Sustainable Management of Bacterial Leaf Spot in Bell Pepper by Biological and Chemical Resistance Inducers
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Pathogens and Pathogenicity Test
2.2. Treatment of Chili Seedlings with Plant Resistance Inducers (PRIs) Under Greenhouse Conditions
2.3. Efficacy of PRIs for Controlling Bacterial Leaf Spot Disease During the Flowering Stage Under Greenhouse Conditions
2.4. Plant Resistance-Associated Gene Expression and Metabolite Abundance in PRI-Treated Plant
2.5. Greenhouse Conditions
2.6. Statistical Analysis
3. Results and Discussion
3.1. Severity of Xanthomonas Bacterial Infection in Chili Plants
3.2. Treatment of Pepper Seedlings with Bacterial Leaf Spot Disease with PRIs Under Greenhouse Conditions
3.3. Efficacy of PRIs for Controlling Bacterial Leaf Spot Disease During the Flowering Stage Under Greenhouse Conditions
3.4. Analyses of the Expression Levels of Genes and Abundances of Metabolites Related to Plant Resistance After Treatment with PRIs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Utami, D.; Meale, S.J.; Young, A.J. A Pan-Global Study of Bacterial Leaf Spot of Chilli Caused by Xanthomonas spp. Plants 2022, 11, 2291. Plants 2022, 11, 2291. [Google Scholar] [CrossRef]
- Cook, A.; Stall, R. Differentiation of Pathotypes Among Isolates of Xanthomonas vesicatoria. Plant Dis Rep. 1969, 53, 617–619. [Google Scholar]
- Goode, M.J.; Sasser, M. Prevention—The Key to Controlling Bacterial Spot and Bacterial Speck of Tomato. Plant Dis. 1980, 64, 831. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Osdaghi, E.; Behlau, F.; Köhl, J.; Jones, J.B.; Aubertot, J.-N. Thirteen Decades of Antimicrobial Copper Compounds Applied in Agriculture. A review. Agron. Sustain. Dev. 2018, 38, 28. [Google Scholar] [CrossRef]
- Strayer-Scherer, A.; Liao, Y.; Young, M.; Ritchie, L.; Vallad, G.; Santra, S.; Freeman, J.; Clark, D.; Jones, J.; Paret, M. Advanced Copper Composites Against Copper-tolerant Xanthomonas perforans and Tomato Bacterial Spot. Phytopathology 2018, 108, 196–205. [Google Scholar] [CrossRef]
- Marco, G.M.; Stall, R. Control of Bacterial Spot of Pepper Initiated by Strains of Xanthomonas campestris pv. vesicatoria That Differ in Sensitivity to Copper. Plant Dis. 1983, 67, 779–781. [Google Scholar]
- Strayer-Scherer, A.; Timilsina, S.; Liao, Y.; Young, M.; Rosskopf, E.; Vallad, G.; Goss, E.; Santra, S.; Jones, J.; Hong, J. Simulated Leaching of Foliar Applied Copper Bactericides on the Soil Microbiome Utilizing Various Beta Diversity Resemblance Measurements. Microbiol. Spectr. 2022, 10, e01481-21. [Google Scholar] [CrossRef]
- Walters, D.R.; Ratsep, J.; Havis, N.D. Controlling Crop Diseases Using Induced Resistance: Challenges for the Future. J. Exp. Bot. 2013, 64, 1263–1280. [Google Scholar] [CrossRef]
- Walters, D.R.; Fountaine, J.M. Practical Application of Induced Resistance to Plant Diseases: An Appraisal of Effectiveness Under Field Conditions. J. Agric. Sci. 2009, 147, 523–535. [Google Scholar] [CrossRef]
- Le Thi Kieu, O.; Vichai, K.; Chainarong, R.; Sirikul, W. Influence of Biotic and Chemical Plant Inducers on Resistance of Chilli to Anthracnose. Agric. Nat. Resour. 2006, 40, 39–48. [Google Scholar]
- Iwata, M. Probenazole-a Plant Defence Activator. Pestic. Outlook 2001, 12, 28–31. [Google Scholar] [CrossRef]
- Zhu, F.; Cao, M.-Y.; Zhang, Q.-P.; Mohan, R.; Schar, J.; Mitchell, M.; Chen, H.; Liu, F.; Wang, D.; Fu, Z.Q. Join the Green Team: Inducers of Plant Immunity in the Plant Disease Sustainable Control Toolbox. J. Adv. Res. 2024, 57, 15–42. [Google Scholar] [CrossRef]
- Kloepper, J.W.; Ryu, C.-M.; Zhang, S. Induced Systemic Resistance and Promotion of Plant Growth by Bacillus spp. Phytopathology 2004, 94, 1259–1266. [Google Scholar] [CrossRef]
- Choudhary, D.K.; Johri, B.N. Interactions of Bacillus Spp. and Plants—With Special Reference to Induced Systemic Resistance (ISR). Microbiol. Res. 2009, 164, 493–513. [Google Scholar] [CrossRef]
- Preangtong, Y.; Patarapuwadol, S.; Phiriyangkul, P.; Kanhayart, T.; Kositcharoenkul, N.; Kositratana, W.; Watcharachaiyakup, J. Characterisation and Genomic Diversity of Xanthomonas Species Causing Bacterial Spot Disease of Tomato and Pepper in Thailand. Plant Pathol. 2025, 74, 1315–1334. [Google Scholar] [CrossRef]
- Kousik, C.S.; Ritchie, D.F. Disease Potential of Pepper Bacterial Spot Pathogen Races That Overcome the Bs2 Gene for Resistance. Phytopathology 1996, 86, 1336–1343. [Google Scholar]
- Safaie Farahani, A.; Taghavi, S.M. Induction of Resistance in Pepper Against Xanthomonas euvesicatoria by β-aminobutyric acid. Australas. Plant Dis. Notes 2016, 12, 1. [Google Scholar] [CrossRef]
- Mejía-Teniente, L.; de Dalia Duran-Flores, F.; Chapa-Oliver, A.M.; Torres-Pacheco, I.; Cruz-Hernández, A.; González-Chavira, M.M.; Ocampo-Velázquez, R.V.; Guevara-González, R.G. Oxidative and Molecular Responses in Capsicum annuum L. After Hydrogen Peroxide, Salicylic Acid and Chitosan Foliar Applications. Int. J. Mol. Sci. 2013, 14, 10178–10196. [Google Scholar] [CrossRef]
- Silvar, C.; Merino, F.; Díaz, J. Resistance in Pepper Plants Induced by Fusarium oxysporum f. sp. lycopersici Involves Different Defence-related Genes. Plant Biol. 2009, 11, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.W.; Yi, H.-S.; Kim, H.; Lee, B.; Lee, S.; Ghim, S.-Y.; Ryu, C.-M. Whitefly Infestation of Pepper Plants Elicits Defence Responses against Bacterial Pathogens in Leaves and Roots and Changes the Below-Ground Microflora. J. Ecol. 2011, 99, 46–56. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Samaniego-Gamez, B.Y.; Valle-Gough, R.E.; Garruna-Hernandez, R.; Reyes-Ramirez, A.; Latournerie-Moreno, L.; Tun-Suarez, J.M.; Villanueva-Alonzo, H.J.; Nunez-Ramirez, F.; Diaz, L.C.; Samaniego-Gamez, S.U.; et al. Induced Systemic Resistance in the Bacillus spp.-Capsicum chinense Jacq.-PepGMV Interaction, Elicited by Defense-Related Gene Expression. Plants 2023, 12, 2069. [Google Scholar] [CrossRef]
- Yang, P.; Zhao, Z.; Fan, J.; Liang, Y.; Bernier, M.C.; Gao, Y.; Zhao, L.; Opiyo, S.O.; Xia, Y. Bacillus proteolyticus OSUB18 Triggers Induced Systemic Resistance Against Bacterial and Fungal Pathogens in Arabidopsis. Front. Plant Sci. 2023, 14, 1078100. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Si, F.J.; Wang, N.; Wang, T.; Jin, Y.; Zheng, Y.; Yang, W.; Luo, Y.M.; Niu, D.D.; Guo, J.H.; et al. Bacillus-Secreted Oxalic Acid Induces Tomato Resistance Against Gray Mold Disease Caused by Botrytis cinerea by Activating the JA/ET Pathway. Mol. Plant Microbe Interact. 2022, 35, 659–671. [Google Scholar] [CrossRef]
- Durrant, W.E.; Dong, X. Systemic Acquired Resistance. Annu. Rev. Phytopathol. 2004, 42, 185–209. [Google Scholar] [CrossRef]
- Conrath, U.; Pieterse, C.M.; Mauch-Mani, B. Priming in Plant–pathogen Interactions. Trends Plant Sci. 2002, 7, 210–216. [Google Scholar] [CrossRef]
- Zimmerli, L.; Métraux, J.P.; Mauch-Mani, B. β-Aminobutyric acid-Induced Protection of Arabidopsis against the Necrotrophic Fungus Botrytis cinerea. Plant Physiol. 2001, 126, 517–523. [Google Scholar] [CrossRef]
- El Hadrami, A.; Adam, L.R.; El Hadrami, I.; Daayf, F. Chitosan in Plant Protection. Mar. Drugs 2010, 8, 968–987. [Google Scholar] [CrossRef] [PubMed]
- Xing, K.; Zhu, X.; Peng, X.; Qin, S. Chitosan Antimicrobial and Eliciting Properties for Pest Control in Agriculture: A Review. Agron. Sustain. Dev. 2015, 35, 569–588. [Google Scholar] [CrossRef]
- Alexandersson, E.; Mulugeta, T.; Lankinen, Å.; Liljeroth, E.; Andreasson, E. Plant Resistance Inducers Against Pathogens in Solanaceae Species—From Molecular Mechanisms to Field Application. Int. J. Mol. Sci. 2016, 17, 1673. [Google Scholar] [CrossRef]
- Hernández-Huerta, J.; Tamez-Guerra, P.; Gomez-Flores, R.; Delgado-Gardea, M.C.E.; Robles-Hernández, L.; Gonzalez-Franco, A.C.; Infante-Ramirez, R. Pepper Growth Promotion and Biocontrol against Xanthomonas euvesicatoria by Bacillus cereus and Bacillus thuringiensis Formulations. PeerJ 2023, 11, e14633. [Google Scholar] [CrossRef]
- Abo-Elyousr, K.A.; Sallam, N.M.; Mousa, M.A.A.; Imran, M.; Abdel-Rahim, I.R. Synergistic Effect of Bacillus subtilis and Benzothiadiazole (Bion®) on the Suppression of Fusarium oxysporum and the Enhancement of Disease Resistance in Capsicum annuum. J. Plant Pathol. 2024, 106, 127–138. [Google Scholar] [CrossRef]
- Mejdoub-Trabelsi, B.; Chérif, M. Effects of Different Abiotic Agents on Fusarium roseum var. sambucinum, the Causal Agent of Dry Rot of Potato Tubers. Tunis. J. Plant Prot. 2009, 4, 1. [Google Scholar]
- Yi, H.-S.; Yang, J.W.; Ryu, C.-M. ISR Meets SAR Outside: Additive Action of the Endophyte Bacillus pumilus INR7 and the Chemical Inducer, Benzothiadiazole, on Induced Resistance against Bacterial Spot in Field-grown Pepper. Front. Plant Sci. 2013, 4, 122. [Google Scholar] [CrossRef]
- van Loon, L.C. Plant Responses to Plant Growth-promoting Rhizobacteria. Eur. J. Plant Pathol. 2007, 119, 243–254. [Google Scholar] [CrossRef]
- Thomma, B.P.; Eggermont, K.; Penninckx, I.A.; Mauch-Mani, B.; Vogelsang, R.; Cammue, B.P.; Broekaert, W.F. Separate jasmonate-dependent and Salicylate-dependent Defense-response Pathways in Arabidopsis are Essential for Resistance to Distinct Microbial Pathogens. Proc. Natl. Acad. Sci. USA 1998, 95, 15107–15111. [Google Scholar] [CrossRef]
- Sharp, R.G. A Review of the Applications of Chitin and Its Derivatives in Agriculture to Modify Plant-microbial Interactions and Improve Crop Yields. Agronomy 2013, 3, 757–793. [Google Scholar] [CrossRef]
- Amborabé, B.-E.; Bonmort, J.; Fleurat-Lessard, P.; Roblin, G. Early Events Induced by Chitosan on Plant Cells. J. Exp. Bot. 2008, 59, 2317–2324. [Google Scholar] [CrossRef]
- Mittler, R. Oxidative Stress, Antioxidants and Stress Tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Pieterse, C.M.; Van der Does, D.; Zamioudis, C.; Leon-Reyes, A.; Van Wees, S.C. Hormonal Modulation of Plant Immunity. Annu. Rev. Cell Dev. Biol. 2012, 28, 489–521. [Google Scholar] [CrossRef]
- Santoyo, G.; Moreno-Hagelsieb, G.; del Carmen Orozco-Mosqueda, M.; Glick, B.R. Plant Growth-promoting Bacterial Endophytes. Microbiol. Res. 2016, 183, 92–99. [Google Scholar] [CrossRef]
- Balanzá, M.; Vázquez-Prol, F.; Rodrigo, I.; Bellés, J.M.; Vera-Sirera, F.; López-Gresa, M.P.; Lisón, P. Salicylic Acid Modulates Volatile Organic Compound Profiles During CEVd Infection in Tomato Plants. Metabolites 2025, 15, 102. [Google Scholar] [CrossRef]
- Hou, J.; Ai, M.; Li, J.; Cui, X.; Liu, Y.; Yang, Q. Exogenous Salicylic Acid Treatment Enhances the Disease Resistance of Panax vietnamensis by Regulating Secondary Metabolite Production. Front. Plant Sci. 2024, 15, 1428272. [Google Scholar] [CrossRef]
- Han, Z.; Schneiter, R. Dual Functionality of Pathogenesis-related Proteins: Defensive Role in Plants Versus Immunosuppressive role in Pathogens. Front. Plant Sci. 2024, 15, 1368467. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Huang, Y.; Yang, X.; Liao, A.; Wu, J. The Role of Indole Derivative in the Growth of Plants: A Review. Front. Plant Sci. 2023, 13, 1120613. [Google Scholar] [CrossRef] [PubMed]
- Ingrisano, R.; Tosato, E.; Trost, P.; Gurrieri, L.; Sparla, F. Proline, Cysteine and Branched-chain Amino Acids in Abiotic Stress Response of Land Plants and Microalgae. Plants 2023, 12, 3410. [Google Scholar] [CrossRef]
- Sakata, N.; Ishiga, T.; Taniguchi, S.; Ishiga, Y. Acibenzolar-S-methyl Activates Stomatal-based Defense Systemically in Japanese Radish. Front. Plant Sci. 2020, 11, 565745. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Sakugawa, K.; Novianti, F.; Arie, T.; Komatsu, K. Local application of Acibenzolar-S-Methyl Treatment Induces Antiviral Responses in Distal Leaves of Arabidopsis thaliana. Int. J. Mol. Sci. 2024, 25, 1808. [Google Scholar] [CrossRef]
- Jespersen, D.; Yu, J.; Huang, B. Metabolic Effects of Acibenzolar-S-Methyl for Improving Heat or Drought Stress in Creeping Bentgrass. Front. Plant Sci. 2017, 8, 1224. [Google Scholar] [CrossRef]
- Singh, P.K.; Wu, C.-C.; Zimmerli, L. β-aminobutyric acid Priming by Stress Imprinting. Plant Signal. Behav. 2010, 5, 878–880. [Google Scholar] [CrossRef]
- Ton, J.; Jakab, G.; Toquin, V.; Flors, V.; Iavicoli, A.; Maeder, M.N.; Metraux, J.-P.; Mauch-Mani, B. Dissecting the β-aminobutyric acid–induced Priming Phenomenon in Arabidopsis. Plant Cell 2005, 17, 987–999. [Google Scholar] [CrossRef] [PubMed]
- Catoni, M.; Alvarez-Venegas, R.; Worrall, D.; Holroyd, G.; Barraza, A.; Luna, E.; Ton, J.; Roberts, M.R. Long-Lasting Defence Priming by β-Aminobutyric Acid in Tomato is Marked by Genome-Wide Changes in DNA Methylation. Front. Plant Sci. 2022, 13, 836326. [Google Scholar] [CrossRef]
- Suarez-Fernandez, M.; Marhuenda-Egea, F.C.; Lopez-Moya, F.; Arnao, M.B.; Cabrera-Escribano, F.; Nueda, M.J.; Gunsé, B.; Lopez-Llorca, L.V. Chitosan Induces Plant Hormones and Defenses in Tomato Root Exudates. Front. Plant Sci. 2020, 11, 572087. [Google Scholar] [CrossRef]
- El Amerany, F.; Rhazi, M.; Balcke, G.; Wahbi, S.; Meddich, A.; Taourirte, M.; Hause, B. The Effect of Chitosan on Plant Physiology, Wound Response, and Fruit Quality of Tomato. Polymers 2022, 14, 5006. [Google Scholar] [CrossRef]
- Narula, K.; Elagamey, E.; Abdellatef, M.A.; Sinha, A.; Ghosh, S.; Chakraborty, N.; Chakraborty, S. Chitosan-triggered Immunity to Fusarium in Chickpea is Associated with Changes in the Plant Extracellular Matrix Architecture, Stomatal Closure and Remodeling of the Plant Metabolome and Proteome. Plant J. 2020, 103, 561–583. [Google Scholar] [CrossRef]
- Iula, G.; Miras-Moreno, B.; Rouphael, Y.; Lucini, L.; Trevisan, M. The Complex Metabolomics Crosstalk Triggered by Four Molecular Elicitors in Tomato. Plants 2022, 11, 678. [Google Scholar] [CrossRef]
- Kiesewalter, H.T.; Lozano-Andrade, C.N.; Wibowo, M.; Strube, M.L.; Maróti, G.; Snyder, D.; Jørgensen, T.S.; Larsen, T.O.; Cooper, V.S.; Weber, T. Genomic and Chemical Diversity of Bacillus subtilis Secondary Metabolites against Plant Pathogenic Fungi. mSystems 2021, 6, e00770-20. [Google Scholar] [CrossRef]
- Zaid, D.S.; Li, W.; Yang, S.; Li, Y. Identification of Bioactive Compounds of Bacillus velezensis HNA3 that Contribute to its Dual Effects as Plant Growth Promoter and Biocontrol against Post-harvested Fungi. Microbiol. Spectr. 2023, 11, e00519–e00523. [Google Scholar] [CrossRef]
- Kenfaoui, J.; Dutilloy, E.; Benchlih, S.; Lahlali, R.; Ait-Barka, E.; Esmaeel, Q. Bacillus velezensis: A Versatile Ally in the Battle against Phytopathogens—Insights and Prospects. Appl. Microbiol. Biotechnol. 2024, 108, 439. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Jin, Y.; Ren, H.; Hong, T.; Zheng, J.; Fan, W.; Hong, J.; Chen, Z.; Wang, A.; Lu, H. Research Progress of Bacillus velezensis in Plant Disease Resistance and Growth Promotion. Front. Ind. Microbiol. 2024, 2, 1442980. [Google Scholar] [CrossRef]
Isolate | Disease Severity Index 1/ | |
---|---|---|
Bell Pepper California | Chili Pepper Tavee 60 | |
Xee XCVKK-C-1 | 80.67 ± 4.04 a | 32.67 ± 2.51 a |
Xee 20HP1591 | 58.67 ± 6.35 b | 29.33 ± 6.40 a |
Xep 62XPKK2 | 57.23 ± 8.18 b | 12.30 ± 3.49 b |
Xep XCVKK-T-31 | 48.45 ± 12.65 b | 10.05 ± 2.17 b |
F-test | * | ** |
Salicylic Acid Concentration (mM) | Time Before Pathogen Inoculation (h) | Disease Severity Index 1/ | |||
---|---|---|---|---|---|
Bell Pepper California | Chili Pepper Tavee 60 | ||||
14 DAI 2/ | 21 DAI | 14 DAI | 21 DAI | ||
0.25 | 24 | 22.00 ± 10.98 b | 40.28 ± 8.50 bc | 39.60 ± 7.21 a | 44.00 ± 6.51 a |
48 | 40.86 ± 9.55 ab | 58.57 ± 12.80 ab | 37.40 ± 6.80 a | 50.60 ± 7.20 a | |
0.5 | 24 | 31.43 ± 12.01 ab | 39.29 ± 7.83 bc | 24.75 ± 12.92 ab | 33.00 ± 2.84 b |
48 | 16.50 ± 8.42 b | 23.83 ± 7.39 c | 8.25 ± 5.90 b | 8.25 ± 3.82 c | |
1 | 24 | 28.29 ± 7.41 b | 36.14 ± 5.62 bc | 35.20 ± 7.58 a | 49.84 ± 7.51 a |
48 | 52.64 ± 9.50 a | 68.20 ± 8.47 a | 33.00 ± 6.50 a | 44.00 ± 6.80 a | |
0 | 24 | 52.80 ± 9.84 a | 71.71 ± 8.17 a | 44.00 ± 7.85 a | 56.40 ± 7.90 a |
F-test | ** | ** | * | * |
Acibenzolar-S-methyl Concentration (mM) | Time Before Pathogen Inoculation (h) | Disease Severity Index 1/ | |||
---|---|---|---|---|---|
Bell Pepper California | Chili Pepper Tavee 60 | ||||
14 DAI 2/ | 21 DAI | 14 DAI | 21 DAI | ||
0.25 | 24 | 7.86 ± 4.20 c | 18.86 ± 5.50 b | 22.00 ± 13.51 b | 25.67 ± 6.58 b |
48 | 11.00 ± 8.50 bc | 23.57 ± 7.21 b | 8.80 ± 4.39 b | 15.40 ± 5.49 b | |
0.5 | 24 | 4.71 ± 2.42 c | 17.29 ± 5.24 b | 19.80 ± 11.20 b | 22.00 ± 4.10 b |
48 | 2.11 ± 1.60 c | 11.00 ± 8.90 b | 4.40 ± 4.20 b | 11.00 ± 9.28 b | |
1 | 24 | 28.29 ± 9.51 b | 59.71 ± 8.41 a | 17.60 ± 9.10 b | 26.40 ± 6.67 b |
48 | 4.71 ± 2.42 c | 33.00 ± 13.43 b | 13.20 ± 4.62 b | 22.00 ± 3.37 b | |
0 | 24 | 52.80 ± 9.84 a | 71.71 ± 8.17 a | 44.00 ± 7.85 a | 56.40 ± 7.90 a |
F-test | ** | ** | * | ** |
β-aminobutyric acid Concentration (mM) | Time Before Pathogen Inoculation (h) | Disease Severity Index 1/ | |||
---|---|---|---|---|---|
Bell Pepper California | Chili Pepper Tavee 60 | ||||
14 DAI 2/ | 21 DAI | 14 DAI | 21 DAI | ||
0.25 | 24 | 28.29 ± 11.84 bc | 34.57 ± 10.53 b | 14.67 ± 4.10 bc | 29.33 ± 5.51 b |
48 | 36.14 ± 7.39 ab | 56.57 ± 9.20 a | 15.40 ± 5.21 bc | 26.40 ± 4.90 b | |
0.5 | 24 | 11.00 ± 4.90 c | 33.00 ± 9.50 b | 11.00 ± 3.49 c | 11.00 ± 3.52 c |
48 | 12.57 ± 4.34 c | 15.71 ± 10.01 b | 15.40 ± 4.60 bc | 19.80 ± 5.57 bc | |
1 | 24 | 15.71 ± 5.04 bc | 31.43 ± 8.10 b | 22.00 ± 6.11 b | 22.00 ± 4.20 b |
48 | 14.14 ± 4.69 bc | 20.43 ± 9.00 b | 15.40 ± 5.50 bc | 24.20 ± 3.87 b | |
0 | 24 | 52.80 ± 9.84 a | 71.71 ± 8.17 a | 44.00 ± 7.85 a | 56.40 ± 7.90 a |
F-test | ** | ** | * | * |
Chitosan Concentration (µL/L) | Time Before Pathogen Inoculation (h) | Disease Severity Index 1/ | |||
---|---|---|---|---|---|
Bell Pepper California | Chili Pepper Tavee 60 | ||||
14 DAI 2/ | 21 DAI | 14 DAI | 21 DAI | ||
500 | 24 | 11.00 ± 8.93 bc | 47.14 ± 15.86 b | 19.80 ± 3.61 b | 24.20 ± 5.46 b |
48 | 26.71 ± 11.21 b | 40.86 ± 9.50 b | 17.60 ± 3.84 b | 24.20 ± 7.70 b | |
1000 | 24 | 3.14 ± 2.50 c | 18.86 ± 14.01 bc | 11.00 ± 7.38 b | 13.20 ± 1.86 c |
48 | 7.86 ± 6.76 bc | 11.00 ± 6.50 c | 13.75 ± 4.74 b | 19.25 ± 3.57 b | |
1500 | 24 | 14.67 ± 9.78 bc | 31.17 ± 14.11 bc | 11.00 ± 8.45 b | 11.00 ± 3.44 c |
48 | 22.00 ± 9.86 b | 40.86 ± 9.80 b | 26.40 ± 10.50 ab | 33.00 ± 10.77 b | |
0 | 24 | 52.80 ± 9.84 a | 71.71 ± 8.17 a | 44.00 ± 7.85 a | 56.40 ± 7.90 a |
F-test | ** | ** | * | ** |
Application Method | Time Before Pathogen Inoculation (h) | Disease Severity Index 1/ | |||
---|---|---|---|---|---|
Bell Pepper California | Chili Pepper Tavee 60 | ||||
14 DAI 2/ | 21 DAI | 14 DAI | 21 DAI | ||
Spray | 24 | 20.43 ± 7.75 b | 40.86 ± 9.58 bc | 22.00 ± 4.98 b | 30.80 ± 5.28 b |
48 | 44.00 ± 8.51 a | 51.86 ± 13.20 ab | 22.00 ± 5.21 b | 29.33 ± 6.09 b | |
Soil drench | 24 | 9.43 ± 4.35 b | 28.29 ± 12.84 c | 5.50 ± 2.12 c | 11.00 ± 4.11 c |
48 | 15.71 ± 5.99 b | 39.29 ± 11.50 bc | 2.75 ± 1.30 c | 24.75 ± 4.76 b | |
Spray with water | 24 | 52.80 ± 9.84 a | 71.71 ± 8.17 a | 44.00 ± 7.85 a | 56.40 ± 7.90 a |
F-test | ** | ** | ** | ** |
Application Method | Time Before Pathogen Inoculation (h) | Disease Severity Index 1/ | |||
---|---|---|---|---|---|
Bell Pepper California | Chili Pepper Tavee 60 | ||||
14 DAI 2/ | 21 DAI | 14 DAI | 21 DAI | ||
Spray | 24 | 56.57 ± 7.43 a | 78.57 ± 8.92 a | 19.54 ± 6.47 b | 26.40 ± 8.67 b |
48 | 23.57 ± 9.84 b | 45.57 ± 7.86 b | 19.80 ± 7.63 b | 27.40 ± 6.82 b | |
Soil drench | 24 | 7.86 ± 6.76 b | 25.14 ± 6.35 c | 11.00 ± 5.21 b | 19.83 ± 5.38 b |
48 | 22.00 ± 7.50 b | 31.43 ± 6.92 bc | 8.80 ± 4.55 b | 8.92 ± 3.12 c | |
Spray with water | 0 | 52.80 ± 9.84 a | 71.71 ± 8.17 a | 44.00 ± 7.85 a | 56.40 ± 7.90 a |
F-test | ** | ** | * | ** |
Plant Resistance Inducer | Disease Severity 1/ | |
---|---|---|
14 DAI 2/ | 21 DAI | |
Salicylic acid | 4.43 ± 2.94 c | 36.66 ± 8.56 ab |
Acibenzolar-S-methyl | 14.67 ± 7.77 bc | 35.43 ± 9.79 ab |
β-Aminobutyric acid | 11.00 ± 7.24 bc | 29.30 ± 5.18 b |
Chitosan | 22.34 ± 4.20 b | 47.67 ± 2.45 a |
B. subtilis B01 | 3.67 ± 1.85 c | 7.33 ± 4.23 c |
B. velezensis CH6 | 11.44 ± 6.93 bc | 36.67 ± 8.50 ab |
Mock | 29.33 ± 2.38 a | 51.54 ± 10.60 a |
F-test | ** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keawmanee, P.; Pongpisutta, R.; Patarapuwadol, S.; Watcharachaiyakup, J.; Chiba, S.; Bincader, S.; Rattanakreetakul, C. Sustainable Management of Bacterial Leaf Spot in Bell Pepper by Biological and Chemical Resistance Inducers. Agriculture 2025, 15, 1859. https://doi.org/10.3390/agriculture15171859
Keawmanee P, Pongpisutta R, Patarapuwadol S, Watcharachaiyakup J, Chiba S, Bincader S, Rattanakreetakul C. Sustainable Management of Bacterial Leaf Spot in Bell Pepper by Biological and Chemical Resistance Inducers. Agriculture. 2025; 15(17):1859. https://doi.org/10.3390/agriculture15171859
Chicago/Turabian StyleKeawmanee, Pisut, Ratiya Pongpisutta, Sujin Patarapuwadol, Jutatape Watcharachaiyakup, Sotaro Chiba, Santiti Bincader, and Chainarong Rattanakreetakul. 2025. "Sustainable Management of Bacterial Leaf Spot in Bell Pepper by Biological and Chemical Resistance Inducers" Agriculture 15, no. 17: 1859. https://doi.org/10.3390/agriculture15171859
APA StyleKeawmanee, P., Pongpisutta, R., Patarapuwadol, S., Watcharachaiyakup, J., Chiba, S., Bincader, S., & Rattanakreetakul, C. (2025). Sustainable Management of Bacterial Leaf Spot in Bell Pepper by Biological and Chemical Resistance Inducers. Agriculture, 15(17), 1859. https://doi.org/10.3390/agriculture15171859