Pollution Status, Risk Assessment, and Source Identification of Heavy Metals in Farmland Topsoil of Mining Area Along the Yangtze River, East China
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Collection
2.2. Sample Analysis
2.3. Assessment of Pollution Indices
2.4. Potential Ecological Risk
2.5. Health Risk Assessment Model
2.6. APCS-MLR Model
3. Results and Discussion
3.1. Description and Pollution Indices of Heavy Metals
3.2. Potential Ecological Risk Assessment
3.3. Health Risk Assessment for Humans
3.4. Sources Identification of Heavy Metals
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| APCS–MLR | Absolute principal component scores–multiple linear regression |
| Pi | Pollution index |
| RI | Potential ecological risk index |
| ADI | Average daily intake |
| HI | Non-carcinogenic risk index |
| CR | Carcinogenic risk index |
References
- Wu, F.; Zhu, D.; Yang, T.; Mao, C.; Huang, W.; Zhou, S.; Yang, Y. Soil heavy metal accumulation and ecological risk in mount wuyi: Impacts of vegetation types and pollution sources. Land 2025, 14, 712. [Google Scholar] [CrossRef]
- Liu, T.; Ni, S.Y.; Wang, Z. Contamination and health risk assessment of heavy metals in soil surrounding an automobile industry factory in Jiaxing, China. Front. Environ. Sci. 2024, 12, 1362366. [Google Scholar] [CrossRef]
- US EPA. Exposure Factors Handbook, Volume 1: General Factors; U.S. Environmental Protection Agency: Washington, DC, USA, 1997. [Google Scholar]
- NY/T 4608-2025; Technical Guidelines for Classification of Environmental Quality of Cultivated Soil. Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2025.
- Singh, S.; Maiti, S.K.; Raj, D. An approach to quantify heavy metals and their source apportionment in coal mine soil: A study through PMF model. Environ. Monit. Assess. 2023, 195, 306. [Google Scholar] [CrossRef]
- Yadav, M.; Gupta, P.; Seth, C.S. Foliar application of α-lipoic acid attenuates cadmium toxicity on photosynthetic pigments and nitrogen metabolism in Solanum lycopersicum L. Acta Physiol. Plant. 2022, 44, 112. [Google Scholar] [CrossRef]
- Meng, F.; Liu, D.; Bu, T.; Zhang, M.; Peng, J.; Ma, J. Assessment of pollution and health risks from exposure to heavy metals in soil, wheat grains, drinking water, and atmospheric particulate matter. J. Environ. Manag. 2025, 376, 124448. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Du, Q.; Guan, Q.; Luo, H.; Shan, Y.; Shao, W. A Monte Carlo simulation-based health risk assessment of heavy metals in soils of an oasis agricultural region in northwest China. Sci. Total Environ. 2023, 857, 159543. [Google Scholar] [CrossRef]
- Jallad, K.N. The Hazards of a Ubiquitary Metalloid, Arsenic, Hiding in Infant Diets: Detection, Speciation, Exposure, and Risk Assessment. Biol. Trace Elem. Res. 2019, 190, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Zhang, H.; He, Y.; Chen, Z.; Yao, L.; Han, H. Improving radish phosphorus utilization efficiency and inhibiting Cd and Pb uptake by using heavy metal-immobilizing and phosphate-solubilizing bacteria. Sci. Total Environ. 2023, 868, 161685. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, D.; Wu, Y.; He, X.; Luo, Y.; Zhou, X.; Chen, W.; Chen, W.; Li, S. Updated spatial distribution and health risk assessment of heavy metals in soils of the Yangtze River Basin, China. Front. Environ. Sci. 2023, 11, 1197634. [Google Scholar] [CrossRef]
- Zhao, K.; Hu, R.; Wan, X.; Zhou, B.; Wang, Y. Heavy metal spatial distribution, sources and ecological risks in farmland soils from three areas in the Yangtze River basin in Anhui. Arab J. Geosci. 2022, 15, 1154. [Google Scholar] [CrossRef]
- Shen, Z.; Xu, D.; Li, L.; Wang, J.; Shi, X. Ecological and health risks of heavy metal on farmland soils of mining areas around Tongling City, Anhui, China. Environ. Sci. Pollut. Res. Int. 2019, 26, 15698–15709. [Google Scholar] [CrossRef]
- Adnan, M.; Zhao, P.; Xiao, B.; Ali, M.U.; Xiao, P. Heavy metal pollution and source analysis of soils around abandoned Pb/Zn smelting sites: Environmentalrisks and fractionation analysis. Environ. Technol. Innov. 2025, 38, 104084. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Z.; Xiao, T.; Zhu, Z.; Jia, S.; Sun, J.; Ning, Z.; Gao, T.; Liu, C. Enrichment and environmental availability of cadmium in agricultural soils developed on Cd-rich black shale in southwestern China. Environ. Sci. Pollut. Res. 2022, 29, 36243–36254. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Qu, S.; Nel, W.; Ji, J. The influence of natural weathering on the behavior of heavy metals in small basaltic watersheds: A comparative study from different regions in China. Chemosphere 2021, 262, 127897. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, F.; Song, J.; Tan, M.L.; Kung, H.-T.; Johnson, V.C. Pollutant source, ecological and human health risks assessment of heavy metals in soils from coal mining areas in Xinjiang, China. Environ. Res. 2021, 202, 111702. [Google Scholar] [CrossRef]
- Abdelgawad, Z.A.; Abd El-Wahed, M.N.; Ahmed, A.A.; Madbouly, S.M.; El-Sayyad, G.S.; Khalafallah, A.A. Assessment of heavy metal accumulation and health risk in three essential edible weeds grown on wastewater irrigated soil. Sci. Rep. 2023, 13, 21768. [Google Scholar] [CrossRef]
- Liu, B.; Ma, X.; Ai, S.; Zhu, S.; Zhang, W.; Zhang, Y. Spatial distribution and source identification of heavy metals in soils under different land uses in a sewage irrigation region, northwest China. J. Soil Sediment 2016, 16, 1547–1556. [Google Scholar] [CrossRef]
- Yang, L.; Ren, Q.; Zheng, K.; Jiao, Z.; Ruan, X.; Wang, Y. Migration of heavy metals in the soil-grape system and potential health risk assessment. Sci. Total Environ. 2022, 806 Pt 2, 150646. [Google Scholar] [CrossRef]
- GB15618-2018; Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2018.
- Deng, Y.; Jiang, L.; Xu, L.; Hao, X.; Zhang, S.; Xu, M.; Zhu, P.; Fu, S.; Liang, Y.; Yin, H.; et al. Spatial distribution and risk assessment of heavy metals in contaminated paddy fields—A case study in Xiangtan City, southern China. Ecotoxicol. Environ. Saf. 2019, 171, 281–289. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Miletić, A.; Lučić, M.; Onjia, A. Exposure factors in health risk assessment of heavy metal(loid)s in soil and sediment. Metals 2023, 13, 1266. [Google Scholar] [CrossRef]
- Thurston, G.D.; Spengler, J.D. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos. Environ. 1985, 19, 9–25. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Gao, Z.; Zhang, H.; Zhu, Z.; Jiang, B.; Liu, J.; Dong, H. Contamination characteristics, source analysis and health risk assessment of heavy metals in the soil in Shi River Basin in China based on high density sampling. Ecotoxicol. Environ. Saf. 2021, 227, 112926. [Google Scholar] [CrossRef]
- Yan, D.; Bai, Z.; Liu, X. Heavy-Metal Pollution Characteristics and Influencing Factors in Agricultural Soils: Evidence from Shuozhou City, Shanxi Province, China. Sustainability 2020, 12, 1907. [Google Scholar] [CrossRef]
- Jiang, H.-H.; Cai, L.M.; Wen, H.-H.; Hu, G.C.; Chen, L.G.; Luo, J. An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals. Sci. Total Environ. 2020, 701, 134466. [Google Scholar] [CrossRef]
- Hu, Y.; He, K.; Sun, Z.; Chen, G.; Cheng, H. Quantitative source apportionment of heavy metal(loid)s in the agricultural soils of an industrializing region and associated model uncertainty. J. Hazard. Mater. 2020, 391, 122244. [Google Scholar]
- Varol, M.; Gunduz, K.; Sunbul, M.R. Pollution status, potential sources and health risk assessment of arsenic and trace metals in agricultural soils: A case study in Malatya province, Turkey. Environ. Res. 2021, 202, 111806. [Google Scholar] [CrossRef]
- Liu, M.; Han, Z.; Yang, Y. Accumulation, temporal variation, source apportionment and risk assessment of heavy metals in agricultural soils from the middle reaches of Fenhe River basin, North China. RSC Adv. 2019, 9, 21893–21902. [Google Scholar] [CrossRef]
- Qi, H.; Zhao, B.; Li, L.; Chen, X.; An, J.; Liu, X. Heavy metal contamination and ecological risk assessment of the agricultural soil in Shanxi Province, China. R. Soc. Open Sci. 2020, 7, 200538. [Google Scholar] [CrossRef]
- Zerizghi, T.; Guo, Q.; Tian, L.; Wei, R.; Zhao, C. An integrated approach to quantify ecological and human health risks of soil heavy metal contamination around coal mining area. Sci. Total Environ. 2022, 814, 152653. [Google Scholar] [CrossRef]
- Zhao, R.; Guan, Q.; Luo, H.; Lin, J.; Yang, L.; Wang, F.; Pan, N.; Yang, Y. Fuzzy synthetic evaluation and health risk assessment quantification of heavy metals in Zhangye agricultural soil from the perspective of sources. Sci. Total Environ. 2019, 697, 134126. [Google Scholar] [CrossRef] [PubMed]
- Haji Gholizadeh, M.; Melesse, A.M.; Reddi, L. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida. Sci. Total Environ. 2016, 566–567, 1552–1567. [Google Scholar] [CrossRef]
- Streets, D.; Hao, J.; Wu, Y.; Jiang, J.; Chan, M.; Tian, H.; Feng, X. Anthropogenic mercury emissions in China. Atmos. Environ. 2005, 39, 7789–7806. [Google Scholar] [CrossRef]
- Fei, X.; Lou, Z.; Xiao, R.; Ren, Z.; Lv, X. Contamination assessment and source apportionment of heavy metals in agricultural soil through the synthesis of PMF and geogdetector models. Sci. Total Environ. 2020, 747, 141293. [Google Scholar] [CrossRef]
- Xiao, R.; Guo, D.; Ali, A.; Mi, S.; Liu, T.; Ren, C.; Li, R.; Zhang, Z. Accumulation, ecological-health risks assessment, and source apportionment of heavy metals in paddy soils: A case study in Hanzhong, Shaanxi, China. Environ. Pollut. 2019, 248, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Seth, C.S. 24-Epibrassinolide Regulates Functional Components of Nitric Oxide Signalling and Antioxidant Defense Pathways to Alleviate Salinity Stress in Brassica juncea L. cv. Varuna. J. Plant Growth Regul. 2022, 42, 4207–4222. [Google Scholar] [CrossRef]
- Wei, B.; Yang, L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Hani, A.; Pazira, E. Heavy metals assessment and identification of their sources in agricultural soils of Southern Tehran, Iran. Environ. Monit. Assess. 2011, 176, 677–691. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Chen, J.; Yang, G.; Li, H.; Wang, J.; Li, W. Ecological risk assessment and source analysis of heavy metals in farmland soil in Yangchun city based on APCS-MLR and geostatistics. Agriculture 2024, 14, 309. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, L.; Wang, W.; Li, T.; He, Z.; Yang, X. Current status of agricultural soil pollution by heavy metals in China: A meta-analysis. Sci. Total Environ. 2019, 651, 3034–3042. [Google Scholar] [CrossRef]





| Parameters | pH | Cd | Hg | As | Pb | Cr |
|---|---|---|---|---|---|---|
| Mean ± SD 1 | 6.30 ± 0.86 | 1.93 ± 5.71 | 0.13 ± 0.06 | 27.9 ± 67.5 | 96.7 ± 111.9 | 43.5 ± 14.7 |
| Background value | - 3 | 0.097 | 0.033 | 9 | 26.6 | 66.5 |
| >Background value | - | 98.7% | 100% | 95.2% | 89.0% | 5.89% |
| Screening value | pH ≤ 5.5 | 0.3 | 0.5/1.3 | 30/40 | 80/70 | 250/150 |
| 5.5 < pH ≤ 6.5 | 0.4/0.3 4 | 0.5/1.8 | 30/40 | 100/90 | 250/150 | |
| 6.5 < pH ≤ 7.5 | 0.6/0.3 | 0.6/2.4 | 25/30 | 140/120 | 300/200 | |
| pH > 7.5 | 0.8/0.6 | 1.0/3.4 | 20/25 | 240/170 | 350/250 | |
| >Screening value | - | 77.3% | 0.04% | 23.1% | 29.8% | 0% |
| Intervention value | pH ≤ 5.5 | 1.5 | 2.0 | 200 | 400 | 800 |
| 5.5 < pH ≤ 6.5 | 2.0 | 2.5 | 150 | 500 | 850 | |
| 6.5 < pH ≤ 7.5 | 3.0 | 4.0 | 120 | 700 | 1000 | |
| pH > 7.5 | 4.0 | 6.0 | 100 | 1000 | 1300 | |
| >Intervention value | - | 19.7% | 0% | 1.61% | 1.23% | 0% |
| CV 2 | 13.7% | 296% | 46.2% | 242% | 116% | 33.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Wang, B.; Li, Z. Pollution Status, Risk Assessment, and Source Identification of Heavy Metals in Farmland Topsoil of Mining Area Along the Yangtze River, East China. Agriculture 2025, 15, 2181. https://doi.org/10.3390/agriculture15212181
Sun X, Wang B, Li Z. Pollution Status, Risk Assessment, and Source Identification of Heavy Metals in Farmland Topsoil of Mining Area Along the Yangtze River, East China. Agriculture. 2025; 15(21):2181. https://doi.org/10.3390/agriculture15212181
Chicago/Turabian StyleSun, Xinzhan, Bin Wang, and Zhitao Li. 2025. "Pollution Status, Risk Assessment, and Source Identification of Heavy Metals in Farmland Topsoil of Mining Area Along the Yangtze River, East China" Agriculture 15, no. 21: 2181. https://doi.org/10.3390/agriculture15212181
APA StyleSun, X., Wang, B., & Li, Z. (2025). Pollution Status, Risk Assessment, and Source Identification of Heavy Metals in Farmland Topsoil of Mining Area Along the Yangtze River, East China. Agriculture, 15(21), 2181. https://doi.org/10.3390/agriculture15212181

