Machine Learning Applied to Crop Mapping in Rice Varieties Using Spectral Images
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Setup
2.3. Satellite Data
2.4. Variety Data
2.5. Statistics and Machine Learning Algorithms
2.5.1. Principal Component Analysis
2.5.2. Machine Learning Models
k-Nearest Neighbors (k-NN)
Extreme Gradient Boosting (XGBoost)
Random Forest (RF)
Logistic Regression (LR)
2.5.3. Performance Evaluation
- , : the different rice varieties.
- : the number of samples that truly belong to class and were predicted as class .
- : total number of samples that truly belong to class (i = 1, 2…, 8).
- : total number of samples that were predicted as class (j = 1, 2…, 8).
- N: total number of samples.
- False positives (), which are the samples that have been incorrectly classified as belonging to class , that is
- False negatives (), which are the samples that have been incorrectly classified as not belonging to class ; thus,
2.6. Software
3. Results
3.1. PCA Results
3.2. Results of Machine Learning Models
4. Discussion
4.1. Model Performance Comparison
4.2. Spectral Band Combination Analysis
4.3. Influence of Phenological Stages
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Biradar, C.M.; Thenkabail, P.S.; Platonov, A.; Xiao, X.M.; Geerken, R.; Noojipady, P.; Turral, H.; Vithanage, J. Water productivity mapping methods using remote sensing. J. Appl. Remote Sens. 2008, 2, 023544. [Google Scholar]
- Food and Agriculture Organization of the United Nations. About FAO’s Work on Plant Production and Protection; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022; Available online: https://www.fao.org/plant-production-protection/about/en (accessed on 31 May 2025).
- Wolanin, A.; Mateo-García, G.; Camps-Valls, G.; Gómez-Chova, L.; Meroni, M.; Duveiller, G.; Liangzhi, Y.; Guanter, L. Estimating and Understanding Crop Yields with Explainable Deep Learning in the Indian Wheat Belt. Environ. Res. Lett. 2020, 15, 024019. [Google Scholar] [CrossRef]
- Awika, J.M. Major cereal grains production and use around the world. In Advances in Cereal Science: Implications to Food Processing and Health Promotion, 1st ed.; Awika, J.M., Piironen, V., Bean, S., Eds.; American Chemical Society (ACS): Washington, DC, USA, 2011; pp. 1–13. [Google Scholar]
- Farahzadi, F.; Ebrahimi, A.; Zarrinnia, V.; Azizinezhad, R. Evaluation of Genetic Diversity in Iranian Rice (Oryza sativa) Cultivars for Resistance to Blast Disease Using Microsatellite (SSR) Markers. Agric. Res. 2020, 9, 460–468. [Google Scholar] [CrossRef]
- Zahra, N.; Hafeez, M.B.; Nawaz, A.; Farooq, M. Rice production systems and grain quality. J. Cereal Sci. 2022, 105, 103463. [Google Scholar] [CrossRef]
- Zhao, M.; Lin, Y.; Chen, H. Improving nutritional quality of rice for human health. Theor. Appl. Genet. 2020, 133, 1397–1413. [Google Scholar] [CrossRef]
- Cantrell, R.P.; Reeves, T.G. The rice genome. The cereal of the world’s poor takes center stage. Science 2002, 296, 53. [Google Scholar] [CrossRef]
- Becker-Reshef, I.; Bandaru, V.; Barker, B.; Coutu, S.; Deines, J.M.; Doorn, B.; Eilerts, G.; Franch, B.; Galvez, A.S.; Hosseini, M.; et al. The NASA harvest program on agriculture and food security. In Remote Sensing of Agriculture and Land Cover/Land Use Changes in South and Southeast Asian Countries; Springer International Publishing: Cham, Switzerland, 2022; pp. 53–80. [Google Scholar]
- UN. Department of Economic and Social Affairs; UNCTAD; UN. ECA; UN. ECE; UN. ECLAC; UN. ESCAP; UN. ESCWA. World Economic Situation and Prospects Executive Summary: 2015; UN: New York, NY, USA, 2025; Available online: https://coilink.org/20.500.12592/5rsl4ww (accessed on 24 June 2025).
- Sanyal, J.; Lu, X.X. Application of Remote Sensing in Flood Management with Special Reference to Monsoon Asia: A Review. Nat. Hazards 2004, 33, 283–301. [Google Scholar] [CrossRef]
- Zhai, Y.; Wang, N.; Zhang, L.; Hao, L.; Hao, C. Automatic crop classification in northeastern China by improved nonlinear dimensionality reduction for satellite image time series. Remote Sens. 2020, 12, 2726. [Google Scholar] [CrossRef]
- Bargiel, D. A new method for crop classification combining time series of radar images and crop phenology information. Remote Sens. Environ. 2017, 198, 369–383. [Google Scholar] [CrossRef]
- Heupel, K.; Spengler, D.; Itzerott, S. A progressive crop-type classification using multitemporal remote sensing data and phenological information. PFG—J. Photogramm. Remote Sens. Geoinf. Sci. 2018, 86, 53–69. [Google Scholar] [CrossRef]
- Bargiel, D.; Herrmann, S.; Lohmann, P.; Sörgel, U. Land use classification with high-resolution satellite radar for estimating the impacts of land use change on the quality of ecosystem services. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2010, 38, 68–73. [Google Scholar]
- Conrad, C.; Fritsch, S.; Zeidler, J.; Rücker, G.; Dech, S. Per-field irrigated crop classification in arid Central Asia using SPOT and ASTER data. Remote Sens. 2010, 2, 1035–1056. [Google Scholar] [CrossRef]
- Wei, P.; Ye, H.; Qiao, S.; Liu, R.; Nie, C.; Zhang, B.; Song, L.; Huang, S. Early Crop Mapping Based on Sentinel-2 Time-Series Data and the Random Forest Algorithm. Remote Sens. 2023, 15, 3212. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Feng, L.; Ma, Y.; Du, Q. A New Attention-Based Cnn Approach for Crop Mapping Using Time Series Sentinel-2 Images. Comput. Electron. Agric. 2021, 184, 106090. [Google Scholar] [CrossRef]
- Feng, S.; Zhao, J.; Liu, T.; Zhang, H.; Zhang, Z.; Guo, X. Crop Type Identification and Mapping Using Machine Learning Algorithms and Sentinel-2 Time Series Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3295–3306. [Google Scholar] [CrossRef]
- Bellón, B.; Bégué, A.; Lo Seen, D.; de Almeida, C.; Simões, M. A Remote Sensing Approach for Regional-Scale Mapping of Agricultural Land-Use Systems Based on NDVI Time Series. Remote Sens. 2017, 9, 600. [Google Scholar] [CrossRef]
- Ranjan, R.; Chopra, U.K.; Sahoo, R.N.; Singh, A.K.; Pradhan, S. Assessment of plant nitrogen stress in wheat (Triticum aestivum L.) through hyperspectral indices. Int. J. Remote Sens. 2012, 33, 6342–6360. [Google Scholar] [CrossRef]
- Agenjos-Moreno, A.; Rubio, C.; Uris, A.; Simeón, R.; Franch, B.; Domingo, C.; Bautista, A.S. Strategy for Monitoring the Blast Incidence in Crops of Bomba Rice Variety Using Remote Sensing Data. Agriculture 2024, 14, 1385. [Google Scholar] [CrossRef]
- Wang, B.; Fan, D. Research progress of deep learning in classification and recognition of remote sensing images. Bull. Surv. Mapp. 2019, 2, 99–102, 136. [Google Scholar]
- Hatfield, J.L.; Gitelson, A.A.; Schepers, J.S.; Walthall, C.L. Application of Spectral Remote Sensing for Agronomic Decisions. Agron. J. 2008, 100, S-117–S-131. [Google Scholar] [CrossRef]
- Forkuor, G.; Conrad, C.; Thiel, M.; Landmann, T.; Barry, B. Evaluating the sequential masking classification approach for improving crop discrimination in the Sudanian Savanna of West Africa. Comput. Electron. Agric. 2015, 118, 380–389. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, D.; Moran, E.; Batistella, M.; Dutra, L.V.; Sanches, I.D.A.; da Silva, R.F.B.; Huang, J.; Luiz, A.J.B.; de Oliveira, M.A.F. Mapping croplands, cropping patterns, and crop types using MODIS time-series data. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 133–147. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Al-Katheeri, M.M. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 2016, 13, 839–856. [Google Scholar] [CrossRef]
- Hou, H.; Wang, R.; Murayama, Y. Scenario-based modelling for urban sustainability focusing on changes in cropland under rapid urbanization: A case study of Hangzhou from 1990 to 2035. Sci. Total Environ. 2019, 661, 422–431. [Google Scholar] [CrossRef]
- Conrad, C.; Dech, S.; Dubovyk, O.; Fritsch, S.; Klein, D.; Löw, F.; Schorcht, G.; Zeidler, J. Derivation of temporal windows for accurate crop discrimination in heterogeneous croplands of Uzbekistan using multitemporal RapidEye images. Comput. Electron. Agric. 2014, 103, 63–74. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef]
- Simonneaux, V.; Duchemin, B.; Helson, D.; Er-Raki, S.; Olioso, A.; Chehbouni, A. The use of high-resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in Central Morocco. Int. J. Remote Sens. 2008, 29, 95–116. [Google Scholar] [CrossRef]
- Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-Based Crop Identification Using Multiple Vegetation Indices, Textural Features and Crop Phenology. Remote Sens. Environ. 2011, 115, 1301–1316. [Google Scholar] [CrossRef]
- Chang, J.; Hansen, M.C.; Pittman, K.; Carroll, M.; DiMiceli, C. Corn and soybean mapping in the United States using MODIS time-series data sets. Agron. J. 2007, 99, 1654–1664. [Google Scholar] [CrossRef]
- Guo, Y.; Jia, X.; Paull, D. Mapping of rice varieties with sentinel-2 data via deep cnn learning in spectral and time domains. In Proceedings of the 2018 Digital Image Computing: Techniques and Applications (DICTA), Canberra, Australia, 10–13 December 2018; pp. 1–7. [Google Scholar]
- Rauf, U.; Qureshi, S.; Jabbar, H.; Zeb, A.; Mirza, A.; Alanazi, E.; Rashid, N. A New Method for Pixel Classification for Rice Variety Identification Using Spectral and Time Series Data from Sentinel-2 Satellite Imagery. Comput. Electron. Agric. 2022, 193, 106731. [Google Scholar] [CrossRef]
- Saadat, M.; Seydi, S.T.; Hasanlou, M.; Homayouni, S. A Convolutional Neural Network Method for Rice Mapping Using Time-Series of Sentinel-1 and Sentinel-2 Imagery. Agriculture 2022, 12, 2083. [Google Scholar] [CrossRef]
- López-Andreu, F.J.; Erena, M.; Dominguez-Gómez, J.A.; López-Morales, J.A. Sentinel-2 Images and Machine Learning as Tool for Monitoring of the Common Agricultural Policy: Calasparra Rice as a Case Study. Agronomy 2021, 11, 621. [Google Scholar] [CrossRef]
- de Barreda, D.G.; Pardo, G.; Osca, J.; Catala-Forner, M.; Consola, S.; Garnica, I.; López-Martínez, N.; Palmerín, J.; Osuna, M. An Overview of Rice Cultivation in Spain and the Management of Herbicide-Resistant Weeds. Agronomy 2021, 11, 1095. [Google Scholar] [CrossRef]
- Fita, D.; Rubio, C.; Franch, B.; Castiñeira-Ibáñez, S.; Tarrazó-Serrano, D.; San Bautista, A. Improving Harvester Yield Maps Postprocessing Leveraging Remote Sensing Data in Rice Crop. Precis. Agric. 2025, 26, 33. [Google Scholar] [CrossRef]
- Dirección General del Catastro. Sede Electrónica del Catastro: Visor cartográfico. Ministerio de Hacienda. 2025. Available online: https://www.sedecatastro.gob.es (accessed on 24 June 2025).
- Federación de Arroceros de Sevilla. Sitio web Oficial de la Federación de Arroceros de Sevilla. 2025. Available online: https://www.federaciondearroceros.es/ (accessed on 24 June 2025).
- Wang, S.; Di Tommaso, S.; Faulkner, J.; Friedel, T.; Kennepohl, A.; Strey, R.; Lobell, D.B. Mapping Crop Types in Southeast India with Smartphone Crowdsourcing and Deep Learning. Remote Sens. 2020, 12, 2957. [Google Scholar] [CrossRef]
- Hudait, M.; Patel, P.P. Crop-type mapping and acreage estimation in smallholding plots using Sentinel-2 images and machine learning algorithms: Some comparisons. Egypt. J. Remote Sens. Space Sci. 2022, 25, 147–156. [Google Scholar] [CrossRef]
- Prins, A.J.; Van Niekerk, A. Crop type mapping using LiDAR, Sentinel-2 and aerial imagery with machine learning algorithms. Geo-Spat. Inf. Sci. 2021, 24, 215–227. [Google Scholar] [CrossRef]
- Zhang, P.; Jia, Y.; Shang, Y. Research and application of XGBoost in imbalanced data. Int. J. Distrib. Sens. Netw. 2022, 18, 15501329221106935. [Google Scholar] [CrossRef]
- Arias, M.; Campo-Bescós, M.Á.; Álvarez-Mozos, J. Crop classification based on temporal signatures of Sentinel-1 observations over Navarre province, Spain. Remote. Sens. 2020, 12, 278. [Google Scholar] [CrossRef]
- Rui, X.; Su, S.; Mai, G.; Zhang, Z.; Yang, C. Quantifying determinants of cash crop expansion and their relative effects using logistic regression modeling and variance partitioning. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 258–263. [Google Scholar]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Uddin, K.M.M.; Biswas, N.; Rikta, S.T.; Dey, S.K. Machine learning-based diagnosis of breast cancer utilizing feature optimization technique. Comput. Methods Programs Biomed. Updat. 2023, 3, 100098. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Amit, Y.; Geman, D. Shape quantization and recognition with randomized trees. Neural Comput. 1997, 9, 1545–1588. [Google Scholar] [CrossRef]
- Cox, D.R. The Regression Analysis of Binary Sequences. J. R. Stat. Soc. Ser. B 1958, 20, 215–242. [Google Scholar] [CrossRef]
- Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 2020, 17, 168–192. [Google Scholar] [CrossRef]
- Lancashire, P.D.; Bleiholder, H.; van den Boom, T.; Langelüddeke, P.; Stauss, R.; Weber, E.; Witzenberger, A. A Uniform Decimal Code for Growth Stages of Crops and Weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Thanh, D.K.; Ngoc, D.L.; Dieu, H.D.; Tran, V.A. Comparison of random forest and extreme gradient boosting algorithms in land cover classification in van yen district, Yen Bai Province, Vietnam. J. Hydro-Environ. Res. 2025, 23, 50–59. [Google Scholar]
- Asgari, S.; Hasanlou, M. A Comparative Study of Machine Learning Classifiers for Crop Type Mapping Using Vegetation Indices. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, X-4/W1-2022, 79–85. [Google Scholar] [CrossRef]
- Zhong, L.H.; Gong, P.; Biging, G.S. Phenology-based crop classification algorithm and its implications on agricultural water use assessments in California’s Central Valley. Photogramm. Eng. Remote Sens. 2012, 78, 799–813. [Google Scholar] [CrossRef]
- Militino, A.F.; Goyena, H.; Pérez-Goya, U.; Ugarte, M.D. Logistic Regression versus XGBoost for Detecting Burned Areas Using Satellite Images. Environ. Ecol. Stat. 2024, 31, 57–77. [Google Scholar] [CrossRef]
- Yang, H.-C.; Zhou, J.-P.; Zheng, C.; Wu, Z.; Li, Y.; Li, L.-G. PhenologyNet: A fine-grained approach for crop-phenology classification fusing convolutional neural network and phenotypic similarity. Comput. Electron. Agric. 2025, 229, 109728. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Zhang, H.; Duan, Z.; Li, Y.; Zhao, G.; Zhu, S.; Fu, W.; Peng, T.; Zhao, Q.; Svanberg, S.; Hu, J. Vis/NIR Reflectance Spectroscopy for Hybrid Rice Variety Identification and Chlorophyll Content Evaluation for Different Nitrogen Fertilizer Levels. R. Soc. Open Sci. 2019, 6, 191132. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the Capabilities of Sentinel-2 for Quantitative Estimation of Biophysical Variables in Vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef]
- Clevers, J.G.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Imran, H.A.; Gianelle, D.; Rocchini, D.; Dalponte, M.; Martín, M.P.; Sakowska, K.; Wohlfahrt, G.; Vescovo, L. VIS-NIR, red-edge and NIR-shoulder based normalized vegetation indices response to co-varying leaf and Canopy structural traits in heterogeneous grasslands. Remote Sens. 2020, 12, 2254. [Google Scholar] [CrossRef]
- Xie, Q.; Dash, J.; Huete, A.; Jiang, A.; Yin, G.; Ding, Y.; Peng, D.; Hall, C.C.; Brown, L.; Shi, Y.; et al. Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 187–195. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, J.; Fu, Z.; Wang, W.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Integrating phenology information with UAV multispectral data for rice nitrogen nutrition diagnosis. Eur. J. Agron. 2025, 169, 127696. [Google Scholar] [CrossRef]
- Qiu, B.; Yu, L.; Yang, P.; Wu, W.; Chen, J.; Zhu, X.; Duan, M. Mapping Upland Crop–Rice Cropping Systems for Targeted Sustainable Intensification in South China. Crop J. 2024, 12, 614–629. [Google Scholar] [CrossRef]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Sobue, S.I.; Chiang, S.H.; Maung, T.H.; Chang, L.Y. Delineating and predicting changes in rice cropping systems using multi-temporal MODIS data in myanmar. J. Spat. Sci. 2017, 62, 235–259. [Google Scholar] [CrossRef]
- Wang, F.M.; Yi, Q.X.; Hu, J.H.; Xie, L.L.; Yao, X.P.; Xu, T.Y.; Zheng, J.Y. Combining spectral and textural information in UAV hyperspectral images to estimate rice grain yield. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102397. [Google Scholar] [CrossRef]
Season | Number of Parcels | Area (ha) |
---|---|---|
2021 | 587 | 2215.7 |
2022 | 408 | 2130.5 |
2024 | 648 | 2356.6 |
Variety | 2021 | 2022 | 2024 | Total |
---|---|---|---|---|
Puntal | 36,337 | 34,225 | 37,280 | 107,842 |
Hispalong | 29,957 | 25,565 | 58,027 | 113,549 |
J Sendra | 40,208 | 44,584 | 38,580 | 123,372 |
Copsemar 7 | 17,038 | 17,730 | 20,215 | 54,983 |
Guadiagrán | 34,980 | 7943 | 22,103 | 65,026 |
Bomba | 18,262 | 23,464 | 17,213 | 58,939 |
Hispagran | 20,816 | 31,380 | 26,935 | 79,131 |
Piñana | 38,057 | 28,160 | 1218 | 67,435 |
Total | 235,655 | 213,051 | 221,571 | 670,277 |
Band Number | Name | Central Wavelength (nm) | Spatial Resolution (m) | Spectral Region |
---|---|---|---|---|
B02 | Blue | 490 | 10 | Visible |
B03 | Green | 560 | 10 | Visible |
B04 | Red | 665 | 10 | Visible |
B08 | Near-Infrared (NIR) | 842 | 10 | Near-Infrared |
B05 | Vegetation Red Edge 1 | 705 | 20 | Red Edge |
B06 | Vegetation Red Edge 2 | 740 | 20 | Red Edge |
B07 | Vegetation Red Edge 3 | 783 | 20 | Red Edge |
B8A | Narrow NIR | 865 | 20 | Near-Infrared |
B11 | Short Wave Infrared 1 | 1610 | 20 | Short Wave Infrared |
B12 | Short Wave Infrared 2 | 2190 | 20 | Short Wave Infrared |
Phenological Stage | DAS | 2021 | 2022 | 2024 |
---|---|---|---|---|
Germination | 0 | 10 June | 5 June | 4 June |
Tillering | 20 | 30 June | 25 June | 24 June |
35 | 15 July | 10 July | 9 July | |
40 | 20 July | 15 July | 14 July | |
45 | 25 July | 20 July | 19 July | |
Inflorescence emergence | 75 | 18 August | 19 August | 18 August |
Flowering | 80 | - | - | 23 August |
90 | 28 August | 3 September | 2 September |
Crop | Algorithm | Study Area | Reference |
---|---|---|---|
Rice, cotton, pepper, peanut, tomato, maize, eggplant, gram, millet, sorghum | RF | India | [42] |
Boro rice, vegetables, betel vine | RF and k-NN | India | [43] |
Cotton, maize, wheat, barley, lucerne, groundnuts, canola, and pecan nuts | RF and XGBoost | South Africa | [44] |
Tobacco, rice, winter wheat, rapeseed/canola | XGBoost | China | [45] |
Barley, rice, corn (maize), wheat, rapeseed (Canola), alfalfa, sunflower, legumes, oats, vineyards, cherry trees, shrub grass, broad beans | RF and XGBoost | Navarre province, Spain | [46] |
Tea, fruit plantations, mulberry | LR | China | [47] |
Statistical Parameters | Explanation | Equation |
---|---|---|
Accuracy | Proportion of correct predictions over the total number of samples | (6) |
Precision | Proportion of correctly classified positive from the total predicted positive | (7) |
Recall (sensitivity or true positive rate) | Proportion of correctly classified positive from the total truly positive | (8) |
Specificity (or true negative rate) | Proportion of correctly classified negative from the total truly negative | (9) |
F1-score (or F-measure) | Harmonic mean between Precision and recall values | (10) |
Scenario | Bands Combinations | |||
---|---|---|---|---|
Visible Bands | Red-Edge & NIR Bands | SWIR Bands | Selection Criteria | |
1 | B02, B03, B04 | B05, B06, B07, B08, B08A | B11, B12 | A baseline scenario was created using all bands, to retain over 92% of the total variance and ensure maximum spectral information was included. |
2 | – | B05, B06, B07, B08, B08A | B11, B12 | Focus on Red-Edge, NIR and SWIR regions based on PCA loadings. |
3 | – | B05, B06, B07, B08, B08A | – | Only Red-edge and NIR bands are used, relevant for canopy reflectance. |
4 | – | – | B11, B12 | Only SWIR bands, useful for water content and stress indicators. |
DAS | Scenario | Analysis | Accuracy | Precision | Recall | Specificity | F1-Score |
---|---|---|---|---|---|---|---|
35–40–45 | Scenario 1 | Validation | 0.98 | 0.98 | 0.98 | 0.99 | 0.98 |
Test | 0.93 | 0.93 | 0.93 | 0.99 | 0.93 | ||
Scenario 2 | Validation | 0.98 | 0.98 | 0.98 | 0.99 | 0.98 | |
Test | 0.91 | 0.91 | 0.91 | 0.98 | 0.91 | ||
Scenario 3 | Validation | 0.96 | 0.96 | 0.96 | 0.99 | 0.96 | |
Test | 0.84 | 0.84 | 0.84 | 0.97 | 0.84 | ||
Scenario 4 | Validation | 0.88 | 0.88 | 0.88 | 0.98 | 0.88 | |
Test | 0.62 | 0.66 | 0.62 | 0.94 | 0.63 | ||
75–80–90 | Scenario 1 | Validation | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
Test | 0.94 | 0.94 | 0.94 | 0.99 | 0.94 | ||
Scenario 2 | Validation | 0.98 | 0.98 | 0.98 | 0.99 | 0.98 | |
Test | 0.93 | 0.93 | 0.93 | 0.99 | 0.93 | ||
Scenario 3 | Validation | 0.96 | 0.96 | 0.96 | 0.99 | 0.96 | |
Test | 0.88 | 0.88 | 0.88 | 0.98 | 0.88 | ||
Scenario 4 | Validation | 0.89 | 0.89 | 0.89 | 0.98 | 0.89 | |
Test | 0.67 | 0.68 | 0.67 | 0.95 | 0.67 |
DAS | Scenario | Analysis | Accuracy | Precision | Recall | Specificity | F1-Score |
---|---|---|---|---|---|---|---|
35–40–45 | Scenario 1 | Validation | 0.96 | 0.96 | 0.96 | 0.99 | 0.96 |
Test | 0.85 | 0.86 | 0.85 | 0.97 | 0.85 | ||
Scenario 2 | Validation | 0.96 | 0.96 | 0.96 | 0.99 | 0.96 | |
Test | 0.80 | 0.81 | 0.80 | 0.97 | 0.80 | ||
Scenario 3 | Validation | 0.96 | 0.96 | 0.96 | 0.99 | 0.96 | |
Test | 0.68 | 0.72 | 0.68 | 0.95 | 0.68 | ||
Scenario 4 | Validation | 0.79 | 0.79 | 0.79 | 0.97 | 0.78 | |
Test | 0.49 | 0.54 | 0.49 | 0.92 | 0.50 | ||
75–80–90 | Scenario 1 | Validation | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
Test | 0.93 | 0.93 | 0.93 | 0.99 | 0.93 | ||
Scenario 2 | Validation | 0.98 | 0.98 | 0.98 | 0.99 | 0.98 | |
Test | 0.92 | 0.92 | 0.92 | 0.98 | 0.92 | ||
Scenario 3 | Validation | 0.95 | 0.95 | 0.95 | 0.99 | 0.96 | |
Test | 0.85 | 0.85 | 0.85 | 0.79 | 0.85 | ||
Scenario 4 | Validation | 0.84 | 0.84 | 0.84 | 0.97 | 0.84 | |
Test | 0.60 | 0.62 | 0.60 | 0.94 | 0.60 |
DAS | Scenario | Analysis | Accuracy | Precision | Recall | Specificity | F1-Score |
---|---|---|---|---|---|---|---|
35–40–45 | Scenario 1 | Validation | 0.98 | 0.98 | 0.98 | 0.99 | 0.98 |
Test | 0.92 | 0.93 | 0.92 | 0.98 | 0.92 | ||
Scenario 2 | Validation | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | |
Test | 0.91 | 0.92 | 0.91 | 0.98 | 0.91 | ||
Scenario 3 | Validation | 0.98 | 0.98 | 0.98 | 0.99 | 0.98 | |
Test | 0.84 | 0.85 | 0.84 | 0.97 | 0.84 | ||
Scenario 4 | Validation | 0.97 | 0.97 | 0.97 | 0.99 | 0.97 | |
Test | 0.73 | 0.74 | 0.73 | 0.96 | 0.73 | ||
75–80–90 | Scenario 1 | Validation | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
Test | 0.94 | 0.94 | 0.94 | 0.99 | 0.94 | ||
Scenario 2 | Validation | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | |
Test | 0.94 | 0.94 | 0.94 | 0.99 | 0.94 | ||
Scenario 3 | Validation | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | |
Test | 0.89 | 0.93 | 0.89 | 0.98 | 0.89 | ||
Scenario 4 | Validation | 0.98 | 0.98 | 0.98 | 0.99 | 0.98 | |
Test | 0.73 | 0.74 | 0.73 | 0.96 | 0.74 |
DAS | Scenario | Analysis | Accuracy | Precision | Recall | Specificity | F1-Score |
---|---|---|---|---|---|---|---|
35–40–45 | Scenario 1 | Validation | 0.60 | 0.59 | 0.60 | 0.94 | 0.59 |
Test | 0.33 | 0.34 | 0.33 | 0.90 | 0.31 | ||
Scenario 2 | Validation | 0.56 | 0.55 | 0.56 | 0.93 | 0.54 | |
Test | 0.31 | 0.34 | 0.31 | 0.90 | 0.31 | ||
Scenario 3 | Validation | 0.49 | 0.49 | 0.49 | 0.92 | 0.48 | |
Test | 0.23 | 0.28 | 0.23 | 0.89 | 0.19 | ||
Scenario 4 | Validation | 0.33 | 0.30 | 0.33 | 0.90 | 0.39 | |
Test | 0.16 | 0.14 | 0.16 | 0.88 | 0.13 | ||
75–80–90 | Scenario 1 | Validation | 0.75 | 0.75 | 0.75 | 0.96 | 0.75 |
Test | 0.48 | 0.50 | 0.48 | 0.92 | 0.47 | ||
Scenario 2 | Validation | 0.63 | 0.64 | 0.63 | 0.94 | 0.63 | |
Test | 0.40 | 0.40 | 0.40 | 0.91 | 0.38 | ||
Scenario 3 | Validation | 0.52 | 0.53 | 0.52 | 0.93 | 0.52 | |
Test | 0.38 | 0.35 | 0.38 | 0.91 | 0.35 | ||
Scenario 4 | Validation | 0.42 | 0.43 | 0.42 | 0.91 | 0.41 | |
Test | 0.20 | 0.18 | 0.20 | 0.88 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simeón, R.; Masslouhi, K.E.; Agenjos-Moreno, A.; Ricarte, B.; Uris, A.; Franch, B.; Rubio, C.; San Bautista, A. Machine Learning Applied to Crop Mapping in Rice Varieties Using Spectral Images. Agriculture 2025, 15, 1832. https://doi.org/10.3390/agriculture15171832
Simeón R, Masslouhi KE, Agenjos-Moreno A, Ricarte B, Uris A, Franch B, Rubio C, San Bautista A. Machine Learning Applied to Crop Mapping in Rice Varieties Using Spectral Images. Agriculture. 2025; 15(17):1832. https://doi.org/10.3390/agriculture15171832
Chicago/Turabian StyleSimeón, Rubén, Kenza El Masslouhi, Alba Agenjos-Moreno, Beatriz Ricarte, Antonio Uris, Belen Franch, Constanza Rubio, and Alberto San Bautista. 2025. "Machine Learning Applied to Crop Mapping in Rice Varieties Using Spectral Images" Agriculture 15, no. 17: 1832. https://doi.org/10.3390/agriculture15171832
APA StyleSimeón, R., Masslouhi, K. E., Agenjos-Moreno, A., Ricarte, B., Uris, A., Franch, B., Rubio, C., & San Bautista, A. (2025). Machine Learning Applied to Crop Mapping in Rice Varieties Using Spectral Images. Agriculture, 15(17), 1832. https://doi.org/10.3390/agriculture15171832