Therapeutic Potential of Morin in Reducing Somatic Cell Counts and Clinical Scores in Bovine Mastitis Caused by Escherichia coli and Streptococcus uberis
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. In Vitro Antimicrobial Susceptibility Testing of Morin
2.3. In Vivo Study Design
2.3.1. Enrollment and Pathogen Stratification
2.3.2. Pre-Treatment Observation and Baseline
2.3.3. Treatment Groups
2.4. Physical Clinical Examinations
2.5. Milk Samples Collection and Analyses
2.6. Statistical Analysis
3. Results
3.1. Somatic Cell Count
3.2. Clinical Score
3.3. Treatment-Related Local Tolerance and Safety, and Post-Treatment Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 95% CI | 95% Confidence interval |
| CLMM | Cumulative link mixed-effects model |
| ES | Effect size |
| FDR | False discovery rate |
| IMM | Intramammary |
| PBS | Phosphate-buffered saline |
| SCC | Somatic cell count |
| SCS | Somatic cell score |
References
- Li, X.; Xu, C.; Liang, B.; Kastelic, J.P.; Han, B.; Tong, X.; Gao, J. Alternatives to Antibiotics for Treatment of Mastitis in Dairy Cows. Front. Vet. Sci. 2023, 10, 1160350. [Google Scholar] [CrossRef] [PubMed]
- Krebs, I.; Zhang, Y.; Wente, N.; Leimbach, S.; Krömker, V. Severity of Clinical Mastitis and Bacterial Shedding. Pathogens 2023, 12, 1098. [Google Scholar] [CrossRef] [PubMed]
- Leite De Campos, J.; Gonçalves, J.L.; Kates, A.; Steinberger, A.; Sethi, A.; Suen, G.; Shutske, J.; Safdar, N.; Goldberg, T.; Ruegg, P.L. Variation in Partial Direct Costs of Treating Clinical Mastitis among 37 Wisconsin Dairy Farms. J. Dairy Sci. 2023, 106, 9276–9286. [Google Scholar] [CrossRef] [PubMed]
- Wieland, M. Mastitis in Cattle. In MSD Veterinary Manual; MSD Publications: Telangana, India, 2024; Available online: https://www.msdvetmanual.com/reproductive-system/mastitis-in-large-animals/mastitis-in-cattle (accessed on 6 November 2025).
- Bechtold, V.; Petzl, W.; Huber-Schlenstedt, R.; Sorge, U.S. Distribution of Bovine Mastitis Pathogens in Quarter Milk Samples from Bavaria, Southern Germany, between 2014 and 2023—A Retrospective Study. Animals 2024, 14, 2504. [Google Scholar] [CrossRef]
- Morales-Ubaldo, A.L.; Rivero-Perez, N.; Valladares-Carranza, B.; Velázquez-Ordoñez, V.; Delgadillo-Ruiz, L.; Zaragoza-Bastida, A. Bovine Mastitis, a Worldwide Impact Disease: Prevalence, Antimicrobial Resistance, and Viable Alternative Approaches. Vet. Anim. Sci. 2023, 21, 100306. [Google Scholar] [CrossRef]
- Kaczorek-Łukowska, E.; Małaczewska, J.; Wójcik, R.; Duk, K.; Blank, A.; Siwicki, A.K. Streptococci as the New Dominant Aetiological Factors of Mastitis in Dairy Cows in North-Eastern Poland: Analysis of the Results Obtained in 2013–2019. Ir. Vet. J. 2021, 74, 2. [Google Scholar] [CrossRef]
- Dobrut, A.; Siemińska, I.; Sroka-Oleksiak, A.; Drożdż, K.; Sobońska, J.; Mroczkowska, U.; Brzychczy-Włoch, M. Molecular and Phenotypic Identification of Bacterial Species Isolated from Cows with Mastitis from Three Regions of Poland. BMC Vet. Res. 2024, 20, 193. [Google Scholar] [CrossRef]
- Zhang, T.; Niu, G.; Boonyayatra, S.; Pichpol, D. Antimicrobial Resistance Profiles and Genes in Streptococcus Uberis Associated with Bovine Mastitis in Thailand. Front. Vet. Sci. 2021, 8, 705338. [Google Scholar] [CrossRef]
- Günther, J.; Koy, M.; Berthold, A.; Schuberth, H.-J.; Seyfert, H.-M. Comparison of the Pathogen Species-Specific Immune Response in Udder Derived Cell Types and Their Models. Vet. Res. 2016, 47, 22. [Google Scholar] [CrossRef]
- European Medicines Agency. European Sales and Use of Antimicrobials for Veterinary Medicine (ESUAvet); Annual Surveillance Report for 2023 (EMA/CVMP/ESUAVET/80289/2025); Publications Office of the European Union: Luxembourg, 2025; Available online: https://www.ema.europa.eu/en/documents/report/european-sales-use-antimicrobials-veterinary-medicine-annual-surveillance-report-2023_en.pdf (accessed on 6 November 2025).
- Aksoy, A.; Alazragi, R.; Alabdali, A.Y.M.; Aljazzar, R.; El Sadi, S.; Alostaz, M.; El Hindi, M. Antibacterial Activity of Metallic-Core Gold and Silver Nanoparticles against Some Animal Pathogens. Ann. Anim. Sci. 2023, 23, 473–479. [Google Scholar] [CrossRef]
- Romanek, J.; Trzcińska, M.; Samiec, M. Multi-Faceted Characterization of Mesenchymal Stem Cells and Their Application as a Powerful Tool for Agrobiotechnology, Assisted Reproductive Technologies, and Veterinary and Regenerative Biomedicine—A Review. Ann. Anim. Sci. 2024, 24, 367–377. [Google Scholar] [CrossRef]
- Kovačević, Z.; Samardžija, M.; Tomanić, D. A Review of Recent Developments in Essential Oil-Based Alternatives in Mastitis Treatment in Dairy Cows. Ann. Anim. Sci. 2025; in press. [Google Scholar] [CrossRef]
- Gutiérrez-Reinoso, M.A.; Uquilla, J.B.; Guamaní, J.L.; Caiza, Á.E.; Carrera, R.P.; Garcia-Herreros, M. Intramammary Infusion of Micronised Purified Flavonoid Fraction (MPFF) in Mastitis-Diagnosed Dairy Cows Naturally Infected by Staphylococcus Spp. in the Late Lactation. Vet. Sci. 2023, 10, 335. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Guo, C.; Wei, Z.; He, X.; Kou, J.; Zhou, E.; Yang, Z.; Fu, Y. Morin Suppresses Inflammatory Cytokine Expression by Downregulation of Nuclear Factor-κB and Mitogen-Activated Protein Kinase (MAPK) Signaling Pathways in Lipopolysaccharide-Stimulated Primary Bovine Mammary Epithelial Cells. J. Dairy Sci. 2016, 99, 3016–3022. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Liu, X.; Yu, D.; Changyong, E.; Yang, J. Morin Protects LPS-Induced Mastitis via Inhibiting NLRP3 Inflammasome and NF-κB Signaling Pathways. Inflammation 2020, 43, 1293–1303. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wan, K.; Sun, X. Improved Transdermal Delivery of Morin Efficiently Inhibits Allergic Contact Dermatitis. Int. J. Pharm. 2017, 530, 145–154. [Google Scholar] [CrossRef]
- Sales, L.S.; Hewitt, B.; Muchova, M.; Brighenti, F.L.; Kuehne, S.A.; Grant, M.M.; Milward, M.R. Anti-Inflammatory, Antioxidant, and Antimicrobial Evaluation of Morin. Arch. Oral Biol. 2025, 178, 106343. [Google Scholar] [CrossRef]
- Pyörälä, S. Indicators of Inflammation in the Diagnosis of Mastitis. Vet. Res. 2003, 34, 565–578. [Google Scholar] [CrossRef]
- Kocik, M.; Burmańczuk, A.; Grabowski, T.; Tomaszewska, E. Intramammary Pectin Therapy for Clinical Mastitis in Dairy Cows: A Field Pilot Study. Agriculture 2025, 15, 1760. [Google Scholar] [CrossRef]
- Balemi, A.; Gumi, B.; Amenu, K.; Girma, S.; Gebru, M.; Tekle, M.; Ríus, A.A.; D’Souza, D.H.; Agga, G.E.; Kerro Dego, O. Prevalence of Mastitis and Antibiotic Resistance of Bacterial Isolates from CMT Positive Milk Samples Obtained from Dairy Cows, Camels, and Goats in Two Pastoral Districts in Southern Ethiopia. Animals 2021, 11, 1530. [Google Scholar] [CrossRef]
- Kan, X.; Hu, G.; Liu, Y.; Xu, P.; Huang, Y.; Cai, X.; Guo, W.; Fu, S.; Liu, J. Mammary Fibrosis Tendency and Mitochondrial Adaptability in Dairy Cows with Mastitis. Metabolites 2022, 12, 1035. [Google Scholar] [CrossRef]
- Festing, M.F.W.; Altman, D.G. Guidelines for the Design and Statistical Analysis of Experiments Using Laboratory Animals. ILAR J. 2002, 43, 244–258. [Google Scholar] [CrossRef]
- Goulart, D.B.; Mellata, M. Escherichia Coli Mastitis in Dairy Cattle: Etiology, Diagnosis, and Treatment Challenges. Front. Microbiol. 2022, 13, 928346. [Google Scholar] [CrossRef] [PubMed]
- De Haas, Y.; Veerkamp, R.F.; Barkema, H.W.; Gröhn, Y.T.; Schukken, Y.H. Associations Between Pathogen-Specific Cases of Clinical Mastitis and Somatic Cell Count Patterns. J. Dairy Sci. 2004, 87, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Cobirka, M.; Tancin, V.; Slama, P. Epidemiology and Classification of Mastitis. Animals 2020, 10, 2212. [Google Scholar] [CrossRef] [PubMed]
- Lavon, Y.; Leitner, G.; Kressel, Y.; Ezra, E.; Wolfenson, D. Comparing Effects of Bovine Streptococcus and Escherichia Coli Mastitis on Impaired Reproductive Performance. J. Dairy Sci. 2019, 102, 10587–10598. [Google Scholar] [CrossRef]
- Nankemann, F.; Leimbach, S.; Nitz, J.; Tellen, A.; Wente, N.; Zhang, Y.; Klocke, D.; Krebs, I.; Müller, S.; Teich, S.; et al. Antibiotic Treatment vs. Non-Antibiotic Treatment in Bovine Clinical Mastitis During Lactation with Mild and Moderate Severity. Antibiotics 2025, 14, 702. [Google Scholar] [CrossRef]
- Schukken, Y.H.; Bennett, G.J.; Zurakowski, M.J.; Sharkey, H.L.; Rauch, B.J.; Thomas, M.J.; Ceglowski, B.; Saltman, R.L.; Belomestnykh, N.; Zadoks, R.N. Randomized Clinical Trial to Evaluate the Efficacy of a 5-Day Ceftiofur Hydrochloride Intramammary Treatment on Nonsevere Gram-Negative Clinical Mastitis. J. Dairy Sci. 2011, 94, 6203–6215. [Google Scholar] [CrossRef]
- Ruegg, P.L. Making Antibiotic Treatment Decisions for Clinical Mastitis. Vet. Clin. N. Am. Food Anim. Pract. 2018, 34, 413–425. [Google Scholar] [CrossRef]
- Smith, G.W.; Davis, J.L.; Tell, L.A.; Webb, A.I.; Riviere, J.E. Extralabel Use of Nonsteroidal Anti-Inflammatory Drugs in Cattle. J. Am. Vet. Med. Assoc. 2008, 232, 697–701. [Google Scholar] [CrossRef]
- Jiang, A.; Zhang, Y.; Zhang, X.; Wu, D.; Liu, Z.; Li, S.; Liu, X.; Han, Z.; Wang, C.; Wang, J.; et al. Morin Alleviates LPS-Induced Mastitis by Inhibiting the PI3K/AKT, MAPK, NF-κB and NLRP3 Signaling Pathway and Protecting the Integrity of Blood-Milk Barrier. Int. Immunopharmacol. 2020, 78, 105972. [Google Scholar] [CrossRef]
- Bagnicka, E.; Brzozowska, P.; Żukowski, K.; Grochowska, R. The Association of Gene Polymorphisms with Milk Production and Mastitis Resistance Phenotypic Traits in Dairy Cattle. Ann. Anim. Sci. 2023, 23, 419–430. [Google Scholar] [CrossRef]
- Semik-Gurgul, E.; Ząbek, T.; Kawecka-Grochocka, E.; Zalewska, M.; Kościuczuk, E.; Bagnicka, E. Epigenetic States of Genes Controlling Immune Responsiveness in Bovine Chronic Mastitis. Ann. Anim. Sci. 2022, 22, 575–581. [Google Scholar] [CrossRef]
- Korwin-Kossakowska, A.; Ropka-Molik, K.; Ząbek, T.; Szmatoła, T.; Lewczuk, D.; Kościuczuk, E.; Marczak, S.; Bagnicka, E. Gene Expression Adjustment of Inflammatory Mechanisms in Dairy Cow Mammary Gland Parenchyma during Host Defense against Staphylococci. Ann. Anim. Sci. 2022, 22, 903–913. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocik, M.; Burmańczuk, A.; Bednarski, M.; Sołtysiuk, M.; Grabowski, T.; Tomaszewska, E. Therapeutic Potential of Morin in Reducing Somatic Cell Counts and Clinical Scores in Bovine Mastitis Caused by Escherichia coli and Streptococcus uberis. Agriculture 2025, 15, 2359. https://doi.org/10.3390/agriculture15222359
Kocik M, Burmańczuk A, Bednarski M, Sołtysiuk M, Grabowski T, Tomaszewska E. Therapeutic Potential of Morin in Reducing Somatic Cell Counts and Clinical Scores in Bovine Mastitis Caused by Escherichia coli and Streptococcus uberis. Agriculture. 2025; 15(22):2359. https://doi.org/10.3390/agriculture15222359
Chicago/Turabian StyleKocik, Marcin, Artur Burmańczuk, Michał Bednarski, Marta Sołtysiuk, Tomasz Grabowski, and Ewa Tomaszewska. 2025. "Therapeutic Potential of Morin in Reducing Somatic Cell Counts and Clinical Scores in Bovine Mastitis Caused by Escherichia coli and Streptococcus uberis" Agriculture 15, no. 22: 2359. https://doi.org/10.3390/agriculture15222359
APA StyleKocik, M., Burmańczuk, A., Bednarski, M., Sołtysiuk, M., Grabowski, T., & Tomaszewska, E. (2025). Therapeutic Potential of Morin in Reducing Somatic Cell Counts and Clinical Scores in Bovine Mastitis Caused by Escherichia coli and Streptococcus uberis. Agriculture, 15(22), 2359. https://doi.org/10.3390/agriculture15222359

