Optimizing Fertilization Strategies to Reduce Carbon Footprints and Enhance Net Ecosystem Economic Benefits in Ratoon Rice Systems
Abstract
1. Introduction
2. Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Gas Collection and Analysis
2.4. Soil Collection and Analysis
2.5. Yield Measurement
2.6. Soil Organic Carbon Balance
2.7. Calculation of Carbon Footprints
2.8. Calculation of Net Ecosystem Economic Benefits
2.9. Statistical Analysis
3. Results
3.1. Direct Greenhouse Gas Emissions
3.2. Yield
3.3. Carbon Footprints
3.4. Net Ecosystem Economic Benefits
4. Discussion
4.1. Effects of Different Fertilization Treatments on Direct Greenhouse Gas Emissions
4.2. Effects of Different Fertilization Treatments on Carbon Footprints
4.3. Effects of Different Fertilization Treatments on Net Ecosystem Economic Benefits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Ding, Z.J.; Liu, K.; Grunwald, S.; Smith, P.; Ciais, P.; Wang, B.; Wadoux, A.M.J.-C.; Ferreira, C.; Karunaratne, S.; Shurpali, N.; et al. Advancing soil organic carbon prediction: A comprehensive review of technologies, AI, process-based and hybrid modelling approaches. Adv. Sci. 2025, e04152. [Google Scholar] [CrossRef]
- Lyu, Y.F.; Zhang, X.H.; Yang, X.D.; Wu, J.; Lin, L.L.; Zhang, Y.Z.; Wang, G.Y.; Xiao, Y.L.; Peng, H.; Zhu, X.M.; et al. Performance assessment of rice production based on yield, economic output, energy consumption, and carbon emissions in Southwest China during 2004–2016. Ecol. Indic. 2020, 117, 106667. [Google Scholar] [CrossRef]
- Asadkhani, E.; Ramroudi, M.; Asgharipour, M.R.; Shahhosseini, H.R. Challenges of sustainability of rice agrosystem: Insights from energy use, ecological footprint, and greenhouse gas emissions (case study: Golestan province, Iran). Agrosyst. Geosci. Environ. 2025, 8, e70061. [Google Scholar] [CrossRef]
- Cai, S.Y.; Zhao, X.; Pittelkow, C.M.; Fan, M.S.; Zhang, X.; Yan, X.Y. Optimal nitrogen rate strategy for sustainable rice production in China. Nature 2023, 615, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.J.; Hu, R.; Cao, Y.X.; Li, J.T.; Xiao, D.K.; Hou, J.; Wang, X.X. Integrated assessment of yield, nitrogen use efficiency and ecosystem economic benefits of use of controlled-release and common urea in ratoon rice production. J. Integr. Agric. 2024, 23, 3186–3199. [Google Scholar] [CrossRef]
- Yu, X.; Tao, X.; Liao, J.; Liu, S.C.; Xu, L.; Yuan, S.; Zhang, Z.L.; Wang, F.; Deng, N.Y.; Huang, J.L.; et al. Predicting potential cultivation region and paddy area for ratoon rice production in China using Maxent model. Field Crops Res. 2022, 275, 108372. [Google Scholar] [CrossRef]
- Peng, S.B.; Zheng, C.; Yu, X. Progress and challenges of rice ratooning technology in China. Crop Environ. 2023, 2, 5–11. [Google Scholar] [CrossRef]
- Xu, Y.; Liang, L.Q.; Wang, B.R.; Xiang, J.B.; Gao, M.T.; Fu, Z.Q.; Long, P.; Luo, H.B.; Huang, C. Conversion from double-season rice to ratoon rice paddy fields reduces carbon footprint and enhances net ecosystem economic benefit. Sci. Total Environ. 2022, 813, 152550. [Google Scholar] [CrossRef]
- Fikriyah, V.N.; Darvishzadeh, R.; Laborte, A.; Nelson, A. Ratoon rice mapping based on Sentinel-1 and Sentinel-2 imagery. Remote Sens. Appl. Soc. Environ. 2025, 38, 101592. [Google Scholar] [CrossRef]
- Saito, K.; Dossou-Yovo, E.R.; Ibrahim, A. Ratoon rice research: Review and prospect for the tropics. Field Crops Res. 2024, 314, 109414. [Google Scholar] [CrossRef]
- Xie, W.Y.; Furusawa, C.; Miyata, H.; Ata-Ul-Karim, S.T.; Yamasaki, Y.; Shiotsu, F.; Kato, Y. Genotypic differences in the agronomic performance of ratoon rice in a cool-temperate environment in central Japan. Field Crops Res. 2024, 317, 109487. [Google Scholar] [CrossRef]
- Cao, Y.X.; Zhu, J.Q.; Hou, J. Yield gap of ratoon rice and their influence factors in China. Sci. Agric. Sin. 2020, 53, 707–719. (In Chinese) [Google Scholar]
- He, P.; Xu, X.P.; Zhou, W.; Smith, W.; He, W.T.; Grant, B.; Ding, W.C.; Qiu, S.J.; Zhao, S.C. Ensuring future agricultural sustainability in China utilizing an observationally validated nutrient recommendation approach. Eur. J. Agron. 2022, 132, 126409. [Google Scholar] [CrossRef]
- Zou, J.N.; Xu, H.L.; Lan, C.J.; Qin, B.; Li, J.Y.; Nyimbo, W.J.; Lin, H.M.; Pang, Z.Q.; Fallah, N.; Guo, C.L.; et al. Regulation of photoassimilate transportation and nitrogen uptake to decrease greenhouse gas emissions in ratooning rice with higher economic return by optimized nitrogen supplies. Field Crops Res. 2024, 312, 109385. [Google Scholar] [CrossRef]
- Huang, J.W.; Wu, J.Y.; Chen, H.F.; Zhang, Z.X.; Fang, C.X.; Shao, C.H.; Lin, W.W.; Weng, P.Y.; Khan, M.U.; Lin, W.X. Optimal management of nitrogen fertilizer in the main rice crop and its carrying-over effect on ratoon rice under mechanized cultivation in Southeast China. J. Integr. Agric. 2022, 21, 351–364. [Google Scholar] [CrossRef]
- Ke, J.; He, R.C.; Hou, P.F.; Ding, C.; Ding, Y.F.; Wang, S.H.; Liu, Z.H.; Tang, S.; Ding, C.Q.; Chen, L.; et al. Combined controlled-released nitrogen fertilizers and deep placement effects of N leaching, rice yield and N recovery in machine-transplanted rice. Agric. Ecosyst. Environ. 2018, 265, 402–412. [Google Scholar] [CrossRef]
- Wu, P.; Wu, Q.; Huang, H.; Xie, L.; An, H.Y.; Zhao, X.T.; Wang, F.T.; Gao, Z.T.; Zhang, R.T.; Bangura, K.; et al. Global meta-analysis and three-year field experiment shows that deep placement of fertilizer can enhance crop productivity and decrease gaseous nitrogen losses. Field Crops Res. 2024, 307, 109263. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Ren, W.C.; Zhu, K.J.; Fu, J.Y.; Wang, W.L.; Wang, Z.Q.; Gu, J.F.; Yang, J.C. Substituting readily available nitrogen fertilizer with controlled-release nitrogen fertilizer improves crop yield and nitrogen uptake while mitigating environmental risks: A global meta-analysis. Field Crops Res. 2024, 306, 109221. [Google Scholar] [CrossRef]
- Qian, H.Y.; Zhu, X.C.; Huang, S.; Linquist, B.; Kuzyakov, Y.; Wassmann, R.; Minamikawa, K.; Martinez-Eixarch, M.; Yan, X.Y.; Zhou, F.; et al. Greenhouse gas emissions and mitigation in rice agriculture. Nat. Rev. Earth Environ. 2023, 4, 716–732. [Google Scholar] [CrossRef]
- Fan, D.J.; Liu, T.Q.; Sheng, F.; Li, S.H.; Cao, C.G.; Li, C.F. Nitrogen deep placement mitigates methane emissions by regulating methanogens and methanotrophs in no-tillage paddy fields. Biol. Fertil. Soils 2020, 56, 711–727. [Google Scholar] [CrossRef]
- Wu, P.; Liu, F.; Li, H.; Cai, T.; Zhang, P.; Jia, Z.K. Suitable fertilizer application depth can increase nitrogen use efficiency and maize yield by reducing gaseous nitrogen losses. Sci. Total Environ. 2021, 781, 146787. [Google Scholar] [CrossRef]
- Lin, M.H.; Yang, S.W.; Chen, H.F.; Letuma, P.; Khan, M.U.; Huang, J.W.; Shen, L.H.; Lin, W.X. Optimally combined application of organic and chemical fertilizers increases grain yield and improves rhizosphere microecological properties in rice ratooning. Crop Sci. 2023, 63, 764–783. [Google Scholar] [CrossRef]
- Tang, Q.; Moeskjaer, S.; Cotton, A.; Dai, W.X.; Wang, X.Z.; Yan, X.Y.; Daniell, T.J. Organic fertilization reduces nitrous oxide emission by altering nitrogen cycling microbial guilds favouring complete denitrification at soil aggregate scale. Sci. Total Environ. 2024, 946, 174178. [Google Scholar] [CrossRef]
- Alam, M.A.; Huang, J.; Daba, N.A.; Han, T.F.; Shen, Z.; Li, J.W.; Tadesse, K.A.; Liu, L.S.; Ntagisanimana, G.; Hayatu, N.G.; et al. Long-term substitution of synthetic fertilizer by cattle manure: Effects on carbon footprint, carbon sequestration, and yield in a double rice system. Environ. Technol. Innov. 2025, 38, 104173. [Google Scholar] [CrossRef]
- Li, S.H.; Guo, L.J.; Cao, C.G.; Li, C.F. Integrated assessment of carbon footprint, energy budget and net ecosystem economic efficiency from rice fields under different tillage modes in central China. J. Clean. Prod. 2021, 295, 126398. [Google Scholar] [CrossRef]
- Smith, P.; Lanigan, G.; Kutsch, W.L.; Buchmann, N.; Eugster, W.; Aubinet, M.; Ceschia, E.; Béziat, P.; Yeluripati, J.B.; Osborne, B.; et al. Measurements necessary for assessing the net ecosystem carbon budget of croplands. Agric. Ecosyst. Environ. 2010, 139, 302–315. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, L.N.; Yao, L.; Nie, J.W.; Jiang, M.D.; Liu, Z.Y.; Liu, H.; Zhu, B.; Wang, B. Water management alleviates greenhouse gas emissions by promoting carbon and nitrogen mineralization after Chinese milk vetch incorporation in a paddy soil. Agric. Ecosyst. Environ. 2025, 381, 109468. [Google Scholar] [CrossRef]
- Zhan, M.; Cao, C.G.; Wang, J.P.; Jiang, Y.; Cai, M.L.; Yue, L.X.; Shahrear, A. Dynamics of methane emission, active soil organic carbon and their relationships in wetland integrated rice-duck systems in Southern China. Nutr. Cycl. Agroecosyst. 2010, 89, 1–13. [Google Scholar] [CrossRef]
- Haque, M.M.; Kim, G.W.; Kim, P.J.; Kim, S.Y. Comparison of net global warming potential between continuous flooding and midseason drainage in monsoon region paddy during rice cropping. Field Crops Res. 2016, 193, 133–142. [Google Scholar] [CrossRef]
- He, Z.L.; Hu, R.G.; Tang, S.R.; Wu, X.; Zhang, Y.; Xu, M.G.; Zhang, W.J.; Wu, L. New vegetable field converted from rice paddy increases net economic benefits at the expense of enhanced carbon and nitrogen footprints. Sci. Total Environ. 2024, 916, 170265. [Google Scholar] [CrossRef]
- Xia, X.L.; Lam, S.K.; Chen, D.L.; Wang, J.Y.; Tang, Q.; Yan, X.Y. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Glob. Change Biol. 2017, 23, 1917–1925. [Google Scholar] [CrossRef] [PubMed]
- Schimel, J. Global change—Rice, microbes and methane. Nature 2000, 403, 375–377. [Google Scholar] [CrossRef] [PubMed]
- Lan, C.J.; Zou, J.N.; Li, J.Y.; Xu, H.L.; Lin, W.W.; Weng, P.Y.; Fang, C.X.; Zhang, Z.X.; Chen, H.F.; Lin, W.X. Slow-release fertilizer deep placement increased rice yield and reduced the ecological and environmental impact in Southeast China: A life-cycle perspective. Field Crops Res. 2024, 306, 109224. [Google Scholar] [CrossRef]
- Dong, D.; Li, J.; Ying, S.S.; Wu, J.S.; Han, X.G.; Teng, Y.X.; Zhou, M.R.; Ren, Y.; Jiang, P.K. Mitigation of methane emission in a rice paddy field amended with biochar-based slow-release fertilizer. Sci. Total Environ. 2021, 792, 148460. [Google Scholar] [CrossRef] [PubMed]
- He, Z.J.; Ding, B.X.; Pei, S.Y.; Cao, H.X.; Liang, J.P.; Li, Z.J. The impact of organic fertilizer replacement on greenhouse gas emissions and its influencing factors. Sci. Total Environ. 2023, 905, 166917. [Google Scholar] [CrossRef]
- Liu, T.Q.; Li, S.H.; Guo, L.G.; Cao, C.G.; Li, C.F.; Zhai, Z.B.; Zhou, J.Y.; Mei, Y.M.; Ke, H.J. Advantages of nitrogen fertilizer deep placement in greenhouse gas emissions and net ecosystem economic benefits from no-tillage paddy fields. J. Clean. Prod. 2020, 263, 121322. [Google Scholar] [CrossRef]
- Li, L.; Tian, H.; Zhang, M.H.; Fan, P.S.; Ashraf, U.; Liu, H.D.; Chen, X.F.; Duan, M.Y.; Tang, X.R.; Wang, Z.M.; et al. Deep placement of nitrogen fertilizer increases rice yield and nitrogen use efficiency with fewer greenhouse gas emissions in a mechanical direct-seeded cropping system. Crop J. 2021, 9, 1386–1396. [Google Scholar] [CrossRef]
- Bhuiyan, M.S.I.; Rahman, A.; Loladze, I.; Das, S.; Kim, P.J. Subsurface fertilization boosts crop yields and lowers greenhouse gas emissions: A global meta-analysis. Sci. Total Environ. 2023, 876, 162712. [Google Scholar] [CrossRef]
- Gaihre, Y.K.; Singh, U.; Islam, S.M.M.; Huda, A.; Islam, M.R.; Satter, M.A.; Sanabria, J.; Islam, M.R.; Shah, A.L. Impacts of urea deep placement on nitrous oxide and nitric oxide emissions from rice fields in Bangladesh. Geoderma 2015, 259, 370–379. [Google Scholar] [CrossRef]
- Liu, T.Q.; Fan, D.J.; Zhang, X.X.; Chen, J.; Li, C.F.; Cao, C.G. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China. Field Crops Res. 2015, 184, 80–90. [Google Scholar] [CrossRef]
- Ding, Z.J.; Li, J.T.; Hu, R.; Xiao, D.K.; Huang, F.; Peng, S.B.; Huang, J.L.; Li, C.F.; Hou, J.; Tian, Y.B.; et al. Root-zone fertilization of controlled-release urea reduces nitrous oxide emissions and ammonia volatilization under two irrigation practices in a ratoon rice field. Field Crops Res. 2022, 287, 108673. [Google Scholar] [CrossRef]
- Akiyama, H.; Morimoto, S.; Hayatsu, M.; Hayakawa, A.; Sudo, S.; Yagi, K. Nitrification, ammonia-oxidizing communities, and N2O and CH4 fluxes in an imperfectly drained agricultural field fertilized with coated urea with and without dicyandiamide. Biol. Fertil. Soils 2013, 49, 213–223. [Google Scholar] [CrossRef]
- Wu, G.; Yang, S.; Luan, C.S.; Wu, Q.; Lin, L.L.; Li, X.X.; Che, Z.; Zhou, D.B.; Dong, Z.R.; Song, H. Partial organic substitution for synthetic fertilizer improves soil fertility and crop yields while mitigating N2O emissions in wheat-maize rotation system. Eur. J. Agron. 2024, 154, 127077. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Ji, Y.L.; Zhang, M.; Xu, Y.Z.; Li, Z.; Tu, D.B.; Wu, W.E. Exploring a sustainable rice-cropping system to balance grain yield, environmental footprint and economic benefits in the middle and lower reaches of the Yangtze River in China. J. Clean. Prod. 2023, 404, 136988. [Google Scholar] [CrossRef]
- Deng, Z.M.; Ren, X.J.; Han, J.Y.; Cui, K.H.; Han, K.Y.; Yue, Q.; Zhou, J.Y.; Zhai, Z.B.; Xiong, D.L.; Yuan, S.; et al. Identifying a sustainable rice-based cropping system via on-farm evaluation of grain yield, carbon sequestration capacity and carbon footprints in Central China. Field Crops Res. 2024, 316, 109510. [Google Scholar] [CrossRef]
- Liu, W.W.; Zhang, G.; Wang, X.K.; Lu, F.; Ouyang, Z.Y. Carbon footprint of main crop production in China: Magnitude, spatial-temporal pattern and attribution. Sci. Total Environ. 2018, 645, 1296–1308. [Google Scholar] [CrossRef] [PubMed]
- Shang, Q.Y.; Yang, X.X.; Gao, C.M.; Wu, P.P.; Liu, J.J.; Xu, Y.C.; Shen, Q.R.; Zou, J.W.; Guo, S.W. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: A 3-year field measurement in long-term fertilizer experiments. Glob. Change Biol. 2011, 17, 2196–2210. [Google Scholar] [CrossRef]
- Pei, Y.; Chen, X.W.; Niu, Z.H.; Su, X.J.; Wang, Y.Y.; Wang, X.L. Effects of nitrogen fertilizer substitution by cow manure on yield, net GHG emissions, carbon and nitrogen footprints in sweet maize farmland in the Pearl River Delta in China. J. Clean. Prod. 2023, 399, 136676. [Google Scholar] [CrossRef]
- Min, J.; Sun, H.J.; Wang, Y.; Pan, Y.F.; Kronzucker, H.J.; Zhao, D.Q.; Shi, W.M. Mechanical side-deep fertilization mitigates ammonia volatilization and nitrogen runoff and increases profitability in rice production independent of fertilizer type and split ratio. J. Clean. Prod. 2021, 316, 128370. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.P.; Cui, Y.R.; Jiang, S.; Forsell, N. Toward carbon neutrality before 2060: Trajectory and technical mitigation potential of non-CO2 greenhouse gas emissions from Chinese agriculture. J. Clean. Prod. 2022, 368, 133186. [Google Scholar] [CrossRef]
- Chen, S.; Lu, F.; Wang, X.K. Estimation of greenhouse gases emission factors for China’s nitrogen, phosphate, and potash fertilizers. Acta Ecol. Sin. 2015, 35, 6371–6383. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, W.; Sun, W.; Zheng, X. Net primary production of Chinese croplands from 1950 to 1999. Ecol. Appl. 2007, 17, 692–701. [Google Scholar] [CrossRef]
- Kimura, M.; Murase, J.; Lu, Y. Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4). Soil Biol. Biochem. 2004, 36, 1399–1416. [Google Scholar] [CrossRef]
- Mandal, B.; Majumder, B.; Adhya, T.; Bandyopadhyay, P.; Gangopadhyay, A.; Sarkar, D.; Kundu, M.; Choudhury, S.G.; Hazra, G.; Kundu, S. Potential of double-cropped rice ecology to conserve organic carbon under subtropical climate. Glob. Change Biol. 2008, 14, 2139–2151. [Google Scholar] [CrossRef]
- Nemecek, T.; Bengoa, X.; Lansche, J.; Mouron, P.; Rossi, V.; Humbert, S. Methodological Guidelines for the Life Cycle Inventory of Agricultural Products. Version 2.0, July 2014. In World Food LCA Database (WFLDB); Quantis and Agroscope: Lausanne, Switzerland; Zurich, Switzerland, 2014. [Google Scholar]
- Xia, L.L.; Ti, C.P.; Li, B.L.; Xia, Y.Q.; Yan, X.Y. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential. Sci. Total Environ. 2016, 556, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Gao, W.; Zhang, M.; Chen, Y.; Sui, P. Reducing agricultural carbon footprint through diversified crop rotation systems in the North China Plain. J. Clean. Prod. 2014, 76, 131–139. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, Z.Y.; Hu, Y.C.; Schmidhalter, U.; Zhang, W.S.; Ruan, S.Y.; Chen, X.P. Integrated assessment of agronomic, environmental and ecosystem economic benefits of blending use of controlled-release and common urea in wheat production. J. Clean. Prod. 2021, 287, 125572. [Google Scholar] [CrossRef]
- Zhang, W.; Dou, Z.; He, P.; Ju, X.; Powlson, D.; Chadwick, D.; Norse, D.; Lu, Y.; Zhang, Y.; Wu, L.; et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl. Acad. Sci. USA 2013, 110, 8375–8380. [Google Scholar] [CrossRef] [PubMed]
Treatment | Total N Amount (kg N ha−1) | N Fertilizer Input (kg N ha−1) | P Fertilizer Input (kg P ha−1) | K Fertilizer Input (kg K ha−1) | ||||
---|---|---|---|---|---|---|---|---|
Organic Fertilizers Replace N | Urea | N from Controlled-Release Fertilizer | P from Controlled-Release Fertilizer | P2O5 | K from Controlled-Release Fertilizer | K2O | ||
FFP | 280 | - | 280 | - | - | 150 | - | 180 |
CRF | 280 | - | - | 280 | 28 | 122 | 30.8 | 149.2 |
OF + CRF1 | 280 | 56 | - | 224 | 22.4 | 127.6 | 24.6 | 155.4 |
OF + CRF2 | 252 | 50.4 | - | 201.6 | 20.2 | 129.8 | 22.2 | 157.8 |
OF + CRF3 | 224 | 44.8 | - | 179.2 | 17.9 | 132.1 | 19.7 | 160.3 |
Year | Treatment | CH4 Cumulative Emissions (kg ha−1) | N2O Cumulative Emissions (kg ha−1) | ||||
---|---|---|---|---|---|---|---|
Main Crop | Ratoon Crop | Annual | Main Crop | Ratoon Crop | Annual | ||
2023 | FFP | 474.67 ± 8.85 a | 75.50 ± 4.03 a | 550.17 ± 5.70 a | 2.34 ± 0.04 a | 0.81 ± 0.00 a | 3.15 ± 0.04 a |
CRF | 214.01 ± 4.12 e | 32.07 ± 3.01 c | 246.08 ± 4.03 e | 1.72 ± 0.03 b | 0.64 ± 0.02 b | 2.36 ± 0.02 b | |
OF + CRF1 | 349.49 ± 6.21 b | 42.83 ± 5.86 b | 392.32 ± 7.22 b | 1.64 ± 0.05 c | 0.55 ± 0.03 c | 2.18 ± 0.06 c | |
OF + CRF2 | 335.07 ± 6.27 c | 43.16 ± 3.73 b | 378.23 ± 9.26 c | 1.48 ± 0.03 d | 0.50 ± 0.01 d | 1.98 ± 0.02 d | |
OF + CRF3 | 322.56 ± 2.26 d | 38.27 ± 5.2 bc | 360.83 ± 5.84 d | 1.40 ± 0.03 e | 0.48 ± 0.01 d | 1.88 ± 0.03 e | |
2024 | FFP | 445.05 ± 9.72 a | 110.18 ± 4.01 a | 555.23 ± 9.67 a | 2.45 ± 0.05 a | 0.96 ± 0.05 a | 3.42 ± 0.07 a |
CRF | 209.63 ± 4.33 e | 74.73 ± 6.59 c | 284.35 ± 10.27 d | 1.78 ± 0.06 b | 0.75 ± 0.02 b | 2.53 ± 0.08 b | |
OF + CRF1 | 284.94 ± 3.48 b | 85.38 ± 5.42 b | 370.31 ± 7.63 b | 1.78 ± 0.05 b | 0.77 ± 0.04 b | 2.55 ± 0.07 b | |
OF + CRF2 | 266.1 ± 4.41 c | 78.84 ± 3.27 bc | 344.94 ± 2.32 c | 1.74 ± 0.02 b | 0.72 ± 0.03 b | 2.46 ± 0.04 b | |
OF + CRF3 | 254.92 ± 4.72 d | 77.23 ± 6.3 bc | 332.16 ± 9.18 c | 1.59 ± 0.05 c | 0.72 ± 0.03 b | 2.31 ± 0.03 c | |
F value | |||||||
Treatment | 1413.48 *** | 61.04 *** | 1174.44 *** | 422.51 *** | 107.44 *** | 506.02 *** | |
Year | 480.589 *** | 473.48 *** | 8.73 ** | 99.16 *** | 358.36 *** | 339.26 *** | |
Treatment × Year | 36.23 *** | 0.87 ns | 23.62 *** | 4.85 ** | 5.36 ** | 8.65 *** |
Year | Treatment | Main Crop | Ratoon Crop | Annual |
---|---|---|---|---|
2023 | FFP | 8.05 ± 0.14 c | 4.20 ± 0.07 b | 12.25 ± 0.20 c |
CRF | 8.36 ± 0.10 b | 4.16 ± 0.05 b | 12.52 ± 0.14 b | |
OF + CRF1 | 8.82 ± 0.06 a | 4.90 ± 0.07 a | 13.72 ± 0.02 a | |
OF + CRF2 | 8.80 ± 0.12 a | 4.88 ± 0.05 a | 13.68 ± 0.08 a | |
OF + CRF3 | 8.31 ± 0.11 b | 4.15 ± 0.07 b | 12.46 ± 0.05 bc | |
2024 | FFP | 8.31 ± 0.05 c | 4.30 ± 0.08 b | 12.61 ± 0.08 c |
CRF | 8.60 ± 0.08 b | 4.41 ± 0.13 b | 13.01 ± 0.19 b | |
OF + CRF1 | 9.99 ± 0.08 a | 5.09 ± 0.18 a | 15.07 ± 0.19 a | |
OF + CRF2 | 9.88 ± 0.19 a | 4.92 ± 0.14 a | 14.81 ± 0.07 a | |
OF + CRF3 | 8.33 ± 0.09 c | 4.33 ± 0.19 b | 12.66 ± 0.15 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Z.; Zeng, J.; He, Z.; Zhu, B.; Nie, J.; Zhou, Y.; Jiang, M.; Liu, Z. Optimizing Fertilization Strategies to Reduce Carbon Footprints and Enhance Net Ecosystem Economic Benefits in Ratoon Rice Systems. Agriculture 2025, 15, 1715. https://doi.org/10.3390/agriculture15161715
Ding Z, Zeng J, He Z, Zhu B, Nie J, Zhou Y, Jiang M, Liu Z. Optimizing Fertilization Strategies to Reduce Carbon Footprints and Enhance Net Ecosystem Economic Benefits in Ratoon Rice Systems. Agriculture. 2025; 15(16):1715. https://doi.org/10.3390/agriculture15161715
Chicago/Turabian StyleDing, Zijuan, Jin Zeng, Zhilong He, Bo Zhu, Jiangwen Nie, Yong Zhou, Mengdie Jiang, and Zhangyong Liu. 2025. "Optimizing Fertilization Strategies to Reduce Carbon Footprints and Enhance Net Ecosystem Economic Benefits in Ratoon Rice Systems" Agriculture 15, no. 16: 1715. https://doi.org/10.3390/agriculture15161715
APA StyleDing, Z., Zeng, J., He, Z., Zhu, B., Nie, J., Zhou, Y., Jiang, M., & Liu, Z. (2025). Optimizing Fertilization Strategies to Reduce Carbon Footprints and Enhance Net Ecosystem Economic Benefits in Ratoon Rice Systems. Agriculture, 15(16), 1715. https://doi.org/10.3390/agriculture15161715