Pulse Width Modulation on the Droplet Spectrum and Velocity of Spray Nozzles
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Station and Test Object
2.2. Experimental Evaluation
2.3. Spray Nozzles
2.4. Evaluated Characteristics
2.5. Statistical Analysis
- Constants:
- ○
- Nozzle type: AXI, ADI, CVI, JAI, J3D, JTT, JGC, and JAP;
- ○
- Nozzle flow: 0.757 L min−1;
- ○
- Spray height: 30 cm.
- Variables:
- ○
- Spraying systems: PWM valve on and off;
- ○
- Work speeds: 3.9, 2.8, 1.7, and 1.1 m s−1, which correspond to duty cycles of 100%, 71%, 42% and 35%, respectively.
- Outputs:
- ○
- Droplet size (Dv0.5);
- ○
- Percentage of the volume composed of droplets < 100 µm;
- ○
- Droplet velocity;
- ○
- Relative span.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hong, S.-W.; Park, J.; Jeong, H.; Lee, S.; Choi, L.; Zhao, L.; Zhu, H. Fluid dynamic approaches for prediction of spray drift from ground pesticide applications: A review. Agronomy 2021, 11, 1182. [Google Scholar] [CrossRef]
- Nuyttens, D.; Baetens, K.; De Schampheleire, M.; Sonck, B. Effect of nozzle type, size and pressure on spray droplet characteristics. Biosyst. Eng. 2007, 97, 333–345. [Google Scholar] [CrossRef]
- Privitera, S.; Manetto, G.; Pascuzzi, S.; Pessina, D.; Cerruto, E. Drop size measurement techniques for agricultural sprays: A state-of-the-art review. Agronomy 2023, 13, 678. [Google Scholar] [CrossRef]
- Xue, S.; Han, J.; Xi, X.; Lan, Z.; Wen, R.; Ma, X. Coordination of distinctive pesticide adjuvants and atomization nozzles on droplet spectrum evolution for spatial drift reduction. Chin. J. Chem. Eng. 2024, 66, 250–262. [Google Scholar] [CrossRef]
- Grella, M.; Gioelli, F.; Marucco, P.; Zwertvaegher, I.; Mozzanini, E.; Mylonas, N.; Nuyttens, D.; Balsari, P. Field assessment of a pulse width modulation (PWM) spray system applying different spray volumes: Duty cycle and forward speed effects on vines spray coverage. Precis. Agric. 2021, 23, 219–252. [Google Scholar] [CrossRef]
- Butts, T.R.; Butts, L.E.; Luck, J.D.; Fritz, B.K.; Hoffmann, W.C.; Kruger, G.R. Droplet size and nozzle tip pressure from a pulse-width modulation sprayer. Biosyst. Eng. 2019, 178, 52–69. [Google Scholar] [CrossRef]
- Porter, W.M.; Rascon, J.A.; Shi, Y.; Taykir, R.K.; Weckler, P.A. Laboratory evaluation of a turn compensation control system for a ground sprayer. Appl. Eng. Agric. 2013, 29, 655–6662. [Google Scholar] [CrossRef]
- Balsari, P.; Marucco, M.; Tamagnone, M. A crop identification system (CIS) to optimise pesticide applications in orchards. J. Hortic. Sci. Biotechnol. 2009, 84, 113–116. [Google Scholar] [CrossRef]
- Berk, P.; Hocevar, M.; Stajnko, D.; Belsak, A. Development of alternative plant protection product application techniques in orchards. based on measurement sensing systems: A review. Comput. Electron. Agric. 2016, 124, 273–288. [Google Scholar] [CrossRef]
- Comba, L.; Biglia, A.; Aimonino, D.R.; Barge, P. 2D and 3D data fusion for crop monitoring in precision agriculture. In Proceedings of the MetroAgriFor—IEEE International Workshop on Metrology for Agriculture and Forestry, Portici, Italy, 24–26 October 2019; pp. 62–67. [Google Scholar]
- Giles, D.K.; Comino, J.A. Variable flow control for pressure atomization nozzles. SAE Transactions 1989, 98, 237–249. [Google Scholar]
- Anglund, E.A.; Ayers, P.D. Field evaluation of response times for a variable rate (pressure-based and injection) liquid chemical applicator. Appl. Eng. Agric. 2003, 19, 305–310. [Google Scholar] [CrossRef]
- Fabula, J.V.; Sharda, A. Field evaluation of turn compensation feature of pulse width modulation (PWM)-equipped agricultural sprayer. In Proceedings of the 2021 ASABE Annual International Meeting, Virtual, 12–16 July 2021. [Google Scholar]
- Salcedo, R.; Zhu, H.; Zhang, Z.; Wei, Z.; Chen, L.; Ozkan, E.; Falchieri, D. Foliar deposition and coverage on young apple trees with PWM-controlled spray systems. Comput. Electron. Agric. 2020, 178, 105794. [Google Scholar] [CrossRef]
- Fabula, J.; Sharda, A.; Luck, J.D.; Brokesh, E. Nozzle pressure uniformity and expected droplet size of a pulse width modulation (PWM) spray technology. Comput. Electron. Agric. 2021, 183, 106035. [Google Scholar] [CrossRef]
- Li, L.; Chen, L.; Zhang, R.; Tang, Q.; Yi, T.; Liu, B. Spray drift characteristics of pulse-width modulation sprays in wind tunnel. Int. J. Agric. Biol. Eng. 2022, 15, 7–15. [Google Scholar] [CrossRef]
- Sapkota, M.; Virk, S.; Rains, G. Spray deposition and quality assessment at varying ground speeds for an agricultural sprayer with and without a rate controller. AgriEngineering 2023, 5, 506–519. [Google Scholar] [CrossRef]
- Jacto. Jacto Nozzles. Available online: https://jacto.com/brasil/products/bicos-e-acessorios/guia-de-bicos (accessed on 30 July 2025).
- Sokal, R.R.; Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological Research, 3rd ed.; W.H. Freeman: New York, NY, USA, 1995; p. 937. [Google Scholar]
- Ahmad, W.M.A.W.; Ghazali, F.M.M.; Yaqoob, M.A. Basic Statistical Analysis Using Rstudio Software; Penerbit USM: Penang, Malaysia, 2023. [Google Scholar]
- Butts, T.; Luck, J.; Fritz, B.; Hoffmann, C.; Kruger, G. Evaluation of spray pattern uniformity using three unique analyses as impacted by nozzle. pressure. and pulse-width modulation duty cycle. Pest Manag. Sci. 2019, 75, 1875–1886. [Google Scholar] [CrossRef]
- Giles, D.K.; Comino, J.A. Droplet size and spray pattern characteristics of an electronic flow controller for spray nozzles. J. Agric. Eng. Res. 1990, 47, 249–267. [Google Scholar] [CrossRef]
- Wei, Z.; Zhu, H.; Zhang, Z.; Salcedo, R.; Duan, D. Droplet size spectrum activation pressure and flow rate discharged from PWM flat-fan nozzles. Trans. ASABE 2021, 64, 313–325. [Google Scholar] [CrossRef]
- Antuniassi, U.R.; Carvalho, F.K.; Mota, A.A.B.; Chechetto, R.G. Entendendo a Tecnologia de Aplicação; FEPAF: Botucatu, Brazil, 2017. [Google Scholar]
- Minguela, J.V.; Cunha, J.P.A.R. Manual de Aplicação de Produtos Fitossanitários; Aprenda Fácil: Viçosa, Brazil, 2013. [Google Scholar]
- Miller, P.C.H.; Butler Ellis, M.C. Effects of formulation on spray nozzle performance for applications from ground-based boom sprayers. Crop Protection 2000, 19, 609–615. [Google Scholar] [CrossRef]
- Mangus, D.L.; Sharda, A.; Engelhardt, A.; Flippo, D.; Strasser, R.; Luck, J.D.; Griffin, T. Analyzing the nozzle spray fan pattern of an agricultural sprayer using pulse-width modulation technology to generate an on-ground coverage map. Trans. ASABE 2017, 60, 315–325. [Google Scholar]
- Cunha, J.P.A.R.; Teixeira, M.M.; Coury, J.R.; Ferreira, L.R. Evaluation of strategies to reduce pesticide spray drift. Plantas Daninhas 2003, 21, 325–332. [Google Scholar] [CrossRef]
- Camara, F.T.; Santos, J.L.; Silva, E.A.; Ferreira, M.D.C. Volumetric distribution and spectrum of drops of hydraulic nozzles of plane jet of expanded strip XR11003. Eng. Agric. 2008, 28, 722–731. [Google Scholar]
- Farooq, M.; Balachandar, R.; Wulfsohn, D.; Wolf, T.M. Agricultural sprays in cross-flow and drift. J. Agric. Eng. Res. 2001, 78, 347–358. [Google Scholar] [CrossRef]
- Adegas, F.S.; Gazziero, D.L.P. Tecnologia de aplicação de agrotóxicos. In Tecnologias de Produção de Soja; Sistemas de Produção. 17; Seixas, C.D.S., Neumaier, N., Balbinot Junior, A.A., Krzyzanowski, F.C., Leite, R.M.V.B.C., Eds.; Embrapa Soja: Londrina, Brazil, 2020; Available online: https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/1128406/1/p.-281-292-de-SP-17-2020-online.pdf (accessed on 10 February 2025).
Model | Nominal Flow * (L min−1) | Fan Shape/Material |
---|---|---|
AXI 11002 | 0.757 | Flat fan/Ceramic |
ADI 11002 | 0.757 | Flat fan (pre-orifice)/Ceramic |
CVI 11002 | 0.757 | Flat fan (air-inclusion)/Polymer |
JAI 12002 | 0.757 | Flat fan (air-inclusion)/Polymer |
J3D 10002 | 0.757 | Flat fan (angled)/Polymer |
JTT 11002 | 0.757 | Flat fan (deflector)/Polymer |
JGC 12002 | 0.757 | Flat fan (angled pre-orifice/Polymer |
JAP 11002 | 0.757 | Flat fan (air-inclusion)/Polymer |
AXI 11002 | |||||||
v (m s−1) | VMD (μm) | RS | |||||
Cycle (%) | ON | OFF | Mean | ON | OFF | Mean | |
1.1 | 35 | 126 bA | 175 aA | 151 | 1.09 ns | 1.08 ns | 1.08 A |
1.7 | 42 | 112 bB ns | 175 aA | 146 | 1.36 | 1.08 ns | 1.22 A |
2.8 | 71 | 121 bA ns | 137 aB | 129 | 1.38 | 0.95 ns | 1.16 A |
3.9 | 100 | 111 | 0.72 | ||||
Mean | 120 | 162 | 1.28 a | 1.03 b | |||
CV (%) | 3.29 | 21.06 | |||||
J3D 10002 | |||||||
VMD (μm) | RS | ||||||
v (m s−1) | Cycle (%) | ON | OFF | Mean | ON | OFF | Mean |
1.1 | 35 | 194 bA | 282 aA | 238 | 2.20 ns | 1.17 ns | 1.69 A |
1.7 | 42 | 154 bB ns | 282 aA | 218 | 2.11 ns | 1.17 ns | 1.64 A |
2.8 | 71 | 164 aB ns | 180 aB | 172 | 2.46 ns | 1.36 ns | 1.91 A |
3.9 | 100 | 149 | 1.45 | ||||
Mean | 171 | 248 | 2.26 a | 1.23 b | |||
CV (%) | 5.95 | 32.53 | |||||
JTT 11002 | |||||||
VMD (μm) | RS | ||||||
v (m s−1) | Cycle (%) | ON | OFF | Mean | ON | OFF | Mean |
1.1 | 35 | 404 ns | 488 | 446 A | 1.52 ns | 1.40 ns | 1.46 A |
1.7 | 42 | 364 ns | 488 | 426 A | 1.74 ns | 1.40 ns | 1.57 A |
2.8 | 71 | 388 ns | 425 ns | 406 A | 1.36 ns | 1.42 ns | 1.39 A |
3.9 | 100 | 374 | 1.39 | ||||
Mean | 385 b | 467 a | 1.54 a | 1.41 a | |||
CV (%) | 7.93 | 10.74 |
ADI 11002 | |||||||
VMD * (μm) | RS | ||||||
v (m s−1) | Cycle (%) | ON | OFF | Mean | ON | OFF | Mean |
1.1 | 35 | 182 bA | 375 aA | 278 | 1.49 | 1.19 | 1.33 A |
1.7 | 42 | 140 bB ns | 375 aA | 257 | 1.53 | 1.17 | 1.35 A |
2.8 | 71 | 147 bB ns | 211 aB | 179 | 1.40 | 1.17 | 1.30 A |
3.9 | 100 | 140 | 0.97 | ||||
Mean | 156 | 320 | 1.47 a | 1.18 b | |||
CV (%) | 5.67 | 8.45 | |||||
CVI 11002 | |||||||
VMD (μm) | RS | ||||||
v (m s−1) | Cycle (%) | ON | OFF | Mean | ON | OFF | Mean |
1.1 | 35 | 624 aA | 731 aA | 678 | 2.11 ns | 1.34 ns | 1.73 A |
1.7 | 42 | 321 bB ns | 731 aA | 526 | 1.75 ns | 1.34 ns | 1.55 A |
2.8 | 71 | 373 aB ns | 497 aB | 435 | 2.44 ns | 1.38 ns | 1.91 A |
3.9 | 100 | 266 | 1.60 | ||||
Mean | 439 | 653 | 2.10 a | 1.36 b | |||
CV (%) | 15.87 | 20.89 | |||||
JGC 12002 | |||||||
VMD (μm) | RS | ||||||
v (m s−1) | Cycle (%) | ON | OFF | Mean | ON | OFF | Mean |
1.1 | 35 | 310 aA | 325 aA | 317 | 2.07 ns | 1.55 ns | 1.81 A |
1.7 | 42 | 293 bA | 325 aA | 309 | 1.96 ns | 1.55 ns | 1.76 A |
2.8 | 71 | 289 aA | 264 bB | 277 | 2.35 ns | 1.24 ns | 1.80 A |
3.9 | 100 | 227 | 1.42 | ||||
Mean | 297 | 305 | 2.13 a | 1.45 b | |||
CV (%) | 4.44 | 30.30 | |||||
JAI 12002 | |||||||
VMD (μm) | RS | ||||||
v (m s−1) | Cycle (%) | ON | OFF | Mean | ON | OFF | Mean |
1.1 | 35 | 394 bA ns | 529 aA | 461 | 1.39 ns | 1.12 ns | 1.26 A |
1.7 | 42 | 340 bB ns | 529 aA | 434 | 1.29 ns | 1.12 ns | 1.21 A |
2.8 | 71 | 369 bA ns | 436 aB | 403 | 1.44 ns | 1.28 ns | 1.36 A |
3.9 | 100 | 378 | 1.31 | ||||
Mean | 368 | 498 | 1.37 a | 1.18 a | |||
CV (%) | 4.45 | 16.87 | |||||
JAP 11002 | |||||||
VMD (μm) | RS | ||||||
v (m s−1) | Cycle (%) | ON | OFF | Mean | ON | OFF | Mean |
1.1 | 35 | 402 bA | 485 aA | 444 | 2.04 ns | 1.51 ns | 1.77 A |
1.7 | 42 | 331 bB ns | 485 aA | 408 | 1.79 ns | 1.51 ns | 1.65 A |
2.8 | 71 | 334 bB ns | 429 aB | 382 | 1.83 ns | 1.46 ns | 1.64 A |
3.9 | 100 | 318 | 1.34 | ||||
Mean | 356 | 466 | 1.89 a | 1.49 b | |||
CV (%) | 5.38 | 19.64 |
AXI 11002 | |||||||
% < 100 * | DV (m s−1) | ||||||
v (m s−1) | Cycle (%) | ON | OFF | Mean | ON | OFF | Mean |
1.1 | 35 | 28.77 aB | 11.03 bB | 19.90 | 1.42 bB | 1.96 aA ns | 1.69 |
1.7 | 42 | 39.20 aA ns | 11.03 bB | 25.12 | 1.63 bA | 1.96 aA ns | 1.80 |
2.8 | 71 | 29.77 aB | 20.07 bA | 24.92 | 1.77 bA | 1.95 aA ns | 1.86 |
3.9 | 100 | 37.30 | 1.98 | ||||
Mean | 32.58 | 14.04 | 1.61 | 1.96 | |||
CV (%) | 12.05 | 3.91 | |||||
J3D 10002 | |||||||
% < 100 | DV (m s−1) | ||||||
v (m s−1) | Cycle (%) | ON | OFF | Mean | ON | OFF | Mean |
1.1 | 35 | 14.60 aB | 5.52 bB | 10.06 | 1.77 bC | 2.51 aB | 2.14 |
1.7 | 42 | 24.13 aA ns | 5.52 bB | 14.82 | 2.16 bB | 2.51 aB | 2.33 |
2.8 | 71 | 19.87 aA ns | 15.00 aA | 17.43 | 2.61 bA | 2.82 aA | 2.71 |
3.9 | 100 | 23.80 | 3.18 | ||||
Mean | 19.53 | 8.68 | 2.18 | 2.61 | |||
CV (%) | 19.81 | 3.46 | |||||
JTT 11002 | |||||||
% < 100 | DV (m s−1) | ||||||
v (m s−1) | Cycle (%) | ON | OFF | Mean | ON | OFF | Mean |
1.1 | 35 | 5.87 aAB ns | 2.47 bB | 4.17 | 1.67 bC | 1.94 aB | 1.80 |
1.7 | 42 | 7.10 aA | 2.47 bB | 4.78 | 2.21 aB | 1.94 bB | 2.07 |
2.8 | 71 | 5.67 aB ns | 3.47 bA | 4.57 | 2.69 aA | 2.36 bA | 2.52 |
3.9 | 100 | 5.43 | 3.30 | ||||
Mean | 6.21 | 2.80 | 2.19 | 2.08 | |||
CV (%) | 12.73 | 2.61 |
ADI 11002 | |||||||
% < 100 * | DV (m s−1) | ||||||
v (m s−1) | Cycle (%) | ON | OFF | Mean | ON | OFF | Mean |
1.1 | 35 | 18.13 aB ns | 2.93 bB | 10.53 | 1.51 bC ns | 2.07 aA ns | 1.79 |
1.7 | 42 | 25.17 aA | 2.93 bB | 14.05 | 1.71 bB ns | 2.07 aA ns | 1.89 |
2.8 | 71 | 20.93 aB ns | 9.83 bA | 15.38 | 2.07 aA ns | 2.12 aA ns | 2.09 |
3.9 | 100 | 19.70 | 2.22 | ||||
Mean | 21.41 | 5.23 | 1.76 | 2.09 | |||
CV (%) | 10.73 | 1.76 | |||||
CVI 11002 | |||||||
% < 100 * | DV (m s−1) | ||||||
v (m s−1) | Cycle (%) | ON | OFF | Mean | ON | OFF | Mean |
1.1 | 35 | 2.90 aB ns | 0.83 bA | 1.87 | 1.29 bC | 1.45 aB | 1.37 |
1.7 | 42 | 6.40 aA ns | 0.83 bA | 3.62 | 1.43 aB | 1.45 aB | 1.43 |
2.8 | 71 | 3.63 aB ns | 1.63 bA | 2.63 | 1.64 aA | 1.62 aA | 1.63 |
3.9 | 100 | 4.43 | 1.85 | ||||
Mean | 4.31 | 1.10 | 1.45 | 1.50 | |||
CV (%) | 31.45 | 3.06 | |||||
JGC 12002 | |||||||
% < 100 | DV (m s−1) | ||||||
v (m s−1) | Cycle (%) | ON | OFF | Mean | ON | OFF | Mean |
1.1 | 35 | 8.47 aA | 5.13 bB | 6.80 | 1.79 bC | 2.13 aB | 1.96 |
1.7 | 42 | 10.03 aA ns | 5.13 bB | 7.58 | 2.48 aB | 2.13 bB | 2.30 |
2.8 | 71 | 8.43 aA | 7.57 aA | 8.00 | 2.96 aA | 2.59 bA | 2.77 |
3.9 | 100 | 11.97 | 3.55 | ||||
Mean | 8.98 | 5.94 | 2.41 | 2.28 | |||
CV (%) | 12.88 | 4.36 | |||||
JAI 12002 | |||||||
% < 100 * | DV (m s−1) | ||||||
v (m s−1) | Cycle (%) | ON | OFF | Mean | ON | OFF | Mean |
1.1 | 35 | 3.20 aB | 0.78 bA | 2.00 | 1.47 bC | 1.76 aA | 1.61 |
1.7 | 42 | 5.67 aA | 0.78 bA | 3.23 | 1.78 aB | 1.76 aA | 1.77 |
2.8 | 71 | 2.90 aB | 1.03 bA | 1.97 | 2.07 aA ns | 1.75 bA | 1.91 |
3.9 | 100 | 1.93 | 2.26 | ||||
Mean | 3.92 | 0.86 | 1.77 | 1.76 | |||
CV (%) | 17.27 | 4.91 | |||||
JAP 11002 | |||||||
% < 100 | DV (m s−1) | ||||||
v (m s−1) | Cycle (%) | ON | OFF | Mean | ON | OFF | Mean |
1.1 | 35 | 5.70 aB ns | 1.67 bB | 3.68 | 1.49 bC | 2.01 aB | 1.75 |
1.7 | 42 | 7.27 aA | 1.67 bB | 4.47 | 1.93 bB | 2.01 aB | 1.97 |
2.8 | 71 | 6.23 aB ns | 2.80 bA | 4.51 | 2.35 aA | 2.28 bA | 2.31 |
3.9 | 100 | 6.13 | 2.83 | ||||
Mean | 6.40 | 2.04 | 1.92 | 2.10 | |||
CV (%) | 10.56 | 1.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, S.G.; Alves, G.S.; Cunha, J.P.A.R.d. Pulse Width Modulation on the Droplet Spectrum and Velocity of Spray Nozzles. Agriculture 2025, 15, 1830. https://doi.org/10.3390/agriculture15171830
Rodrigues SG, Alves GS, Cunha JPARd. Pulse Width Modulation on the Droplet Spectrum and Velocity of Spray Nozzles. Agriculture. 2025; 15(17):1830. https://doi.org/10.3390/agriculture15171830
Chicago/Turabian StyleRodrigues, Silviane Gomes, Guilherme Sousa Alves, and João Paulo Arantes Rodrigues da Cunha. 2025. "Pulse Width Modulation on the Droplet Spectrum and Velocity of Spray Nozzles" Agriculture 15, no. 17: 1830. https://doi.org/10.3390/agriculture15171830
APA StyleRodrigues, S. G., Alves, G. S., & Cunha, J. P. A. R. d. (2025). Pulse Width Modulation on the Droplet Spectrum and Velocity of Spray Nozzles. Agriculture, 15(17), 1830. https://doi.org/10.3390/agriculture15171830