Initial Validation of NPK Fertilizer Rates and Plant Spacing for Morkhor 60, a New Soybean Variety, in Sandy Soils: Enhancing Yield and Economic Returns
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Experimental Site and Soil Characteristics
2.3. Experiment 1: NPK Fertilizer Rate Study
2.3.1. NPK Fertilizer Rate Experimental Design
2.3.2. Fertilizer Application
2.4. Experiment 2: Plant Spacing Study
2.4.1. Plant Spacing Experimental Design
2.4.2. Spacing Implementation
2.5. Crop Management
2.6. Data Collection
2.6.1. Growth Parameters
2.6.2. Yield Components and Yield
2.6.3. Dry Matter Analysis (Experiment 1)
2.6.4. Ground Cover Assessment (Experiment 2)
2.6.5. Economic Analysis
2.7. Statistical Analysis
3. Results
3.1. Soil Analysis and Weather Conditions
3.2. Experiment 1: NPK Fertilizer Rate Effects
3.2.1. Effects of NPK Rates on Growth and Yield Components
3.2.2. Dry Matter Partitioning
3.3. Experiment 2: Plant Spacing Effects
3.3.1. Effects of Plant Spacing on Growth and Yield Components
3.3.2. Ground Cover Analysis
3.4. Economic Benefits
4. Discussion
4.1. NPK Fertilizer Optimization
4.2. Plant Spacing Optimization
4.3. Environmental and Seasonal Effects
4.4. Economic and Sustainability Implications
4.5. Policy and Adoption Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samahadthai, P.; Vityakon, P.; Saenjan, P. Effects of Different Quality Plant Residues on Soil Carbon Accumulation and Aggregate Formation in A tropical Sandy Soil in Northeast Thailand as Revealed by a 10-Year Field Experiment. Land Degrad. Dev. 2010, 21, 463–473. [Google Scholar] [CrossRef]
- Kheoruenromne, I.; Suddhiprakarn, A.; Kanghae, P. Properties, Environment and Fertility Capability of Sandy Soils in Northeast Plateau, Thailand. Kasetsart J. Nat. Sci. 1998, 32, 355–373. [Google Scholar]
- Arunrat, N.; Kongsurakan, P.; Sereenonchai, S.; Hatano, R. Soil Organic Carbon in Sandy Paddy Fields of Northeast Thailand: A Review. Agronomy 2020, 10, 1061. [Google Scholar] [CrossRef]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Lei, Q.; Luo, J.; Lindsey, S.; Zhang, J.; Zhai, L.; Wu, S.; Zhang, J.; Liu, X.; et al. Optimizing the nitrogen application rate for maize and wheat based on yield and environment on the Northern China Plain. Sci. Total Environ. 2018, 618, 1173–1183. [Google Scholar] [CrossRef]
- Li, M.; Zou, W.; Han, X.; Yan, J.; Chen, X.; Lu, X. Long-term balanced NPK fertilization increases soybean yield, grain nutrient and isoflavone contents, and improves the fertility of soybean fields. J. Plant Nutr. Fertil. 2024, 30, 2221–2229. [Google Scholar] [CrossRef]
- Cox, W.J.; Cherney, J.H. Growth and Yield Responses of Soybean to Row Spacing and Seeding Rate. Agron. J. 2011, 103, 123–128. [Google Scholar] [CrossRef]
- Gaspar, A.P.; Conley, S.P. Responses of canopy reflectance, light interception, and soybean seed yield to replanting suboptimal stands. Crop Sci. 2015, 55, 377–385. [Google Scholar] [CrossRef]
- Gaspar, A.P.; Mourtzinis, S.; Kyle, D.; Galdi, E.; Lindsey, L.E.; Hamman, W.P.; Matcham, E.G.; Kandel, H.J.; Schmitz, P.; Stanley, J.D.; et al. Defining optimal soybean seeding rates and associated risk across North America. Agron. J. 2020, 112, 2103–2114. [Google Scholar] [CrossRef]
- Prusiński, J.; Nowicki, R. Effect of planting density and row spacing on the yielding of soybean (Glycine max L. Merrill). Plant Soil Environ. 2020, 66, 616–623. [Google Scholar] [CrossRef]
- Taiyawong, A.; Monkham, T.; Sanitchon, J.; Choenkwan, S.; Srisawangwong, S.; Khodphuwiang, J.; Reewarabundit, S.; Chankaew, S. Yield Stability of Soybean Variety Morkhor 60 in Integrated Rotation Systems of Northeastern Thailand. Plants 2025, 14, 2503. [Google Scholar] [CrossRef]
- Li, R.; Xu, C.; Wu, Z.; Xu, Y.; Sun, S.; Song, W.; Wu, C. Optimizing canopy-spacing configuration increases soybean yield under high planting density. Crop J. 2025, 13, 233–245. [Google Scholar] [CrossRef]
- Xu, C.; Li, R.; Song, W.; Wu, T.; Sun, S.; Hu, S.; Han, T.; Wu, C. Responses of branch number and yield component of soybean cultivars tested in different planting densities. Agriculture 2021, 11, 69. [Google Scholar] [CrossRef]
- Sritongtae, C.; Monkham, T.; Sanitchon, J.; Lodthong, S.; Srisawangwong, S.; Chankaew, S. Identification of Superior Soybean Cultivars through the Indication of Specific Adaptabilities within Duo-Environments for Year-Round Soybean Production in Northeast Thailand. Agronomy 2021, 11, 585. [Google Scholar] [CrossRef]
- Corbellini, M.; Bobek, D.V.; de Toledo, J.F.F.; Ferreira, L.U.; Santana, D.C.; Gilio, T.A.S.; Teodoro, L.P.R.; Teodoro, P.E.; Tardin, F.D. Geographical adaptability for optimizing the recommendation of soybean cultivars in the Brazilian Cerrado. Sci. Rep. 2024, 14, 13076. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.T.; Zhong, S.L. Development of precision agriculture techniques for soybean yield improvement. Biosci. Evid. 2024, 14, 260–269. [Google Scholar] [CrossRef]
- Kilmer, V.J.; Mullins, J.F. Improved stirring and pipetting apparatus for mechanical analysis of soil. Soil Sci. 1954, 77, 437–441. [Google Scholar] [CrossRef]
- Thomas, G.W. Soil pH and soil acidity. In Methods of Soil Analysis: Part 3 Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Book Ser No. 5; American Society of Agronomy: Madison, WI, USA, 1996; pp. 475–489. [Google Scholar] [CrossRef]
- Jackson, M.L. Nitrogen determination for soils and plant tissue. In Soil Chemical Analysis; Prentice-Hall of India Private Limited: New Delhi, India, 1967; pp. 83–203. [Google Scholar]
- Bray, R.A.; Kurtz, L.T. Determination of total organic and available form of phosphorus in soil. Soil Sci. 1954, 59, 39–45. [Google Scholar] [CrossRef]
- Pratt, P.E. Potassium. In Method of Soil Analysis, Part II.; Black, C.A., Ed.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 1022–1030. [Google Scholar]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Pringgani, A.M.; Khonghintaisong, J.; Gonkhamdee, S.; Songsri, P.; Jongrungklang, N. Ground covering characteristics of sugarcanes using high-angle images and their relationship with growth destructive sampling. Asian J. Plant Sci. 2023, 22, 434–443. [Google Scholar] [CrossRef]
- Sai, R.; Paswan, S. Influence of higher levels of NPK fertilizers on growth, yield, and profitability of three potato varieties in Surma, Bajhang, Nepal. Heliyon 2024, 10, e34601. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: http://www.R-project.org/ (accessed on 30 December 2023).
- Hickmann, C.; Resende, A.V.; Silva, C.A.; Lacerda, J.J.J.; Furtini Neto, A.E.; Moreira, S.G. Soybean response to NPK fertilization of sowing and potassium at topdressing in soil of improved fertility. Rev. Agrogeoambiental 2017, 9, 37–48. [Google Scholar] [CrossRef][Green Version]
- Hungria, M.; Mendes, I.C. Nitrogen fixation with soybean: The perfect symbiosis? In Biological Nitrogen Fixation; de Bruijn, F.J., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 1009–1024. [Google Scholar][Green Version]
- Salvagiotti, F.; Cassman, K.G.; Specht, J.E.; Walters, D.T.; Weiss, A.; Dobermann, A. Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Res. 2008, 108, 1–13. [Google Scholar] [CrossRef]
- Amante, G.; Wedajo, M.; Temteme, S. Soybean (Glycine max (L.) Merr.) response to application of mineral nitrogen and bradyrhizobia on Nitisols of Teppi, Southwest Ethiopia. Heliyon 2024, 10, e30540. [Google Scholar] [CrossRef]
- Rotundo, J.L.; Borrás, L.; Bruin, J.D.; Pedersen, P. Soybean nitrogen uptake and utilization in Argentina and United States cultivars. Crop Sci. 2024, 54, 1153–1165. [Google Scholar] [CrossRef]
- Yang, J.; Peng, X.; Ren, J.; Yang, X.; Zhang, K.; Li, Y.; Pu, T.; Yang, W.; Yong, T. Optimal interspecific distance maintains soybean yield by promoting canopy–root synergy in a maize–soybean relay strip cropping system. Crop J. 2025, in press. [CrossRef]
- Silva, L.M.; Habermann, E.; Costa, K.A.P.; Costa, A.C.; Silva, J.A.G.; Severiano, E.C.; Vilela, L.; Silva, F.G.; Silva, A.G.; Marques, B.S.; et al. Integrated systems improve soil microclimate, soybean photosynthesis and growth. Front. Plant Sci. 2024, 15, 1484315. [Google Scholar] [CrossRef]




| Factors | PH (Cm) | NN (Nodes) | NPS (Pods) | NB (Branches) | NPB (Pods) | NSP (Seeds) | 100 GW (g) | GY (Kg Ha−1) | |
|---|---|---|---|---|---|---|---|---|---|
| Season (A) | ** | ** | ** | ** | ** | ** | ** | * | |
| NPK (B) | ** | ns | ** | ns | ** | * | ns | ** | |
| Varieties (C) | ** | ns | ** | ** | ** | ** | ** | ** | |
| A × B | ns | ns | ** | ns | ** | ** | ** | ** | |
| A × C | ** | ** | ** | ** | ** | ** | ** | ** | |
| B × C | ns | * | ** | ns | ** | * | ** | ns | |
| A × B × C | * | ns | ** | ns | ** | ** | ** | ns | |
| B | C | B × C interactions | |||||||
| 0 | Morkhor 60 | 64.7 bc | 12.0 bc | 24.9 bcd | 4.6 bcd | 28.2 cde | 2.44 bc | 14.65 de | 1186 abc |
| 223 × LH–85 | 55.9 e | 11.0 d | 16.0 f | 4.8 abc | 33.7 b | 2.33 d | 13.74 g | 894 f | |
| CM 60 | 57.1 e | 11.6 cd | 23.4 d | 3.5 g | 18.8 g | 2.41 c | 15.6 a | 1052 de | |
| SJ5 | 63.9 cd | 11.2 d | 20.8 e | 4.1 def | 23.8 f | 2.27 ef | 13.78 g | 1043 e | |
| 23.44 | Morkhor60 | 65.7 bc | 11.9 bcd | 24.0 cd | 4.4 cde | 27.2 de | 2.5 ab | 14.8 d | 1239 abc |
| 223 × LH–85 | 58.8 e | 12.1 bc | 20.2 e | 5.2 a | 41.0 a | 2.4 c | 14.06 fg | 1126 cde | |
| CM 60 | 60.1 de | 11.6 cd | 26.6 b | 3.7 fg | 17.7 g | 2.43 c | 15.17 bc | 1103 de | |
| SJ5 | 66.8 bc | 12.1 bc | 23.3 d | 4.8 ab | 32.5 b | 2.3 def | 13.78 g | 1171 bcde | |
| 46.88 | Morkhor60 | 68.2 b | 12.3 abc | 26.3 bc | 4.7 bc | 30.4 bcd | 2.54 a | 14.84 cd | 1286 ab |
| 223 × LH–85 | 65.2 bc | 12.4 ab | 20.8 e | 4.9 ab | 38.0 a | 2.31 de | 13.99 g | 1165 bcd | |
| CM 60 | 66.4 bc | 12.1 bc | 30.7 a | 3.9 efg | 25.2 ef | 2.44 bc | 15.26 ab | 1270 ab | |
| SJ5 | 74.5 a | 12.8 a | 25.6 bcd | 4.7 abc | 30.8 bc | 2.25 f | 14.36 ef | 1172 bcd | |
| Mean | 63.9 | 12 | 23.6 | 4.4 | 28.9 | 2.38 | 14.5 | 1153 | |
| CV. A (%) | 17.7 | 7.3 | 23.2 | 28.7 | 22.6 | 2.7 | 3.3 | 36.3 | |
| CV. B (%) | 8.7 | 7.7 | 13.6 | 15.7 | 16.9 | 3.3 | 2.7 | 11.6 | |
| CV. C (%) | 7.9 | 6.5 | 11.8 | 12 | 13.3 | 3 | 3 | 14.2 | |
| Factor | PH (Cm) | NN (Nodes) | NPS (Pods) | NB (Branches) | NPB (Pods) | NSP (Seeds) | 100 GW (g) | GY (Kg ha−1) | |
|---|---|---|---|---|---|---|---|---|---|
| Season (A) | ** | ** | ** | ** | ** | ** | ** | ** | |
| Spacing (B) | ** | ** | ** | ** | ** | ** | ns | ns | |
| Varieties (C) | ** | ** | ** | ** | ** | ** | ** | ** | |
| A × B | ** | ** | ** | ** | ** | * | ** | ** | |
| A × C | * | ** | ** | ** | ** | ** | ** | ** | |
| B × C | ns | ns | ** | ** | ** | ns | ** | ** | |
| A × B × C | ns | ** | ** | ** | ** | ns | ** | ns | |
| B | C | B × C interactions | |||||||
| 20 × 20 | Morkhor 60 | 69.1 a–c | 9.9 fg | 13.0 f | 2.6 jk | 8.0 i | 2.39 a–d | 14.07 gh | 1257 g |
| 223 × LH–85 | 57.5 fg | 9.5 g | 12.9 f | 3.2 gh | 10.6 h | 2.21 ef | 14.34 f–h | 1362 d–g | |
| CM 60 | 58.4 e–g | 10.0 e–g | 15.1 de | 2.3 k | 6.2 i | 2.29 c–e | 15.65 ab | 1603 a–d | |
| SJ 5 | 74.2 a | 10.8 b–d | 14.1 ef | 2.9 hi | 10.0 h | 2.10 f | 13.97 gh | 1455 c–g | |
| 30 × 20 | Morkhor 60 | 69.8 ab | 10.7 b–d | 16.1 b–e | 3.5 ef | 13.2 g | 2.41 a | 14.69 ef | 1774 a |
| 223 × LH–85 | 56.8 g | 10.4 c–f | 15.2 de | 3.9 cd | 15.9 de | 2.30 b–e | 13.25 I | 1579 a–e | |
| CM 60 | 54.7 g | 10.3 d–f | 16.5 b–d | 2.8 ij | 10.2 h | 2.36 a–d | 15.92 a | 1611 a–c | |
| SJ 5 | 65.9 b–d | 11.2 ab | 16.1 b–e | 3.8 de | 14.9 e–g | 2.20 ef | 14.27 f–h | 1322 fg | |
| 40 × 20 | Morkhor 60 | 66.4 b–d | 11.0 a–c | 17.3 bc | 4.1 bc | 16.3 c–e | 2.39 a–d | 14.46 fg | 1531 b–f |
| 223 × LH–85 | 56.3 g | 10.4 c–f | 15.3 de | 3.9 cd | 18.1 bc | 2.39 a–d | 14.7 d–f | 1634 a–c | |
| CM 60 | 54.0 g | 10.3 d–f | 17.5 bc | 3.4 e–g | 13.7 fg | 2.40 a–c | 15.27 b–d | 1550 a–f | |
| SJ 5 | 63.0 d–f | 11.5 a | 16.6 b–d | 4 b–d | 17.1 cd | 2.20 ef | 14.09 gh | 1329 fg | |
| 50 × 20 | Morkhor 60 | 63.8 c–e | 11.1 ab | 17.7 b | 4.8 a | 22.7 a | 2.38 a–d | 15.06 c–e | 1593 a–e |
| 223 × LH–85 | 54.4 g | 10.6 b–e | 14.3 ef | 4.1 bc | 21.6 a | 2.40 ab | 14.26 gh | 1340 fg | |
| CM 60 | 56.3 g | 10.9 a–d | 21.2 a | 3.4 fg | 15.2 ef | 2.39 a–c | 15.59 a–c | 1729 ab | |
| SJ 5 | 63.8 c–e | 10.8 b–d | 15.6 c–e | 4.3 b | 19.5 b | 2.28 de | 13.88 h | 1356 e–g | |
| Mean | 61.5 | 10.6 | 15.9 | 3.6 | 14.6 | 2.32 | 14.59 | 1501 | |
| CV. A (%) | 32.1 | 10.6 | 39.8 | 24.5 | 14.6 | 15.3 | 8.4 | 22.5 | |
| CV. B (%) | 9.8 | 8.1 | 17.2 | 12.1 | 13.4 | 5.6 | 4.4 | 17.9 | |
| CV. C (%) | 11.3 | 7.6 | 15.3 | 11.2 | 16 | 5.9 | 5 | 19.9 | |
| Experimental/Treatment | Yield (Kg ha−1) | Gross Income (THB Ha−1) | Production Costs (THB Ha−1) * | Net Profit (THB ha−1) | Benefit: Cost Ratio | |
|---|---|---|---|---|---|---|
| Experimental 1 | ||||||
| Variety | NPK fertilizer Rate (kg ha−1 of N, P2O5, and K2O) | |||||
| Morkhor 60 | 0 | 1186 | 29,650 | 12,188 | 17,463 | 2.4 |
| 23.44 | 1239 | 30,975 | 15,625 | 15,350 | 2.0 | |
| 46.88 | 1286 | 32,150 | 19,063 | 13,088 | 1.7 | |
| CM 60 | 0 | 1052 | 26,300 | 12,188 | 14,113 | 2.2 |
| 23.44 | 1103 | 27,575 | 15,625 | 11,950 | 1.8 | |
| 46.88 | 1270 | 31,750 | 19,063 | 12,688 | 1.7 | |
| Experimental 2 | ||||||
| Variety | Spacing (cm) | |||||
| Morkhor 60 | 20 × 20 | 1257 | 31,425 | 15,625 | 15,800 | 2.0 |
| 30 × 20 | 1774 | 44,350 | 14,500 | 29,850 | 3.1 | |
| 40 × 20 | 1531 | 38,275 | 13,938 | 24,338 | 2.7 | |
| 50 × 20 | 1593 | 39,825 | 13,600 | 26,225 | 2.9 | |
| CM 60 | 20 × 20 | 1603 | 40,075 | 15,625 | 24,450 | 2.6 |
| 30 × 20 | 1611 | 40,275 | 14,500 | 25,775 | 2.8 | |
| 40 × 20 | 1550 | 38,750 | 13,938 | 24,813 | 2.8 | |
| 50 × 20 | 1729 | 43,225 | 13,600 | 29,625 | 3.2 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patjaiko, T.; Monkham, T.; Sanitchon, J.; Chankaew, S. Initial Validation of NPK Fertilizer Rates and Plant Spacing for Morkhor 60, a New Soybean Variety, in Sandy Soils: Enhancing Yield and Economic Returns. Agriculture 2025, 15, 2357. https://doi.org/10.3390/agriculture15222357
Patjaiko T, Monkham T, Sanitchon J, Chankaew S. Initial Validation of NPK Fertilizer Rates and Plant Spacing for Morkhor 60, a New Soybean Variety, in Sandy Soils: Enhancing Yield and Economic Returns. Agriculture. 2025; 15(22):2357. https://doi.org/10.3390/agriculture15222357
Chicago/Turabian StylePatjaiko, Thanaphon, Tidarat Monkham, Jirawat Sanitchon, and Sompong Chankaew. 2025. "Initial Validation of NPK Fertilizer Rates and Plant Spacing for Morkhor 60, a New Soybean Variety, in Sandy Soils: Enhancing Yield and Economic Returns" Agriculture 15, no. 22: 2357. https://doi.org/10.3390/agriculture15222357
APA StylePatjaiko, T., Monkham, T., Sanitchon, J., & Chankaew, S. (2025). Initial Validation of NPK Fertilizer Rates and Plant Spacing for Morkhor 60, a New Soybean Variety, in Sandy Soils: Enhancing Yield and Economic Returns. Agriculture, 15(22), 2357. https://doi.org/10.3390/agriculture15222357

