.; Zhao, D.A. TSO-HA*-Net: A Hybrid Global Path Planner for the Inspection Vehicles Used in Caged Poultry Houses. Agriculture 2025, 15, 532. [Google Scholar] [CrossRef]
- Estevez, M.A.P.; Frigola, J.M.; Llobet, J.A.; Alberti, L.; Renzi, M. Optimal Design of a Series Hybrid Powertrain for an Agricultural Tractor. Energy Convers. Manag. X 2024, 24, 100789. [Google Scholar] [CrossRef]
- Abououf, H.; Hanif, A.; Ahmed, Q.; Chandramouli, N.; Dickson, J.A. Evaluating the fuel consumption for series hybrid agricultural tractor under different operating scenarios. In Proceedings of the 2025 IEEE/AIAA Transportation Electrification Conference and Electric Aircraft Technologies Symposium (ITEC+EATS), Anaheim, CA, USA, 18–20 June 2025; IEEE: New York, NY, USA, 2025; pp. 1–6. [Google Scholar]
- Han, L.; Mao, H.; Kumi, F.; Hu, J. Development of a multi-task robotic transplanting work cell for greenhouse seedlings. Appl. Eng. Agric. 2018, 34, 335–342. [Google Scholar] [CrossRef]
- Pan, S.; Zabed, H.M.; Wei, Y.; Qi, X. Technoeconomic and environmental perspectives of biofuel production from sugarcane bagasse: Current status, challenges and future outlook. Ind. Crops Prod. 2022, 188, 115684. [Google Scholar] [CrossRef]
- Lei, S.; Li, Y.; Liu, M.; Li, W.; Zhao, T.; Hou, S.; Xu, L. Hierarchical energy management and energy saving potential analysis for fuel cell hybrid electric tractors. Energies 2025, 18, 247. [Google Scholar] [CrossRef]
- Li, X.; Xu, L.; Liu, M.; Yan, X.; Zhang, M. Research on torque cooperative control of distributed drive system for fuel cell electric tractor. Comput. Electron. Agric. 2024, 219, 108811. [Google Scholar] [CrossRef]
- Espitia, J.J.; Velázquez, F.A.; Rodriguez, J.; Gomez, L.; Baeza, E.; Aguilar-Rodríguez, C.E.; Flores-Velazquez, J.; Villagran, E. Solar energy applications in protected agriculture: A technical and bibliometric review of greenhouse systems and solar technologies. Agronomy 2024, 14, 2791. [Google Scholar] [CrossRef]
- Elwakeel, A.E.; El-Mesery, H.S.; Elbeltagi, A.; Salem, A.; Sabry, A.; Saleh, D.I.; Moustapha, E.; Abu-Taha, H.L.; Elkot, W.F. Development, drying characteristics, and environmental analysis of a PV operated automatic solar dryer for drying date. Front. Sustain. Food Syst. 2025, 9, 1531601. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, X.; Tan, M.; Liu, H.; Ge, J. Nozzle structure optimization in a photovoltaic irrigation system. Irrig. Drain. 2025, 74, 900–914. [Google Scholar] [CrossRef]
- Wu, X.; Di, M.; Tan, M.; Liu, H. Optimal design of photovoltaic irrigation system with different nozzle numbers. Appl. Eng. Agric. 2021, 37, 1089–1095. [Google Scholar] [CrossRef]
- Rafsany, M.A.; Rizve, A.Z.; Paul, A.K. The multipurpose solar-electric tractor: A sustainable solution for farmers. In Proceedings of the 2024 IEEE International Conference on Power, Electrical, Electronics and Industrial Applications (PEEIACON), Rajshahi, Bangladesh, 12–13 September 2024; IEEE: New York, NY, USA, 2024; pp. 82–85. [Google Scholar]
- Yang, Q.; Cai, J.; Zhou, X.; Ahamd, I.; Hu, J.P.; Gu, J. The optimization of topological mechanism and dimension design of parallel transplanting machine in greenhouse. AMA Agric. Mech. Asia Afr. Lat. Am. 2021, 52, 61–66. [Google Scholar]
- Liu, X.; Wu, Y.; Zhang, J.; Zhao, Y.; Hu, Y.; Yan, X. Research on energy optimization control strategy for parallel hybrid tractor based on AIPSO. PLoS ONE 2025, 20, e0315369. [Google Scholar] [CrossRef]
- Li, J.; Wu, Z.; Li, M.; Shang, Z. Dynamic measurement method for steering wheel angle of autonomous agricultural vehicles. Agriculture 2024, 14, 1602. [Google Scholar] [CrossRef]
- Ai, Q.; Wei, H.; Zhai, Y.; Zhang, Y. An integrated control strategy of parallel-series hybrid electric powertrain systems for agricultural tractors. Renewable Energy 2025, 235, 123647. [Google Scholar] [CrossRef]
- Moreira, W.K.; Marini, V.K.; Giacomini, J.C.; Rech, C. Analysis and design of a hybrid propulsion system for an agricultural tractor-implement set. In Proceedings of the 2023 IEEE Energy Conversion Congress and Exposition (ECCE), Nashville, TN, USA, 29 October–2 November 2023; pp. 1921–1927. [Google Scholar]
- Rossi, C.; Pontara, D.; Falcomer, C.; Bertoldi, M.; Mandrioli, R. A hybrid–electric driveline for agricultural tractors based on an e-CVT power-split transmission. Energies 2021, 14, 6912. [Google Scholar] [CrossRef]
- Xu, L.; Chai, X.; Gao, Z.; Li, Y.; Wang, Y. Experimental study on driver seat vibration characteristics of crawler-type combine harvester. Int. J. Agric. Biol. Eng. 2019, 12, 90–97. [Google Scholar] [CrossRef]
- Liu, S.; Tang, Z.; Shen, C.; Wang, T.; Liang, Y. Effect of rice stubble on soil compaction properties of a crawler undergoing combine harvester harvesting. Eng. Agric. 2023, 43, e20230057. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, R.; Ding, R.; Sun, Z.; Jiang, Y.; Liu, W. Research review of agricultural machinery power chassis in hilly and mountainous areas. Agriculture 2025, 15, 1158. [Google Scholar] [CrossRef]
- Zhang, M.; Li, X.; Han, D.; Shang, L.; Xu, L. Energy management strategy for fuel cell hybrid tractor considering demand power frequency characteristic compensation. Sci. Rep. 2024, 14, 27844. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wu, Z.; Chen, X.; Li, Z. Deep reinforcement learning-based energy management strategy for hybrid electric agriculture tractor. In Proceedings of the 2023 5th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP), Chengdu, China, 19–21 May 2023; pp. 1095–1098. [Google Scholar]
- Liu, Z.; Mao, H.; Wang, Y.; Jiang, T.; Zuo, Z.; Chai, J.; Liu, C.; Shen, L.; Wei, S.; Ma, G. Design and experiment of a universal harvesting platform for cabbage and Chinese cabbage. Agriculture 2025, 15, 935. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, Y.; Fu, S.; Feng, K.; Han, X.; Hu, Y.; Zhu, Q.; Wei, X. Analysis of vibration characteristics of tractor–rotary cultivator combination based on time domain and frequency domain. Agriculture 2024, 14, 1139. [Google Scholar] [CrossRef]
- Guan, X.; Shi, L.; Ge, H.; Ding, Y.; Nie, S. Development, design, and improvement of an intelligent harvesting system for aquatic vegetable Brasenia schreberi. Agronomy 2025, 15, 1451. [Google Scholar] [CrossRef]
- Yang, H.; Sun, Y.; Xia, C.; Zhang, H. Research on energy management strategy of fuel cell electric tractor based on multi-algorithm fusion and optimization. Energies 2022, 15, 6389. [Google Scholar] [CrossRef]
- Liu, M.; Li, Y.; Xu, L.; Wang, Y.; Zhao, J. General modeling and energy management optimization for the fuel cell electric tractor with mechanical shunt type. Comput. Electron. Agric. 2023, 213, 108178. [Google Scholar] [CrossRef]
- Pan, M.; Cao, S.; Zhang, Z.; Ye, N.; Qin, H.; Li, L.; Guan, W. Recent progress on energy management strategies for hybrid electric vehicles. J. Energy Storage 2025, 116, 115936. [Google Scholar] [CrossRef]
- Abbasi, A.R.; Baleanu, D. Recent developments of energy management strategies in microgrids: An updated and comprehensive review and classification. Energy Convers. Manag. 2023, 297, 117723. [Google Scholar] [CrossRef]
- Urooj, A.; Nasir, A. Review of intelligent energy management techniques for hybrid electric vehicles. J. Energy Storage 2024, 92, 112132. [Google Scholar] [CrossRef]
- Vu, N.L.; Messier, P.; Nguyễn, B.H.; Vo-Duy, T.; Trovão, J.P.F.; Desrochers, A.; Rodrigues, A. Energy-optimization design and management strategy for hybrid electric non-road mobile machinery: A case study of snowblower. Energy 2023, 284, 129249. [Google Scholar] [CrossRef]
- Sun, Y.; Xia, C.; Han, J. Research on energy management of fuel-cell electric tractor based on quadratic utility function. J. Energy Eng. 2023, 149, 04022044. [Google Scholar] [CrossRef]
- Marzougui, T.; Saenz, E.S.; Bareille, M. A Rule-Based Energy Management Strategy for Hybrid Powered eVTOL. J. Phys. Conf. Ser. 2023, 2526, 012024. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, J.; Liu, M.; Zhou, Z.; Liu, C. Control algorithm and energy management strategy for extended range electric tractors. Int. J. Agric. Biol. Eng. 2017, 10, 35–44. [Google Scholar] [CrossRef]
- Ghobadpour, A.; Mousazadeh, H.; Kelouwani, S.; Zioui, N.; Kandidayeni, M.; Boulon, L. An intelligent energy management strategy for an off-road plug-in hybrid electric tractor based on farm operation recognition. IET Electr. Syst. Transp. 2021, 11, 333–347. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, J.; Xing, Y.; Li, S.; Yi, J.; Zhao, C. Energy management of sowing unit for extended-range electric tractor based on improved CD-CS fuzzy rules. Agriculture 2023, 13, 1303. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, G.; Wang, J.; Xue, Z.; Liu, M.; Liu, Y. Study and verification of a fuzzy-following energy management strategy for hybrid tractors. World Electr. Veh. J. 2024, 16, 18. [Google Scholar] [CrossRef]
- Quattromini, N.F.; Ferrante, S.; Nuzzo, S.; Barater, D.; Lenzini, N.; Fiorati, S. Fuzzy Logic-Based Energy Management Strategy for a Hybrid Specialized Tractor. In Proceedings of the 2025 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Valletta, Malta, 9–10 April 2025; pp. 1–6. [Google Scholar]
- İnci, M.; Büyük, M.; Demir, M.H.; İlbey, G. A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects. Renew. Sustain. Energy Rev. 2021, 137, 110648. [Google Scholar] [CrossRef]
- Munsi, M.S.; Chaoui, H. Energy management systems for electric vehicles: A comprehensive review of technologies and trends. IEEE Access 2024, 12, 60385–60403. [Google Scholar] [CrossRef]
- Guo, J.; He, H.; Jia, C.; Guo, S. The energy management strategies for fuel cell electric vehicles: An overview and future directions. World Electr. Veh. J. 2025, 16, 542. [Google Scholar] [CrossRef]
- Rezaei, H.; Abdollahi, S.E.; Abdollahi, S.; Filizadeh, S. Energy management strategies of battery–ultracapacitor hybrid storage systems for electric vehicles: Review, challenges, and future trends. J. Energy Storage 2022, 53, 105045. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, L.; Deng, X.; Su, C.; Fang, S.; Lu, Z. Research on energy distribution strategy of tandem hybrid tractor based on the Pontryagin minimum principle. Agriculture 2024, 14, 440. [Google Scholar] [CrossRef]
- Lü, X.; He, S.; Xu, Y.; Zhai, X.; Qian, S.; Wu, T.; Wangpei, Y. Overview of improved dynamic programming algorithm for optimizing energy distribution of hybrid electric vehicles. Electr. Power Syst. Res. 2024, 232, 110372. [Google Scholar] [CrossRef]
- Altun, Y.E.; Kutlar, O.A. Energy management systems’ modeling and optimization in hybrid electric vehicles. Energies 2024, 17, 1696. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, G.; Liu, M.; Yan, X.; Xu, L.; Shang, C. Research on global optimal energy management strategy of agricultural hybrid tractor equipped with CVT. World Electr. Veh. J. 2023, 14, 127. [Google Scholar] [CrossRef]
- Zhang, K.; Deng, X.; Lu, Z.; Wang, T. Research on the energy management strategy of a hybrid tractor OS-ECVT based on a dynamic programming algorithm. Agriculture 2024, 14, 1658. [Google Scholar] [CrossRef]
- Yan, X.; Zhao, Y.; Liu, X.; Liu, M.; Wu, Y.; Zhang, J. Research on energy management strategy for series hybrid tractor under typical operating conditions based on dynamic programming. World Electr. Veh. J. 2024, 15, 156. [Google Scholar] [CrossRef]
- Allam, M.; Linjama, M. Optimisation of series electric hybrid wheel loader energy management strategies using dynamic programming. Int. J. Heavy Veh. Syst. 2025, 32, 1–29. [Google Scholar] [CrossRef]
- Li, Y.; Liu, M.; Wang, Y.; Xu, L.; Lei, S. Energy management optimization and validation of a hydrogen fuel cell-powered agricultural tractor based on hierarchical dynamic programming. IEEE Access 2024, 12, 21382–21401. [Google Scholar] [CrossRef]
- Guo, R.; Xue, X.; Sun, Z.; Hong, Z. Clustered energy management strategy of plug-in hybrid electric logistics vehicle based on Gaussian mixture model and stochastic dynamic programming. IEEE Trans. Transp. Electrif. 2022, 9, 3177–3191. [Google Scholar] [CrossRef]
- Li, T.; Xie, B.; Wang, D.; Zhang, S.; Wu, L. Real-time adaptive energy management strategy for dual-motor-driven electric tractors. Trans. Chin. Soc. Agric. Mach. 2020, 51, 530–543. [Google Scholar]
- Weng, S.; Yuan, C.; He, Y.; Shen, J.; Chen, L.; Xu, L.; Zhu, Z.; Yu, Q.; Sun, Z. Neural network energy management strategy for plug-in hybrid electric combine harvesters based on quasi-periodic samples. Eng. Appl. Artif. Intell. 2024, 136, 109051. [Google Scholar] [CrossRef]
- Wang, F.; Xie, W.; Zhu, X.; Cai, Y. Novel energy management strategy based on expert-guidance DDPG for hybrid electric combine harvester. Comput. Electron. Agric. 2025, 236, 110475. [Google Scholar] [CrossRef]
- Li, L.; Chen, J.; Nie, J.; Gao, Z. Reinforcement learning energy management control strategy of electric tractor based on condition identification. Int. J. Electr. Power Energy Syst. 2025, 170, 110846. [Google Scholar] [CrossRef]
- Song, K.; Huang, X.; Cai, Z.; Huang, P.; Li, F. Research on energy management strategy of fuel-cell vehicles based on nonlinear model predictive control. Int. J. Hydrogen Energy 2024, 50, 1604–1621. [Google Scholar] [CrossRef]
- Curiel-Olivares, G.; Escobar, G.; Johnson, S.; Schacht-Rodríguez, R. MPC-based EMS for a series hybrid electric tractor. IEEE Access 2024, 12, 135999–136010. [Google Scholar] [CrossRef]
- Radrizzani, S.; Panzani, G.; Trezza, L.; Pizzocaro, S.; Savaresi, S.M. An add-on model predictive control strategy for the energy management of hybrid electric tractors. IEEE Trans. Veh. Technol. 2023, 73, 1918–1930. [Google Scholar] [CrossRef]
- Xu, W.; Liu, M.; Xu, L.; Zhang, S. Energy management strategy of hydrogen fuel cell/battery/ultracapacitor hybrid tractor based on efficiency optimization. Appl. Sci. 2022, 13, 151. [Google Scholar] [CrossRef]
- Ozturk, M.; Sandalci, T.; Buyuk, C.; Guclu, M.; Karagoz, Y. The effect of converting a conventional tractor into a hybrid drive tractor using the ECMS method on fuel consumption and emissions. Int. J. Energy Res. 2024, 2024, 8832086. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, G.; Xu, L.; Yan, X.; Wang, W.; Liu, M. Energy-saving control of hybrid tractors based on instantaneous optimization. World Electr. Veh. J. 2023, 14, 27. [Google Scholar] [CrossRef]
- Radrizzani, S.; Panzani, G.; Savaresi, S.M. Simultaneous energy management and speed control in a hybrid tractor with experimental validation. IEEE Trans. Control Syst. Technol. 2024, 32, 1285–1297. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, M.; Liu, M.; Li, H.; Zhao, B.; Yan, X. Dual-source cooperative optimized energy management strategy for fuel cell tractor considering drive efficiency and power allocation. Agriculture 2024, 14, 1455. [Google Scholar] [CrossRef]
- Weng, S.; Yuan, C.; He, Y.; Shen, J.; Xu, L.; Zhu, Z.; Yu, Q.; Yang, X. Energy optimization control of extended-range hybrid combines harvesters based on quasi-cycle power demand estimation. J. Agric. Eng. 2025, 56, e1819. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, L.; Zhao, C.; Xu, H.; Yan, X. Research on energy management strategy for hybrid tractors based on DP-MPC. Energies 2024, 17, 3924. [Google Scholar] [CrossRef]
- Mousaei, A.; Naderi, Y.; Bayram, I.S. Advancing state of charge management in electric vehicles with machine learning: A technological review. IEEE Access 2024, 12, 43255–43283. [Google Scholar] [CrossRef]
- Recalde, A.; Cajo, R.; Velasquez, W.; Alvarez-Alvarado, M.S. Machine learning and optimization in energy management systems for plug-in hybrid electric vehicles: A comprehensive review. Energies 2024, 17, 3059. [Google Scholar] [CrossRef]
- Jui, J.J.; Ahmad, M.A.; Molla, M.M.I.; Rashid, M.I.M. Optimal energy management strategies for hybrid electric vehicles: A recent survey of machine learning approaches. J. Eng. Res. 2024, 12, 454–467. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, B.; Zhang, T.; Zhang, H.; Zhang, Z. Energy management strategy for electrically powered hydraulic vehicle based on driving mode recognition. Energy Sources Part A 2025, 47, 2480–2503. [Google Scholar] [CrossRef]
- Shi, J.; Xu, B.; Shen, Y.; Wu, J. Energy management strategy for battery/supercapacitor hybrid electric city bus based on driving pattern recognition. Energy 2022, 243, 122752. [Google Scholar] [CrossRef]
- Nguyen, C.T.P.; Nguyễn, B.H.; Trovão, J.P.F.; Ta, M.C. Optimal energy management strategy based on driving pattern recognition for a dual-motor dual-source electric vehicle. IEEE Trans. Veh. Technol. 2023, 73, 4554–4566. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Q.; Wen, C.; Liu, M.; Yang, X.; Xu, H.; Li, J. Predictive equivalent consumption minimization strategy based on driving pattern personalized reconstruction. Appl. Energy 2024, 367, 123424. [Google Scholar] [CrossRef]
- Yu, Q.; He, X.; Chen, Y.; Jiang, Z.; Tan, Y.; Liu, L.; Xie, B.; Wen, C. Multi-objective optimization for energy-efficient management of electric tractors via hybrid energy storage systems and scenario recognition. Appl. Energy 2025, 391, 125898. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, B.; Zhang, W.; Wei, L.; Zhou, L. Evaluation of agricultural machinery operational benefits based on semi-supervised learning. Agriculture 2022, 12, 2075. [Google Scholar] [CrossRef]
- Li, Y.; He, H.; Khajepour, A.; Chen, Y.; Huo, W.; Wang, H. Deep reinforcement learning for intelligent energy management systems of hybrid-electric powertrains: Recent advances, open issues, and prospects. IEEE Trans. Transp. Electrif. 2024, 10, 9877–9903. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, Z.; Han, Z.; Sun, W.; He, L. A decision-making system for cotton irrigation based on reinforcement learning strategy. Agronomy 2023, 14, 11. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, M.; Yu, Z.; Sun, W.; Fu, W.; He, L. Enhancing cotton irrigation with distributional actor–critic reinforcement learning. Agric. Water Manag. 2025, 307, 109194. [Google Scholar] [CrossRef]
- Lu, X.; Gang, W.; Cai, S.; Tu, Z. Energy management strategy for a novel multi-stack integrated hydrogen energy storage system based on hybrid rules and optimization. Appl. Energy 2025, 381, 125189. [Google Scholar] [CrossRef]
- Yang, N.; Han, L.; Zhou, X.; Liu, R.; Liu, H.; Xiang, C. Online-learning adaptive energy management for hybrid electric vehicles in various driving scenarios based on dyna framework. IEEE Trans. Transp. Electrif. 2023, 10, 2572–2589. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, X.; Mao, J.; Gao, L.; Yang, J.; Deng, P.; Ma, P.; Guo, X.; Fan, Z. Hierarchical energy management strategy for dual fuel cell systems in heavy-duty trucks based on multi-objective optimization. Energy Convers. Manag. 2025, 345, 120308. [Google Scholar] [CrossRef]
- Yang, D.; Wang, S.; Liao, Y.; Pan, R. An online energy management strategy for fuel cell vehicles based on fuzzy Q-learning and road condition recognition. IEEE Trans. Intell. Transp. Syst. 2024, 25, 12120–12130. [Google Scholar] [CrossRef]
- Xie, F.; Guo, Z.; Li, T.; Feng, Q.; Zhao, C. Dynamic task planning for multi-arm harvesting robots under multiple constraints using deep reinforcement learning. Horticulturae 2025, 11, 88. [Google Scholar] [CrossRef]
- He, H.; Meng, X.; Wang, Y.; Khajepour, A.; An, X.; Wang, R.; Sun, F. Deep reinforcement learning based energy management strategies for electrified vehicles: Recent advances and perspectives. Renew. Sustain. Energy Rev. 2024, 192, 114248. [Google Scholar] [CrossRef]
- Zhao, J.; Fan, S.; Zhang, B.; Wang, A.; Zhang, L.; Zhu, Q. Research status and development trends of deep reinforcement learning in the intelligent transformation of agricultural machinery. Agriculture 2025, 15, 1223. [Google Scholar] [CrossRef]
- Yu, X.; Ji, W.; Zhang, H.; Ruan, C.; Xu, B.; Wu, K. Grasping force optimization and DDPG impedance control for apple picking robot end-effector. Agriculture 2025, 15, 1018. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, S.; Luo, W.; Xu, S. Deep reinforcement learning with deep-Q-network based energy management for fuel cell hybrid electric truck. Energy 2024, 306, 132531. [Google Scholar] [CrossRef]
- He, X.; Yu, Q.; Jiang, Z.; Tan, Y.; Chen, Y.; Xie, B.; Wen, C. Dual-layer adaptive power management strategy for E-tractor incorporating operating information and deep reinforcement learning. Energy 2025, 319, 134942. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, X.; Liu, S.; Li, Z. An Improved Deep Reinforcement Learning-Based Energy Management Strategy for Hybrid Electric Agricultural Tractor. In Proceedings of the 2024 6th International Conference on Power and Energy Technology (ICPET), Beijing, China, 12–15 July 2024; pp. 1368–1373. [Google Scholar]
- Wu, Y.; Zhao, Y.; Wen, C.; Zhang, J.; Yan, X. Research on energy management strategies for high-power diesel-electric hybrid tractors based on double deep Q-network. Sci. Rep. 2025, 15, 17130. [Google Scholar] [CrossRef]
- Su, Q.; Huang, R.; Kang, L.; He, H. Energy Management for Electrified Tracked Vehicles via Improved Soft Actor-Critic Algorithm. In Proceedings of the 2024 IEEE Vehicle Power and Propulsion Conference (VPPC), Washington, DC, USA, 7–10 October 2024; pp. 1–5. [Google Scholar]
- Tan, Y.; Xu, J.; Ma, J.; Li, Z.; Chen, H.; Xi, J.; Liu, H. A transferable perception-guided EMS for series hybrid electric unmanned tracked vehicles. Energy 2024, 306, 132367. [Google Scholar] [CrossRef]
- Jensen, T.A.; Antille, D.L.; Tullberg, J.N. Improving on-farm energy use efficiency by optimizing machinery operations and management: A review. Agric. Res. 2025, 14, 15–33. [Google Scholar] [CrossRef]
- Liu, J.; Abbas, I.; Noor, R.S. Development of deep learning-based variable rate agrochemical spraying system for targeted weeds control in strawberry crop. Agronomy 2021, 11, 1480. [Google Scholar] [CrossRef]
- Lin, J.; Ma, J.; Liu, K.; Huang, X.; Xiao, L.; Ahmed, S.; Dong, X.; Qiu, B. Development and test of an autonomous air-assisted sprayer based on single hanging track for solar greenhouse. Crop Prot. 2021, 142, 105502. [Google Scholar] [CrossRef]
- Ji, W.; Pan, Y.; Xu, B.; Wang, J. A real-time apple targets detection method for picking robot based on ShufflenetV2-YOLOX. Agriculture 2022, 12, 856. [Google Scholar] [CrossRef]
- Yang, H.; Ding, F.; Gu, F.; Wu, F.; Yu, Z.; Zhang, P.; Wang, J.; Hu, Z. Achieving the sustainable agricultural development goals by adopting the new energy electric agricultural machinery: An analysis of opportunities and challenges of China. Energies 2025, 18, 4211. [Google Scholar] [CrossRef]
- Guan, C.; Fu, J.; Xu, L.; Jiang, X.; Wang, S.; Cui, Z. Study on the reduction of soil adhesion and tillage force of bionic cutter teeth in secondary soil crushing. Biosyst. Eng. 2022, 213, 133–147. [Google Scholar] [CrossRef]
- Han, J.; Yan, X.; Tang, H. Method of controlling tillage depth for agricultural tractors considering engine load characteristics. Biosyst. Eng. 2023, 227, 95–106. [Google Scholar] [CrossRef]
- Zhu, Y.; Cui, B.; Yu, Z.; Gao, Y.; Wei, X. Tillage depth detection and control based on attitude estimation and online calibration of model parameters. Agriculture 2024, 14, 2130. [Google Scholar] [CrossRef]
- Lu, E.; Xue, J.; Chen, T.; Jiang, S. Robust trajectory tracking control of an autonomous tractor-trailer considering model parameter uncertainties and disturbances. Agriculture 2023, 13, 869. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Z.; Ding, S.; Xia, J.; Xing, G. Adaptive disturbance observer-based fixed time nonsingular terminal sliding mode control for path-tracking of unmanned agricultural tractors. Biosyst. Eng. 2024, 246, 96–109. [Google Scholar] [CrossRef]
- Zhang, C.; Li, J.; Li, C.; Lin, P.; Shi, L.; Xiao, B. Electrification and smartification for modern tractors: A review of algorithms and techniques. Agriculture 2025, 15, 1943. [Google Scholar] [CrossRef]
- Siddique, M.A.A.; Jeon, H.H.; Baek, S.M.; Baek, S.Y.; Kim, Y.S.; Kim, W.S.; Park, M.J.; Park, J.D.; Yang, C.W.; Choi, J.Y. Real-time axle-torque prediction of agricultural electric tractors using a Kalman-algorithm-integrated predictive motor-speed controller. Comput. Electron. Agric. 2025, 239, 110908. [Google Scholar] [CrossRef]
- Cui, B.; Cui, X.; Wei, X.; Zhu, Y.; Ma, Z.; Zhao, Y.; Liu, Y. Design and testing of a tractor automatic navigation system based on dynamic path search and a fuzzy Stanley model. Agriculture 2024, 14, 2136. [Google Scholar] [CrossRef]
- Zheng, S.; Xu, S.; Rai, R. Trailer-referenced autonomous navigation of agricultural tractor–trailer systems. Comput. Electron. Agric. 2025, 237, 110514. [Google Scholar] [CrossRef]
- Guo, H.; Li, Y.; Wang, H.; Wang, C.; Zhang, J.; Wang, T.; Rong, L.; Wang, H.; Wang, Z.; Huo, Y. Path planning of greenhouse electric crawler tractor based on the improved A and DWA algorithms. Comput. Electron. Agric. 2024, 227, 109596. [Google Scholar] [CrossRef]
- Liu, W.; Yang, R.; Li, L.; Zhao, C.; Li, G. Energy and environmental evaluation and comparison of a diesel-electric hybrid tractor, a conventional tractor, and a hillside mini-tiller using the life cycle assessment method. J. Clean. Prod. 2024, 469, 143232. [Google Scholar] [CrossRef]
- Huang, G.; Wang, H.; Liang, X. Vibration Analysis on the Rack of Electric Mini-Tiller. J. Phys. Conf. Ser. 2022, 2218, 012068. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, Q.; Zhang, H.; Ma, Y.; Zeng, W.; Wei, G.; Wang, H.; Xiao, M. Design and test of a positioning system for a greenhouse electric micro-tiller based on ultra-wideband. Mech. Sci. 2022, 13, 225–237. [Google Scholar] [CrossRef]
- Xiao, M.; Ma, Y.; Wang, C.; Chen, J.; Zhu, Y.; Bartos, P.; Geng, G. Design and experiment of fuzzy-PID based tillage depth control system for a self-propelled electric tiller. Int. J. Agric. Biol. Eng. 2023, 16, 116–125. [Google Scholar] [CrossRef]
- Tao, W.; Chen, B.; Yang, X.; Guo, B.; Xu, W.; Ke, S.; Huang, S. Design and experimental study of tillage depth control system for electric rotary tiller based on LADRC. Sci. Rep. 2025, 15, 1740. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, J.; Zhang, T.; Zhang, P.; Yao, M.; Li, J.; Sun, Z.; Ma, G.; Chen, X.; Hu, J. Key technologies in intelligent seeding machinery for cereals: Recent advances and future perspectives. Agriculture 2024, 15, 8. [Google Scholar] [CrossRef]
- Ahmad, F.; Adeel, M.; Qui, B.; Ma, J.; Shoaib, M.; Shakoor, A.; Chandio, F.A. Sowing uniformity of bed-type pneumatic maize planter at various seedbed preparation levels and machine travel speeds. Int. J. Agric. Biol. Eng. 2021, 14, 165–171. [Google Scholar] [CrossRef]
- He, Y.; Zhu, Q.; Fu, W.; Luo, C.; Cong, Y.; Qin, W.; Meng, Z.; Chen, L.; Zhao, C.; Wu, G. Design and Experiment of a Control System for Sweet Potato Seedling-Feeding and Planting Device Based on a Pre-Treatment Seedling Belt. J. Agric. Eng. 2022, 53. [Google Scholar] [CrossRef]
- Zhou, M.; Yang, J.; Yin, J.; Wang, Z. Design method and experimental study of a rice transplanting mechanism with three planting arms constrained by differential noncircular gear trains. J. ASABE 2022, 65, 221–233. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, H.; Pan, F.; Du, M.; Ji, C. Control system of a motor-driven precision no-tillage maize planter based on the CAN open protocol. Agriculture 2022, 12, 932. [Google Scholar] [CrossRef]
- Jin, X.; Li, Q.; Zhao, K.; Zhao, B.; He, Z.; Qiu, Z. Development and test of an electric precision seeder for small-size vegetable seeds. Int. J. Agric. Biol. Eng. 2019, 12, 75–81. [Google Scholar] [CrossRef]
- Yuan, X.; Huang, C.; Tao, G.; Yi, S.; Li, Y. Design and experiment of oil-electric hybrid air-suction sorghum plot seeder. Agriculture 2024, 14, 432. [Google Scholar] [CrossRef]
- Zhai, C.; Lu, C.; Li, H.; He, J.; Wang, Q.; Wang, C.; Jin, W.; Chen, L.; Chang, F.; Bi, J. An electric-driven maize seeding system: Improving the quality of accelerate seeding using tracking differential filtering–optimal tracking control (TDF-OTC) method. Comput. Electron. Agric. 2025, 236, 110488. [Google Scholar] [CrossRef]
- Hu, L.; Hou, K.; He, J.; Man, Z.; Xie, J.; Wang, P.; Tu, T.; Gao, R.; Zi, L.; Huang, Y.; et al. Multi-constraint improved RS path planning method for unmanned rice direct seeding machine. Comput. Electron. Agric. 2024, 224, 109236. [Google Scholar] [CrossRef]
- Utamima, A.; Sulastri, M.J.; Yuniarti, L.; Ansaripoor, A.H. Optimizing multi-machine path planning for crop precision seeding with Lovebird algorithm. Comput. Electron. Agric. 2025, 235, 110207. [Google Scholar] [CrossRef]
- Ning, M.; Sun, W.; Luo, J.; Zhang, L. Electric self-propelled double row transplanter for Angelica sinensis seedlings. Comput. Electron. Agric. 2025, 237, 110512. [Google Scholar] [CrossRef]
- Chen, M.; Xu, Y.; Han, C.; Li, D.; Yang, B.; Qiu, S.; Luo, Y.; Mao, H.; Ma, X. Design and testing of miniaturized electrically driven plug seedling transplanter. Agriculture 2025, 15, 1589. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, X.; Cao, G.; Gong, Y.; Chen, X. Design and experiment of electric control system for self-propelled Chinese herbal medicine materials transplanter. Agriculture 2025, 15, 621. [Google Scholar] [CrossRef]
- Yao, M.; Hu, J.; Chen, X.; Liu, W.; Yue, R.; Zhang, T.; Shi, J.; Wang, N.; Lv, J. Research on method of chassis height measurement and planting depth consistency of full-automatic transplanter for different soil surface roughness. Comput. Electron. Agric. 2025, 235, 110388. [Google Scholar] [CrossRef]
- Zhong, Z.; Yao, Y.; Zhu, J.; Liu, Y.; Du, J.; Yin, X. Automation of rice transplanter using agricultural navigation. Agriculture 2025, 15, 1125. [Google Scholar] [CrossRef]
- Wu, M.; Liu, S.; Li, Z.; Ou, M.; Dai, S.; Dong, X.; Wang, X.; Jiang, L.; Jia, W. A review of intelligent orchard sprayer technologies: Perception, control, and system integration. Horticulturae 2025, 11, 668. [Google Scholar] [CrossRef]
- Jiao, J.; Zang, Y.; Chen, C. Key technologies of intelligent weeding for vegetables: A review. Agriculture 2024, 14, 1378. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Jia, W.; Ou, M.; Dong, X.; Dai, S. A review of environmental sensing technologies for targeted spraying in orchards. Horticulturae 2025, 11, 551. [Google Scholar] [CrossRef]
- Wang, G.; Li, Z.; Jia, W.; Ou, M.; Dong, X.; Zhang, Z. A review on the evolution of air-assisted spraying in orchards and the associated leaf motion during spraying. Agriculture 2025, 15, 964. [Google Scholar] [CrossRef]
- Zhu, C.; Hao, S.; Liu, C.; Wang, Y.; Jia, X.; Xu, J.; Guo, S.; Huo, J.; Wang, W. An efficient computer vision-based dual-face target precision variable spraying robotic system for foliar fertilisers. Agronomy 2024, 14, 2770. [Google Scholar] [CrossRef]
- Salas, B.; Salcedo, R.; Garcia-Ruiz, F.; Gil, E. Design, implementation and validation of a sensor-based precise airblast sprayer to improve pesticide applications in orchards. Precis. Agric. 2024, 25, 865–888. [Google Scholar] [CrossRef]
- Khan, Z.; Liu, H.; Shen, Y.; Yang, Z.; Zhang, L.; Yang, F. Optimizing precision agriculture: A real-time detection approach for grape vineyard unhealthy leaves using deep learning improved YOLOv7 with feature extraction capabilities. Comput. Electron. Agric. 2025, 231, 109969. [Google Scholar] [CrossRef]
- Jiang, S.; Qi, P.; Han, L.; Liu, L.; Li, Y.; Huang, Z.; Liu, Y.; He, X. Navigation system for orchard spraying robot based on 3D LiDAR SLAM with NDT_ICP point cloud registration. Comput. Electron. Agric. 2024, 220, 108870. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, B.; Du, X.; Chen, H.; Zhu, T.; Wu, C. Self-adjusting look-ahead distance of precision path tracking for high-clearance sprayers in field navigation. Agronomy 2025, 15, 1433. [Google Scholar] [CrossRef]
- Sahu, G.; Raheman, H. Development of a solar energy operated weeder for wetland paddy crop. J. Renew. Energy Environ. 2022, 9, 10–20. [Google Scholar]
- Ju, J.; Chen, G.; Lv, Z.; Zhao, M.; Sun, L.; Wang, Z.; Wang, J. Design and experiment of an adaptive cruise weeding robot for paddy fields based on improved YOLOv5. Comput. Electron. Agric. 2024, 219, 108824. [Google Scholar] [CrossRef]
- Zheng, S.; Zhao, X.; Fu, H.; Tan, H.; Zhai, C.; Chen, L. Design and experimental evaluation of a smart intra-row weed control system for open-field cabbage. Agronomy 2025, 15, 112. [Google Scholar] [CrossRef]
- Zhao, P.; Chen, J.; Li, J.; Ning, J.; Chang, Y.; Yang, S. Design and testing of an autonomous laser weeding robot for strawberry fields based on DIN-LW-YOLO. Comput. Electron. Agric. 2025, 229, 109808. [Google Scholar] [CrossRef]
- Jia, W.; Tai, K.; Dong, X.; Ou, M.; Wang, X. Design of and experimentation on an intelligent intra-row obstacle avoidance and weeding machine for orchards. Agriculture 2025, 15, 947. [Google Scholar] [CrossRef]
- Zhang, H.; Meng, Z.; Wen, S.; Liu, G.; Hu, G.; Chen, J.; Zhang, S. Design and experiment of active obstacle avoidance control system for grapevine interplant weeding based on GNSS. Smart Agric. Technol. 2025, 10, 100781. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Q.; Lin, Y.; Ma, Z.; Sun, L.; Yu, G. Path tracking control of paddy field weeder integrated with satellite and visual methods. Comput. Electron. Agric. 2025, 234, 110257. [Google Scholar] [CrossRef]
- Chen, Z.; Qian, Z.; Jin, C.; Yang, T. Research progress on control algorithms for grain combine harvesters. Appl. Sci. 2025, 15, 9176. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, N.; Zhang, L.; Lin, J.; Gao, X.; Chen, G. A review on the recent developments in vision-based apple-harvesting robots for recognizing fruit and picking pose. Comput. Electron. Agric. 2025, 231, 109968. [Google Scholar] [CrossRef]
- Hua, W.; Zhang, Z.; Zhang, W.; Liu, X.; Hu, C.; He, Y.; Mhamed, M.; Li, X.; Dong, H.; Saha, C.K.; et al. Key technologies in apple harvesting robot for standardized orchards: A comprehensive review of innovations, challenges, and future directions. Comput. Electron. Agric. 2025, 235, 110343. [Google Scholar] [CrossRef]
- Looh, G.A.; Xie, F.; Wang, X.; Looh, A.N.; Hind, H. Grain kernel damage during threshing: A comprehensive review of theories and models. J. Agric. Eng. 2025, 56. [Google Scholar] [CrossRef]
- Tai, S.; Tang, Z.; Li, B.; Wang, S.; Guo, X. Cumin-harvesting mechanization of the Xinjiang cotton–cumin intercropping system: Review of the problem status and solutions. Agriculture 2025, 15, 809. [Google Scholar] [CrossRef]
- Zhu, X.; Xu, Y.; Han, C.; You, J.; Zhang, X.; Mao, H.; Ma, X. Design and experiment of in-situ bionic harvesting device for edible sunflower. Agriculture 2024, 14, 1169. [Google Scholar] [CrossRef]
- Ji, W.; He, G.; Xu, B.; Zhang, H.; Yu, X. A new picking pattern of a flexible three-fingered end-effector for apple harvesting robot. Agriculture 2024, 14, 102. [Google Scholar] [CrossRef]
- Yu, Y.; Xie, H.; Zhang, K.; Wang, Y.; Li, Y.; Zhou, J.; Xu, L. Design, development, integration, and field evaluation of a ridge-planting strawberry harvesting robot. Agriculture 2024, 14, 2126. [Google Scholar] [CrossRef]
- Qian, J.; Ma, S.; Xu, Y.; Li, W.; Wang, C.; Yang, S.; Wang, F. Experimental study on the sugarcane stubble base-cutting mechanism. Biosyst. Eng. 2024, 245, 122–134. [Google Scholar] [CrossRef]
- Rabbani, M.G.; Pramanik, M.S.; Chakrabartty, J. Illuminating the path to sustainable rice harvesting: A solar-based paddy harvester. Energy Strategy Rev. 2024, 53, 101389. [Google Scholar] [CrossRef]
- Ren, J.; Bao, D.; Liang, Z.; Yan, C.; Wu, J.; Wu, X.; Zheng, S. Parameter optimization design and experimental validation of a header for electric rice reaper binders employed in hilly regions. Agriculture 2025, 15, 1242. [Google Scholar] [CrossRef]
- Zhang, S.; Wei, X.; Liu, C.; Ge, J.; Cui, X.; Wang, F.; Wang, A.; Chen, W. Adaptive path tracking and control system for unmanned crawler harvesters in paddy fields. Comput. Electron. Agric. 2025, 230, 109878. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Q.; Xu, H.; Yang, Z.; Hu, X.; Song, Q.; Wei, X. Path tracking control of a large rear-wheel–steered combine harvester using feedforward PID and look-ahead Ackermann algorithms. Agriculture 2025, 15, 676. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, J.; Yuan, L.; Jia, H.; Aurangzaib, M. Operation speed prediction and control of unmanned rice harvesters based on multi-source information and data amplification. Comput. Electron. Agric. 2025, 237, 110639. [Google Scholar] [CrossRef]
- Zhong, M.; Han, R.; Liu, Y.; Huang, B.; Chai, X.; Liu, Y. Development, integration, and field evaluation of an autonomous Agaricus bisporus picking robot. Comput. Electron. Agric. 2024, 220, 108871. [Google Scholar] [CrossRef]
- Sarkar, P.; Raheman, H. Development of an electric cabbage harvester: An eco-friendly solution for mechanical harvesting of cabbage. Clean Technol. Environ. Policy 2025, 27, 141–155. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, E.; Mao, H.; Zuo, Z.; Peng, H.; Zhao, M.; Yu, Y.; Li, Z. Design and testing of an electric side-mounted cabbage harvester. Agriculture 2024, 14, 1741. [Google Scholar] [CrossRef]
- Guan, C.; Zhao, W.; Xu, B.; Cui, Z.; Yang, Y.; Gong, Y. Design and experiment of electric uncrewed transport vehicle for solanaceous vegetables in greenhouse. Agriculture 2025, 15, 118. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, Z.; Wang, Y.; Xu, J.; Cui, Y. Design and experiment of facility elevated planting strawberry continuous picking manipulator. Comput. Electron. Agric. 2025, 228, 109703. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, D.; Yang, L.; Cui, T.; He, X.; Zhang, K.; Zhang, Z. Development, integration, and field evaluation of a dual-arm ridge cultivation strawberry autonomous harvesting robot. J. Field Robot. 2025, 42, 1783–1798. [Google Scholar] [CrossRef]
- Huang, H.; Wang, R.; Huang, F.; Chen, J. Analysis and realization of a self-adaptive grasper grasping for non-destructive picking of fruits and vegetables. Comput. Electron. Agric. 2025, 232, 110119. [Google Scholar] [CrossRef]
- Hou, G.; Chen, H.; Niu, R.; Li, T.; Ma, Y.; Zhang, Y. Research on multi-layer model attitude recognition and picking strategy of small tomato picking robot. Comput. Electron. Agric. 2025, 232, 110125. [Google Scholar] [CrossRef]
- Lei, X.; Liu, J.; Jiang, H.; Xu, B.; Jin, Y.; Gao, J. Design and testing of a four-arm multi-joint apple harvesting robot based on singularity analysis. Agronomy 2025, 15, 1446. [Google Scholar] [CrossRef]

















| Battery Type | Energy Density (Wh/kg) | Cycle Life (Cycles) | Relative Cost (RMB/kWh) | Example Diagram | Battery Characteristics |
|---|---|---|---|---|---|
| Lead–acid Battery [43] | 30 | 500 | 300 | ![]() | Moderate stability; corrosive; prone to overcharge-induced failure |
| LiFePO4 Battery [43] | 180 | 5000 | 900 | ![]() | Higher stability; excellent thermal safety; limited low-temperature performance |
| NCM lithium Battery [43] | 250 | 3000 | 1100 | ![]() | Lower stability; high energy density; vulnerable to thermal runaway and fire risks |
| Motor Type | Working Principle | Efficiency | Power Density | Control and Response | Maintenance Requirements | Cost and Reliability Characteristics |
|---|---|---|---|---|---|---|
| DC motor | Torque generated by interaction between stator field and armature current, with mechanical commutator for current switching | Moderate, affected by brush friction and copper loss | Low, bulky | Wide speed range, fast response | Frequent brush replacement, high maintenance | Low cost, short lifespan |
| AC induction motor | Rotating stator field induces rotor currents to generate asynchronous torque | Lower under partial load, moderate overall | Low, large volume and weight | Narrow speed range, slow dynamics | Minimal maintenance, robust structure | Low cost, highly scalable |
| PMSM | Interaction between stator rotating field and rotor permanent magnets achieves synchronous rotation | High, superior to DC and induction motors | High, compact and lightweight | Wide speed range, rapid dynamics | Maintenance-free, requires advanced controllers | High cost, risk of demagnetization |
| Powertrain Systems | Advantages | Disadvantages |
|---|---|---|
| Battery electric | Zero pollution gas emissions Simplest powertrain with fewer components High energy efficiency Quiet operation and better drivability | High battery cost and weight Infrastructure dependency Long charging times compared to refueling Less suitable for continuous operations |
| Series hybrid | Flexible components layout Simplified mechanical components Engine operating at optimal efficiency state Allows CVT implementation | Multiple energy conversions lead to inefficiency Higher weight, cost, and size A large-capacity battery or generator needs to be equipped to ensure long-term operation |
| Parallel hybrid | The battery capacity requirement is reduced Sizing optimization available Mechanical and electric propulsion Reduced electrical chain and motor size | Complex torque distribution control strategies Additional mechanical connection components increase the complexity of the system Need frequent dynamic switching control |
| Series-parallel (power-split) hybrid | Able to switch the working modes Adapted to various working environments Balanced between efficiency and performance Power-split is widely used in the automotive | The most complex control strategy Higher Construction costs Due to the adoption of the design, this system is larger in size and heavier in weight. |
| EMS Type | Advantages | Disadvantages |
|---|---|---|
| Deterministic rule-based | Simple, reliable, and effective Robust in known operating conditions Low computational cost | Heuristic and experience-based Poor adaptability Lacks global optimality |
| Fuzzy rule-based | Easy to implement Handles nonlinear systems Low computational demand | Rule design subjective Limited controllability for complex systems Cannot guarantee global optimality |
| Global-based optimization | Theoretically achieves global optimum Benchmark for other EMS approaches | Requires prior knowledge of full conditions High computational cost Difficult to apply in real-time |
| Online-based optimization | Better real-time performance Adaptive to variations Lower computational demand | Relies on accurate models Requires convexity and hardware Local optimum only |
| Unsupervised learning | No labeled data needed Automatic clustering Improves efficiency via data reduction | Lower accuracy Sensitive to parameters Limited adaptability |
| Supervised learning | High accuracy Strong adaptability Supports real-time prediction | Needs large labeled data Sensitive to parameters Poor interpretability |
| (Deep)Reinforcement learning | Model-free control Handles high-dimensional states Adaptive and online learning | High training cost Needs big datasets Sensitive and less robust |
| Agricultural Stages | Operation Characteristics | Representative Agricultural Machinery | Advantages of Using EAM | Disadvantages of Using EAM |
|---|---|---|---|---|
| Land preparation and tillage | High soil resistance, continuous high power demand and large load fluctuations | Tractor and mini-tiller | Simple operation, large torque, quick start, fast response speed of the power | The hybrid power system has a complex structure and higher cost |
| Seeding and planting | High precision, low speed, intermittent operation, with the requirement of accurate positioning and minimal vibration. | Seeder and transplanter | High control accuracy, low vibration, and beneficial for precise seeding | High-precision drive systems demand advanced electronic control, raising costs |
| Crop management | High maneuverability, rapid control response, requiring frequent start-ups and stops | Weeder and sprayer | Flexible operation, the highest level of intelligence, and no exhaust emissions | Mainly battery electric for small power demand, yet limited range |
| Harvesting and picking | Continuous, high-intensity operations, high power requirements, and simultaneous driving of multiple process components | Harvester and picker robot | Precise process component control delivers high work quality and low fuel consumption | Multi-components cause complex cooling, high cost, and hard maintenance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Yang, F.; Wu, J.; Luo, S.; Khan, Z.; Zhang, L.; Liu, H. Advances and Future Trends in Electrified Agricultural Machinery for Sustainable Agriculture. Agriculture 2025, 15, 2367. https://doi.org/10.3390/agriculture15222367
Shen Y, Yang F, Wu J, Luo S, Khan Z, Zhang L, Liu H. Advances and Future Trends in Electrified Agricultural Machinery for Sustainable Agriculture. Agriculture. 2025; 15(22):2367. https://doi.org/10.3390/agriculture15222367
Chicago/Turabian StyleShen, Yue, Feng Yang, Jianbang Wu, Shuai Luo, Zohaib Khan, Lanke Zhang, and Hui Liu. 2025. "Advances and Future Trends in Electrified Agricultural Machinery for Sustainable Agriculture" Agriculture 15, no. 22: 2367. https://doi.org/10.3390/agriculture15222367
APA StyleShen, Y., Yang, F., Wu, J., Luo, S., Khan, Z., Zhang, L., & Liu, H. (2025). Advances and Future Trends in Electrified Agricultural Machinery for Sustainable Agriculture. Agriculture, 15(22), 2367. https://doi.org/10.3390/agriculture15222367




