Intercropping of Soybean and Common Millet—A Rational Way of Forage Biomass Quality Enhancement
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Measurement of Biomass Yield Parameters
2.3. Chemical Analysis
2.4. Statistical Analysis
2.5. Meteorological Conditions
3. Results
3.1. Impact of Intercropping, Biofertilizer, and Year on Biomass Quantity and Quality Parameters of Vegetative and Reproductive Parts of Soybean and Common Millet
3.1.1. Yields and LER Values
3.1.2. Concentrations of Macro- and Microelements in Biomass
3.2. Integrated Influence of Sowing Pattern and Biofertilizer on Quantity and Quality Parameters of Reproductive and Vegetative Parts of Soybean and Common Millet Biomass
3.3. PCA for Quantity and Quality Parameters of Soybean and Common Millet Total Biomass
4. Discussion
4.1. The Effects of Different Intercropping Patterns and Biofertilizer on Biomass Yield and Land Equivalent Ratio
4.2. The Effects of Different Intercropping Patterns and Biofertilizer on the Absorption and Distribution of Medium and Trace Elements in the Crops
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FBY | Fresh (green) biomass yield |
DBY | Dry biomass yield |
S1M1 | Alternating rows of soybean and millet |
S2M2 | Alternating strips of two rows of soybean and two rows of millet |
S2M4 | Alternating strips of two rows of soybean and four rows of millet |
S1 | Sole crop of soybean |
M1 | Sole crop of millet |
Y | Year |
SP | Sowing pattern |
BF | Biofertilizer |
BFƟ | Without biofertilizer |
References
- Boix-Fayos, C.; de Vente, J. Challenges and potential pathways towards sustainable agriculture within the European Green Deal. Agric. Syst. 2023, 207, 103634. [Google Scholar] [CrossRef]
- Kumar, S.; Lakhran, H.; Meena, R.S.; Jangir, C.K. Current needs of sustainable food and forage production to eliminate food and forage insecurity under climate change era. Forage Res. 2017, 43, 165–173. [Google Scholar]
- Saikanth, D.R.K.; Supriya; Singh, B.V.; Rai, A.K.; Bana, S.R.; Sachan, D.S.; Singh, B. Advancing sustainable agriculture: A comprehensive review for optimizing food production and environmental conservation. Int. J. Plant Soil Sci. 2023, 35, 417–425. [Google Scholar] [CrossRef]
- Hufnagel, J.; Reckling, M.; Ewert, F. Diverse approaches to crop diversification in agricultural research. A review. Agron. Sustain. Dev. 2020, 40, 14. [Google Scholar] [CrossRef]
- Maitra, S.; Hossain, A.; Brestic, M.; Skalicky, M.; Ondrisik, P.; Gitari, H.; Brahmachari, K.; Shankar, T.; Bhadra, P.; Palai, J.B.; et al. Intercropping—A low input agricultural strategy for food and environmental security. Agronomy 2021, 11, 343. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, W.; Li, L. Intercropping: Feed more people and build more sustainable agroecosystems. Front. Agr. Sci. Eng. 2021, 8, 373–386. [Google Scholar] [CrossRef]
- Eskandari, H.; Ghanbari, A.; Javanmard, A. Intercropping of cereals and legumes for forage production. Not. Sci. Biol. 2009, 1, 7–13. [Google Scholar] [CrossRef]
- Hakl, J.; Šantrůček, J.; Pisarčik, M.; Dindová, A. Agronomic factors affecting productivity and nutritive value of perennial fodder crops: A review. Slovak J. Anim. Sci. 2017, 50, 33–41. [Google Scholar]
- Moore, K.J.; Lenssen, A.W.; Fales, S.L. Factors affecting forage quality. In Forages: The Science of Grassland Agriculture, 7th ed.; Moore, K.J., Collins, M., Nelson, C.J., Redfearn, D.D., Eds.; John Wiley & Sons, Ltd.: Headquarters, NJ, USA, 2020; Volume 2, pp. 701–717. [Google Scholar] [CrossRef]
- Saha, S.K.; Pathak, N.N. Mineral nutrition. In Fundamentals of Animal Nutrition; Saha, S.K., Pathak, N.N., Eds.; Springer: Singapore, 2021; pp. 113–131. [Google Scholar] [CrossRef]
- Masters, D.G.; Norman, H.C.; Thomas, D.T. Minerals in pastures—Are we meeting the needs of livestock? Crop Pasture Sci. 2019, 70, 1184–1195. [Google Scholar] [CrossRef]
- Raza, M.A.; Zhiqi, W.; Yasin, H.S.; Gul, H.; Qin, R.; Rehman, S.U.; Mahmood, A.; Iqbal, Z.; Ahmed, Z.; Luo, S.; et al. Effect of crop combination on yield performance, nutrient uptake, and land use advantage of cereal/legume intercropping systems. Field Crops Res. 2023, 304, 109144. [Google Scholar] [CrossRef]
- Bo, P.T.; Bai, Y.; Dong, Y.; Shi, H.; Soe Htet, M.N.; Samoon, H.A.; Zhang, R.; Tanveer, S.K.; Hai, J. Influence of different harvesting stages and cereals–legume mixture on forage biomass yield, nutritional compositions, and quality under Loess Plateau region. Plants 2022, 11, 2801. [Google Scholar] [CrossRef] [PubMed]
- Blount, A.R.; Wright, D.L.; Sprenkel, R.K.; Hewitt, T.D.; Hiebsch, C.K.; Myer, B.O. Forage soybeans for grazing, hay and silage: SS-AGR-180/AG184, Rev. 1/2003. EDIS 2003, 2003. [Google Scholar] [CrossRef]
- Bender, R.R.; Haegele, J.W.; Below, F.E. Nutrient uptake, partitioning, and remobilization in modern soybean varieties. Agron. J. 2015, 107, 563–573. [Google Scholar] [CrossRef]
- Asekova, S.; Shannon, J.G.; Lee, J.-D. The current status of forage soybean. Plant Breed. Biotech. 2014, 2, 334–341. [Google Scholar] [CrossRef]
- Bhat, S.; Nandini, C.; Srinathareddy, S.; Jayarame, G.; Prabhakar. Proso millet (Panicum miliaceum L.)-a climate resilient crop for food and nutritional security: A Review. Environ. Conserv. J. 2019, 20, 113–124. [Google Scholar] [CrossRef]
- Kalinová, J. Nutritionally important components of proso millet (Panicum miliaceum L.). Food 2007, 1, 91–100. [Google Scholar]
- Shi, X.; Shen, J.; Niu, B.; Lam, S.K.; Zong, Y.; Zhang, D.; Hao, X.; Li, P. An optimistic future of C4 crop broomcorn millet (Panicum miliaceum L.) for food security under increasing atmospheric CO2 concentrations. PeerJ 2022, 10, e14024. [Google Scholar] [CrossRef]
- Țîței, V. The agroeconomic value of common millet, Panicum miliaceum, under the conditions of the Republic of Moldova. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural. Dev. 2024, 24, 845–852. [Google Scholar]
- Kaur, P.; Purewal, S.S. Biofertilizers and their role in sustainable agriculture. In Biofertilizers for Sustainable Agriculture and Environment; Giri, B., Prasad, R., Wu, Q.-S., Varma, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 285–300. [Google Scholar] [CrossRef]
- Pérez-Montaño, F.; Alías-Villegas, C.; Bellogín, R.A.; del Cerro, P.; Espuny, M.R.; Jiménez-Guerrero, I.; López-Baena, F.J.; Ollero, F.J.; Cubo, T. Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiol. Res. 2014, 169, 325–336. [Google Scholar] [CrossRef]
- Anand, K.; Pandey, G.K.; Kaur, T.; Pericak, O.; Olson, C.; Mohan, R.; Akansha, K.; Yadav, A.; Devi, R.; Kour, D.; et al. Arbuscular mycorrhizal fungi as a potential biofertilizers for agricultural sustainability. J. App. Biol. Biotech. 2022, 10, 90–107. [Google Scholar] [CrossRef]
- Kubheka, B.P.; Ziena, L.W.; Kubheka, B.P.; Ziena, L.W. Trichoderma: A biofertilizer and a bio-fungicide for sustainable crop production. In Trichoderma—Technology and Uses; Juliatti, F.C., Ed.; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Schütz, L.; Gattinger, A.; Meier, M.; Müller, A.; Boller, T.; Mäder, P.; Mathimaran, N. Improving crop yield and nutrient use efficiency via biofertilization—A global meta-analysis. Front. Plant Sci. 2018, 8, 2204. [Google Scholar] [CrossRef]
- USDA-NRCS. Molcal Series. Available online: https://soilseries.sc.egov.usda.gov/OSD_Docs/M/MOLCAL.html (accessed on 19 September 2025).
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Horváth, B.; Opara-Nadi, O.; Beese, F. A simple method for measuring the carbonate content of soils. Soil Sci. Soc. Am. J. 2005, 69, 1066–1068. [Google Scholar] [CrossRef]
- Scharpf, H.C.; Wehrmann, J. The importance of the soil’s mineral nitrogen supply at the beginning of vegetation for the measurement of nitrogen fertilization for winter wheat. Agric. Res. 1975, 32, 100–114. (In German) [Google Scholar]
- Watanabe, F.S.; Olsen, S.R. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Soc. Am. J. 1965, 29, 677–678. [Google Scholar] [CrossRef]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Mead, R.; Willey, R.W. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Exp. Agric. 1980, 16, 217–228. [Google Scholar] [CrossRef]
- Li, C.; Stomph, T.-J.; Makowski, D.; Li, H.; Zhang, C.; Zhang, F.; van der Werf, W. The productive performance of intercropping. Proc. Natl. Acad. Sci. USA 2023, 120, e2201886120. [Google Scholar] [CrossRef]
- Audu, R.; Amin, A.B.; Gumel, I.A.; Ibrahim, A.A.; Tijjani, A.; Audu, R. Nutrient content assessment of different varieties of soybean forage as supplemental animal feed in semi-arid Nigeria. Niger. J. Anim. Prod. 2024, 26–29. [Google Scholar] [CrossRef]
- Manjunath, M.G.; Salakinkop, S.R. Growth and yield of soybean and millets in intercropping systems. J. Farm Sci. 2017, 30, 349–353. [Google Scholar]
- Namdari, M.; Abbasi, R.; Pirdashti, H.; Zaefarian, F. Effect of competition on morphological, physiological and productivity characteristics in soybean (Glycine max (L) Merrill) and millet (Panicum miliaceum L.) intercropping. J. Agroecol. 2023, 15, 337–357. [Google Scholar] [CrossRef]
- Layek, J.; Das, A.; Mitran, T.; Nath, C.; Meena, R.S.; Yadav, G.S.; Shivakumar, B.G.; Kumar, S.; Lal, R. Cereal+legume intercropping: An option for improving productivity and sustaining soil health. In Legumes for Soil Health and Sustainable Management; Meena, R.S., Das, A., Yadav, G.S., Lal, R., Eds.; Springer: Singapore, 2018; pp. 347–386. [Google Scholar]
- Senghor, Y.; Balde, A.B.; Manga, A.G.B.; Affholder, F.; Letourmy, P.; Bassene, C.; Kanfany, G.; Ndiaye, M.; Couedel, A.; Leroux, L.; et al. Intercropping millet with low-density cowpea improves millet productivity for low and medium N input in semi-arid central Senegal. Heliyon 2023, 9, e17680. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Lou, Y.; Liao, D.-P.; Gao, R.-C.; Yong, T.-W.; Wang, X.-C.; Liu, W.-G.; Yang, W.-Y. Effects of row spacing on crop biomass, root morphology and yield in maize–soybean relay strip intercropping system. Acta Agron. Sin. 2015, 41, 642–650. [Google Scholar] [CrossRef]
- Astiko, W.; Ernawati, N.M.L.; Silawibawa, I.P. The effect of row proportion of maize and soybean intercropping on growth and yield of component crops in sandy soil North Lombok, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 637, 012005. [Google Scholar] [CrossRef]
- Bagyaraj, D.J. Mycorrhizal fungi. Proc. Indian Natl. Sci. Acad. 2014, 80, 415–428. [Google Scholar] [CrossRef]
- Dragicevic, V.; Oljaca, S.; Stojiljkovic, M.; Simic, M.; Dolijanovic, Z.; Kravic, N. Effect of the maize–soybean intercropping system on the potential bioavailability of magnesium, iron and zinc. Crop Pasture Sci. 2015, 66, 1118–1127. [Google Scholar] [CrossRef]
- Nabati, J.; Nezami, A.; Yousefi, A.; Oskoueian, E.; Oskoueian, A.; Ahmadi-Lahijani, M.J. Biofertilizers containing plant growth promoting rhizobacteria enhance nutrient uptake and improve the growth and yield of chickpea plants in an arid environment. Sci. Rep. 2025, 15, 8331. [Google Scholar] [CrossRef]
- Muthukumar, T.; Koshila Ravi, R. Biodiversity of arbuscular mycorrhizal fungi and its impact on millets growth. In Millet Rhizosphere; Pudake, R.N., Kumari, M., Sapkal, D.R., Sharma, A.K., Eds.; Springer Nature: Singapore, 2023; pp. 35–82. [Google Scholar]
- Jahanzad, E.; Sadeghpour, A.; Hoseini, M.B.; Barker, A.V.; Hashemi, M.; Keshavarz Afshar, R. Competition, nitrogen use efficiency, and productivity of millet–soybean intercropping in semiarid conditions. Crop Sci. 2015, 55, 2842–2851. [Google Scholar] [CrossRef]
- Šenk, M.; Simić, M.; Milojković-Opsenica, D.; Brankov, M.; Tolimir, M.; Kodranov, I.; Dragičević, V. Common millet and soybean intercropping with bio-fertilizer as sustainable practice for managing grain yield and quality. Front. Nutr. 2023, 10, 1267928. [Google Scholar] [CrossRef]
- Sadafzadeh, E.; Javanmard, A.; Amani Machiani, M.; Sofo, A. Application of bio-fertilizers improves forage quantity and quality of sorghum (Sorghum bicolor L.) intercropped with soybean (Glycine max L.). Plants 2023, 12, 2985. [Google Scholar] [CrossRef]
- Javanmard, A.; Majdi, M.; Hamzepour, N.; Nasiri, Y. Evaluation of forage production using maize-legume intercropping and biofertilizer under low-input conditions. Philipp. Agric. Sci. 2017, 100, 79–87. [Google Scholar]
- FAOLEX Database. Regulation Amending the Regulation on the Quality of Animal Feed. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC170753 (accessed on 25 July 2025).
- Mohajer, S.; Ghods, H.; Taha, R.M.; Talati, A. Effect of different harvest time on yield and forage quality of three varieties of common millet (Panicum miliaceum). Sci. Res. Essays 2012, 7, 3020–3025. [Google Scholar] [CrossRef]
- Miransari, M. Soybeans, stress, and nutrients. In Environmental Stresses in Soybean Production; Miransari, M., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 273–298. [Google Scholar]
- Doğan, N.; Akinci, S. Effects of water stress on the uptake of nutrients by bean seedlings (Phaseolus vulgaris L.). Fresenius Environ. Bull. 2011, 20, 2163–2173. [Google Scholar]
- Yu, Z.-C.; Zheng, X.-T.; He, W.; Lin, W.; Yan, G.-Z.; Zhu, H.; Peng, C.-L. Different responses of macro- and microelement contents of 41 subtropical plants to environmental changes in the wet and dry seasons. J. Plant Ecol. 2023, 16, rtad027. [Google Scholar] [CrossRef]
- Singhal, R.K.; Fahad, S.; Kumar, P.; Choyal, P.; Javed, T.; Jinger, D.; Singh, P.; Saha, D.; MD, P.; Bose, B.; et al. Beneficial elements: New Players in improving nutrient use efficiency and abiotic stress tolerance. Plant Growth Regul. 2023, 100, 237–265. [Google Scholar] [CrossRef]
- Lei, G.J.; Zhu, X.F.; Wang, Z.W.; Dong, F.; Dong, N.Y.; Zheng, S.J. Abscisic acid alleviates iron deficiency by promoting root iron reutilization and transport from root to shoot in Arabidopsis. Plant Cell Environ. 2014, 37, 852–863. [Google Scholar] [CrossRef]
- Hasan, M.R.; Thapa, A.; Kabir, A.H. Iron retention coupled with trade-offs in localized symbiotic effects confers tolerance to combined iron deficiency and drought in soybean. J. Exp. Bot. 2025, eraf263. [Google Scholar] [CrossRef]
- Ajithkumar, I.P.; Panneerselvam, R. ROS scavenging system, osmotic maintenance, pigment and growth status of Panicum sumatrenseroth. Under drought stress. Cell Biochem. Biophys. 2014, 68, 587–595. [Google Scholar] [CrossRef]
- Cohu, C.M.; Pilon, M. Regulation of superoxide dismutase expression by copper availability. Physiol. Plant. 2007, 129, 747–755. [Google Scholar] [CrossRef]
- Chai, Y.N.; Schachtman, D.P. Root exudates impact plant performance under abiotic stress. Trends Plant Sci. 2022, 27, 80–91. [Google Scholar] [CrossRef]
- Htet, M.N.S.; Ya-qin, P.; Ya-dong, X.; Soomro, R.N.; Jiang-bo, H. Effect of intercropping maize (Zea mays L.) with soybean (Glycine max L.) on green forage yield, and quality evaluation. IOSR J. Agri. Vet. Sci. 2016, 9, 232–239. [Google Scholar] [CrossRef]
- Bandyopadhyay, T.; Jaiswal, V.; Prasad, M. Nutrition potential of foxtail millet in comparison to other millets and major cereals. In The Foxtail Millet Genome; Prasad, M., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 123–135. [Google Scholar] [CrossRef]
- Jocelyne, R.E.; Béhiblo, K.; Ernest, A.K. Comparative study of nutritional value of wheat, maize, sorghum, millet, and fonio: Some cereals commonly consumed in Côte d’Ivoire. Eur. Sci. J. 2020, 16, 118–131. [Google Scholar] [CrossRef]
- Pawlowski, M.L.; Helfenstein, J.; Frossard, E.; Hartman, G.L. Boron and zinc deficiencies and toxicities and their interactions with other nutrients in soybean roots, leaves, and seeds. J. Plant Nutr. 2019, 42, 634–649. [Google Scholar] [CrossRef]
- Barth, G.; Francisco, E.; Suyama, J.T.; Garcia, F. Nutrient uptake illustrated for modern, high-yielding soybean. Better Crops 2018, 102, 11–14. [Google Scholar] [CrossRef]
- Vijayprabha, V.; Varanavasiappan, S.; Sudhakar, D.; Arul, L.; Kokiladevi, E.; Vanniarajan, C.; Senthil, A.; Jeyakumar, P.A. Comparative analysis of uptake and accumulation pattern of iron in Indian barnyard millet and rice. Bangladesh J. Bot. 2024, 53, 257–264. [Google Scholar] [CrossRef]
- Rodriguez, J.B.; Westfall, D.G.; Peterson, G.A. Dry matter and nutrient accumulation and partitioning by proso millet. Agron. J. 1990, 82, 183–189. [Google Scholar] [CrossRef]
- Zuo, Y.; Zhang, F. Iron and zinc biofortification strategies in dicot plants by intercropping with gramineous species. A review. Agron. Sustain. Dev. 2009, 29, 63–71. [Google Scholar] [CrossRef]
- Lytle, C.M.; Jolley, V.D. Iron deficiency stress response of various c-3 and c-4 grain crop genotypes: Strategy II mechanism evaluated. J. Plant Nutr. 1991, 14, 341–361. [Google Scholar] [CrossRef]
- Saha, S.; Verma, B.C.; Bhaduri, D.; Roy, S. Management of phosphorus-zinc antagonism to improve nutrient use efficiency. Food Sci. Rep. 2022, 3, 40–42. [Google Scholar]
- Cao, X.; Liu, S.; Wang, J.; Wang, H.; Chen, L.; Tian, X.; Zhang, L.; Chang, J.; Wang, L.; Mu, Z.; et al. Soil bacterial diversity changes in different broomcorn millet intercropping systems. J. Basic Microbiol. 2017, 57, 989–997. [Google Scholar] [CrossRef]
- Zhang, S.; Li, S.; Meng, L.; Liu, X.; Zhang, Y.; Zhao, S.; Zhao, H. Root exudation under maize/soybean intercropping system mediates the arbuscular mycorrhizal fungi diversity and improves the plant growth. Front. Plant Sci. 2024, 15, 1375194. [Google Scholar] [CrossRef]
- Gondal, A.H.; Hussain, I.; Ijaz, A.B.; Zafar, A.; Ch, B.I.; Zafar, H.; Sohail, M.D.; Niazi, H.; Touseef, M.; Khan, A.A.; et al. Influence of soil ph and microbes on mineral solubility and plant nutrition: A review. Int. J. Agric. Biol. Sci. 2021, 5, 71–81. [Google Scholar] [CrossRef]
- Ofoe, R.; Thomas, R.H.; Asiedu, S.K.; Wang-Pruski, G.; Fofana, B.; Abbey, L. Aluminum in plant: Benefits, toxicity and tolerance mechanisms. Front. Plant Sci. 2023, 13, 1085998. [Google Scholar] [CrossRef] [PubMed]
- Wiche, O.; Kummer, N.-A.; Heilmeier, H. Interspecific root interactions between white lupin and barley enhance the uptake of rare earth elements (REEs) and nutrients in shoots of barley. Plant Soil 2016, 402, 235–245. [Google Scholar] [CrossRef]
- Selim, M. Potential role of cropping system and integrated nutrient management on nutrients uptake and utilization by maize grown in calcareous soil. Egypt. J. Agron. 2018, 40, 297–312. [Google Scholar] [CrossRef]
- Prasad, R. Micro mineral nutrient deficiencies in humans, animals and plants and their amelioration. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2012, 82, 225–233. [Google Scholar] [CrossRef]
- Soetan, K.O.; Olaiya, C.O.; Oyewole, O.E. The importance of mineral elements for humans, domestic animals and plants: A review. Afr. J. Food Sci. 2010, 4, 200–222. [Google Scholar]
- National Research Council, Division on Earth, Life Studies, Committee on Minerals, Toxic Substances in Diets, and Water for Animals. Mineral Tolerance of Animals, 2nd ed.; National Academies Press: Washington, DC, USA, 2005; pp. 10–14. [Google Scholar]
- Founoune-Mboup, H.; Diallo, B.; Adigoun, R.F.R.; Kane, A.; Fall, A.F. Contribution of arbuscular mycorrhizal fungi to the bioavailability of micronutrients (iron and zinc) in millet accessions. Front. Plant Sci. 2024, 15, 1364469. [Google Scholar] [CrossRef]
- Bolan, N.; Srivastava, P.; Rao, C.S.; Satyanaraya, P.V.; Anderson, G.C.; Bolan, S.; Nortjé, G.P.; Kronenberg, R.; Bardhan, S.; Abbott, L.K.; et al. Chapter two—Distribution, characteristics and management of calcareous soils. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: New York, NY, USA, 2023; Volume 182, pp. 81–130. [Google Scholar]
- Qin, Y.; Yan, Y.; Cheng, L.; Lu, Y.; Chen, J.; Liu, F.; Tan, J. Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen and phosphate availability in soybean/maize intercropping systems. J. Soil Sci. Plant Nutr. 2023, 23, 2723–2731. [Google Scholar] [CrossRef]
- Qin, J.; Wang, H.; Cao, H.; Chen, K.; Wang, X. Combined effects of phosphorus and magnesium on mycorrhizal symbiosis through altering metabolism and transport of photosynthates in soybean. Mycorrhiza 2020, 30, 285–298. [Google Scholar] [CrossRef]
- López-Arredondo, D.L.; Leyva-González, M.A.; González-Morales, S.I.; López-Bucio, J.; Herrera-Estrella, L. Phosphate nutrition: Improving low-phosphate tolerance in crops. Annu. Rev. Plant Biol. 2014, 65, 95–123. [Google Scholar] [CrossRef]
- Deepika, S.; Muthuraja, R.; Muthukumar, T. Synergistic effects of arbuscular mycorrhizal fungi on growth and nutrient uptake in proso, barnyard, and little millet genotypes under different soil types and conditions. J. Soil Sci. Plant Nutr. 2025, 25, 603–617. [Google Scholar] [CrossRef]
- Nworie, O.E.; Qin, J.; Lin, C. Trace element uptake by herbaceous plants from the soils at a multiple trace element-contaminated site. Toxics 2019, 7, 3. [Google Scholar] [CrossRef]
- Ingraffia, R.; Amato, G.; Frenda, A.S.; Giambalvo, D. Impacts of arbuscular mycorrhizal fungi on nutrient uptake, N2 fixation, N transfer, and growth in a wheat/faba bean intercropping system. PLoS ONE 2019, 14, e0213672. [Google Scholar] [CrossRef]
Year | N | P | K | Ca | Mg | S | B | Al | Cr | Mn | Fe | Co | Ni | Cu | Zn | Se |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(kg ha−1) | (mg kg−1) | |||||||||||||||
2018 | 71.9 | 32.7 | 258.1 | 4002 | 299.5 | 72.4 | 14.1 | 263.0 | 0.17 | 185.4 | 63.2 | 1.5 | 2.2 | 4.7 | 4.3 | 0.03 |
2020 | 117.9 | 41.2 | 359.7 | 3856 | 338.7 | 70.3 | 11.1 | 257.1 | 0.33 | 207.6 | 37.1 | 1.7 | 4.3 | 4.4 | 2.9 | 0.08 |
Experimental | Crop Combination | Sowing Density (Plants ha−1) | Inter-Row Distance (cm) | ||||
---|---|---|---|---|---|---|---|
Combination | Soybean | Millet | Soybean | Millet | Soybean–Soybean | Soybean–Millet | Millet–Millet |
S1/S1 + BF | Sole crop | 440.000 | - | 50 | - | - | |
M1/M1 + BF | Sole crop | - | 2640.000 | - | - | 25 | |
S1M1/S1M1 + BF | 1 row | 1 row | 220.000 | 660.000 | - | 50 | - |
S2M2/S2M2 + BF | 2 rows | 2 rows | 352.000 | 1056.000 | 50 | 25 | 25 |
S2M4/S2M4 + BF | 2 rows | 4 rows | 195.556 | 1173.333 | 50 | 50 | 25 |
Months | Average Temperature (°C) | Precipitation Amount (mm) | ||||
---|---|---|---|---|---|---|
2018 | 2020 | 2008–2017 | 2018 | 2020 | 2008–2017 | |
April | 18.0 | 14.4 | 14.2 | 24.6 | 4.7 | 37.4 |
May | 21.7 | 16.9 | 18.5 | 39.0 | 79.9 | 76.7 |
June | 22.7 | 21.3 | 22.5 | 150.1 | 125.9 | 68.4 |
July | 23.6 | 23.3 | 24.6 | 61.9 | 34.8 | 51.8 |
August | 25.7 | 25.2 | 24.4 | 44.0 | 66.3 | 38.2 |
Aver./Sum | 22.3 | 20.2 | 20.8 | 63.9 | 62.3 | 54.5 |
Source of Variation | Soybean | Common Millet | LER | LER | ||||||
---|---|---|---|---|---|---|---|---|---|---|
FBY | DBY | FBY | DBY | FB | DB | |||||
Vegetative | Reproductive | Vegetative | Reproductive | Vegetative | Reproductive | Vegetative | Reproductive | |||
S1/M1 | 34.21 ns | 5.77 ns | 9.73 ns | 1.41 ns | 17.77 a | 8.56 a | 5.51 a | 5.23 a | ||
S1M1 | 42.21 ns | 8.54 ns | 12.95 ns | 2.10 ns | 12.23 b | 5.90 b | 3.23 b | 3.10 b | 0.94 b | 0.93 b |
S2M2 | 41.38 ns | 8.21 ns | 12.47 ns | 2.05 ns | 16.15 a,b | 7.77 a | 4.00 b | 4.12 a,b | 1.10 a | 1.12 a |
S2M4 | 32.56 ns | 5.94 ns | 9.94 ns | 1.50 ns | 15.81 a,b | 7.47 a,b | 4.59 a,b | 4.27 a,b | 0.91 b | 0.90 b |
BF | 38.33 ns | 7.13 ns | 11.26 ns | 1.79 ns | 15.68 ns | 7.37 ns | 4.41 ns | 4.14 ns | 0.95 ns | 0.95 ns |
BFϴ | 36.85 ns | 7.11 ns | 11.28 ns | 1.74 ns | 15.30 ns | 7.48 ns | 4.35 ns | 4.22 ns | 1.02 ns | 1.02 ns |
2018 | 48.20 a | 12.81 a | 15.35 a | 3.26 a | 12.63 b | 7.07 ns | 4.35 ns | 4.85 a | 0.99 ns | 0.96 ns |
2020 | 26.98 b | 1.42 b | 7.20 b | 0.27 b | 18.35 a | 7.78 ns | 4.41 ns | 3.51 b | 0.98 ns | 1.00 ns |
p value | ||||||||||
SP | 0.063 | 0.434 | 0.109 | 0.492 | 0.005 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 |
BF | 0.647 | 0.989 | 0.987 | 0.901 | 0.751 | 0.826 | 0.864 | 0.847 | 0.122 | 0.164 |
Y | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.165 | 0.869 | 0.000 | 0.798 | 0.444 |
SP × BF | 0.334 | 0.891 | 0.502 | 0.919 | 0.082 | 0.034 | 0.001 | 0.031 | 0.000 | 0.001 |
SP × Y | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
BF × Y | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.582 | 0.983 | 0.007 | 0.454 | 0.365 |
SP × BF × Y | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Sources of Variation | Ca | Mg | P | S | B | Al | Cr | Mn | Fe | Co | Ni | Cu | Zn | Mo |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(g kg−1) | (mg kg−1) | |||||||||||||
S1 | 15.37 c | 5.85 ns | 3.45 a | 1.98 a | 30.92 a,b | 84.69 ns | 0.89 b | 75.88 ns | 107.31 ns | 0.08 ns | 1.37 ns | 6.00 a | 22.32 b | 0.51 ns |
S1M1 | 16.71 a,b | 5.25 ns | 3.06 b | 1.92 a | 29.40 a,b | 73.80 ns | 1.29 a | 76.13 ns | 99.53 ns | 0.09 ns | 0.91 ns | 5.89 a,b | 27.19 a,b | 0.57 ns |
S2M2 | 17.70 a | 5.77 ns | 3.29 a | 1.76 b | 35.56 a | 65.36 ns | 1.01 a,b | 80.34 ns | 113.57 ns | 0.09 ns | 1.06 ns | 5.79 b | 29.19 a | 0.46 ns |
S2M4 | 16.53 b | 5.90 ns | 3.43 a | 1.97 a | 26.88 b | 77.11 ns | 1.28 a | 67.84 ns | 119.82 ns | 0.09 ns | 1.18 ns | 5.35 c | 30.78 a | 0.35 ns |
BF | 16.77 ns | 5.72 ns | 3.27 ns | 1.90 ns | 30.08 ns | 74.30 ns | 1.02 ns | 72.49 ns | 112.15 ns | 0.09 ns | 1.14 ns | 5.72 ns | 26.91 ns | 0.48 ns |
BFϴ | 16.39 ns | 5.67 ns | 3.35 ns | 1.92 ns | 31.30 ns | 76.18 ns | 1.21 ns | 77.60 ns | 107.96 ns | 0.09 ns | 1.12 ns | 5.79 ns | 27.83 ns | 0.47 ns |
2018 | 16.94 ns | 6.43 a | 3.44 a | 1.88 ns | 35.54 a | 45.18 b | 0.90 b | 60.59 b | 75.28 b | 0.08 b | 0.71 b | 5.71 ns | 28.22 ns | 0.72 a |
2020 | 16.22 ns | 4.96 b | 3.17 b | 1.94 ns | 25.84 b | 105.30 a | 1.33 a | 89.50 a | 144.84 a | 0.10 a | 1.55 a | 5.80 ns | 26.52 ns | 0.22 b |
p value | ||||||||||||||
SP | 0.000 | 0.191 | 0.000 | 0.000 | 0.014 | 0.561 | 0.013 | 0.404 | 0.579 | 0.935 | 0.116 | 0.000 | 0.002 | 0.279 |
BF | 0.334 | 0.838 | 0.214 | 0.673 | 0.548 | 0.845 | 0.084 | 0.335 | 0.695 | 0.976 | 0.853 | 0.481 | 0.601 | 0.920 |
Y | 0.061 | 0.000 | 0.000 | 0.083 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.315 | 0.332 | 0.000 |
SP × BF | 0.001 | 0.557 | 0.000 | 0.000 | 0.080 | 0.951 | 0.024 | 0.790 | 0.940 | 0.721 | 0.522 | 0.000 | 0.000 | 0.701 |
SP × Y | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
BF × Y | 0.217 | 0.000 | 0.000 | 0.355 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.347 | 0.049 | 0.000 |
SP × BF × Y | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Sources of Variation | Ca | Mg | P | S | B | Al | Cr | Mn | Fe | Co | Ni | Cu | Zn | Mo |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(g kg−1) | (mg kg−1) | |||||||||||||
S1 | 8.53 a | 3.82 ns | 4.56 a | 1.94 a | 27.47 ns | 133.56 ns | 1.95 b | 36.79 b | 161.77 ns | 0.16 b | 4.42 b | 7.62 ns | 38.14 ns | 0.74 ns |
S1M1 | 7.96 b | 3.74 ns | 4.38 a,b | 1.99 a | 30.73 ns | 111.20 ns | 3.17 a | 39.39 a,b | 145.80 ns | 0.21 a | 5.14 a | 8.46 ns | 37.67 ns | 0.70 ns |
S2M2 | 7.35 c | 3.84 ns | 4.19 b | 1.93 a | 36.39 ns | 102.17 ns | 4.19 a | 44.39 a | 159.28 ns | 0.17 b | 4.97 a,b | 8.34 ns | 40.94 ns | 0.75 ns |
S2M4 | 7.93 b | 3.91 ns | 4.22 b | 1.76 b | 33.06 ns | 123.46 ns | 3.34 a | 37.86 b | 177.80 ns | 0.15 b | 4.52 a,b | 7.69 ns | 37.37 ns | 0.66 ns |
BF | 8.01 ns | 3.91 a | 4.49 a | 1.98 a | 31.67 ns | 113.58 ns | 3.11 ns | 38.74 ns | 159.30 ns | 0.17 ns | 4.79 ns | 7.99 ns | 39.36 ns | 0.73 ns |
BFϴ | 7.88 ns | 3.75 b | 4.18 b | 1.84 b | 32.15 ns | 121.61 ns | 3.22 ns | 40.48 ns | 163.03 ns | 0.18 ns | 4.73 ns | 8.06 ns | 37.70 ns | 0.69 ns |
2018 | 8.21 a | 4.02 a | 4.37 ns | 2.00 a | 41.24 a | 36.49 b | 2.48 b | 35.45 b | 97.21 b | 0.15 b | 4.31 b | 9.23 a | 45.22 a | 1.05 a |
2020 | 7.68 b | 3.64 b | 4.30 ns | 1.81 b | 22.58 b | 198.70 a | 3.84 a | 43.76 a | 225.12 a | 0.20 a | 5.21 a | 6.82 b | 31.85 b | 0.37 b |
p value | ||||||||||||||
SP | 0.000 | 0.468 | 0.001 | 0.001 | 0.214 | 0.820 | 0.001 | 0.003 | 0.727 | 0.004 | 0.020 | 0.356 | 0.621 | 0.930 |
BF | 0.460 | 0.029 | 0.000 | 0.001 | 0.876 | 0.745 | 0.782 | 0.292 | 0.850 | 0.618 | 0.767 | 0.880 | 0.434 | 0.716 |
Y | 0.003 | 0.000 | 0.366 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
SP × BF | 0.000 | 0.127 | 0.000 | 0.000 | 0.731 | 0.974 | 0.006 | 0.033 | 0.976 | 0.027 | 0.060 | 0.746 | 0.897 | 0.998 |
SP × Y | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
BF × Y | 0.020 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
SP × BF × Y | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Sources of Variation | Ca | Mg | P | S | B | Al | Cr | Mn | Fe | Co | Ni | Cu | Zn | Mo |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(g kg−1) | (mg kg−1) | |||||||||||||
M1 | 5.21 b | 3.87 b | 2.16 ns | 1.86 b | 2.01 ns | 113.44 a | 2.34 ns | 33.43 b | 79.81 b | 0.08 ns | 1.89 ns | 3.04 ns | 15.57 a | 0.24 ns |
S1M1 | 5.96 a | 4.68 a | 2.18 ns | 2.28 a | 2.11 ns | 72.82 b | 4.35 ns | 43.03 a | 89.41 a | 0.08 ns | 1.54 ns | 3.17 ns | 13.31 a,b | 0.31 ns |
S2M2 | 5.38 a,b | 4.58 a | 2.42 ns | 2.26 a | 3.31 ns | 99.07 a,b | 3.11 ns | 42.74 a | 89.14 a | 0.08 ns | 1.89 ns | 3.56 ns | 10.35 b | 0.27 ns |
S2M4 | 5.74 a,b | 4.04 b | 2.27 ns | 1.84 b | 1.98 ns | 58.70 b | 3.78 ns | 44.05 a | 83.61 a,b | 0.09 ns | 2.43 ns | 3.36 ns | 17.25 a | 0.25 ns |
BF | 5.55 ns | 4.28 ns | 2.09 b | 2.00 ns | 2.65 ns | 81.58 ns | 2.51 b | 41.26 ns | 85.19 ns | 0.08 ns | 1.78 ns | 3.40 ns | 12.00 b | 0.25 ns |
BFϴ | 5.59 ns | 4.31 ns | 2.43 a | 2.12 ns | 2.05 ns | 90.44 ns | 4.28 a | 40.36 ns | 85.80 ns | 0.09 ns | 2.09 ns | 3.17 ns | 16.24 a | 0.28 ns |
2018 | 5.13 b | 4.47 a | 2.09 b | 1.95 b | 3.38 a | 107.54 a | 5.14 a | 37.93 b | 81.32 b | 0.10 a | 2.72 a | 2.50 b | 12.50 b | 0.34 a |
2020 | 6.01 a | 4.12 b | 2.43 a | 2.17 a | 1.33 b | 64.47 b | 1.65 b | 43.69 a | 89.67 a | 0.07 b | 1.15 b | 4.06 a | 15.74 a | 0.20 b |
p value | ||||||||||||||
SP | 0.041 | 0.000 | 0.124 | 0.000 | 0.053 | 0.000 | 0.215 | 0.000 | 0.026 | 0.800 | 0.171 | 0.574 | 0.002 | 0.283 |
BF | 0.865 | 0.766 | 0.000 | 0.111 | 0.144 | 0.400 | 0.011 | 0.646 | 0.825 | 0.110 | 0.269 | 0.401 | 0.002 | 0.339 |
Y | 0.000 | 0.003 | 0.000 | 0.004 | 0.000 | 0.000 | 0.000 | 0.002 | 0.001 | 0.000 | 0.000 | 0.000 | 0.020 | 0.000 |
SP × BF | 0.307 | 0.000 | 0.000 | 0.000 | 0.052 | 0.004 | 0.123 | 0.001 | 0.032 | 0.479 | 0.358 | 0.702 | 0.000 | 0.631 |
SP × Y | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
BF × Y | 0.000 | 0.030 | 0.000 | 0.006 | 0.000 | 0.000 | 0.000 | 0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
SP × BF × Y | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Sources of Variation | Ca | Mg | P | S | B | Al | Cr | Mn | Fe | Co | Ni | Cu | Zn | Mo |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(g kg−1) | (mg kg−1) | |||||||||||||
M1 | 0.98 ns | 1.58 b | 3.04 b | 1.16 c | 3.49 a | 37.22 a | 2.25 b | 23.57 d | 55.24 b | 0.07 ns | 2.28 b | 5.66 ns | 26.92 a | 0.19 a |
S1M1 | 1.08 ns | 1.76 a | 3.28 a | 1.42 a | 1.85 b | 15.51 b | 1.84 c | 25.40 c | 46.81 b | 0.07 ns | 2.34 b | 5.83 ns | 21.37 b | 0.15 b |
S2M2 | 1.01 ns | 1.58 b | 3.02 b | 1.26 b | 1.59 b | 18.78 a,b | 2.92 a | 30.65 a | 66.06 a | 0.07 ns | 2.85 a | 5.63 ns | 24.26 a,b | 0.18 a |
S2M4 | 1.21 ns | 1.58 b | 3.03 b | 1.31 b | 2.15 b | 31.65 a,b | 1.74 c | 27.75 b | 62.87 a,b | 0.08 ns | 2.26 b | 5.38 ns | 21.51 b | 0.19 a |
BF | 1.13 ns | 1.65 ns | 3.12 ns | 1.30 ns | 2.98 a | 18.78 b | 2.28 ns | 28.12 a | 55.84 ns | 0.07 ns | 2.37 ns | 5.54 ns | 23.24 ns | 0.19 a |
BFϴ | 1.01 ns | 1.60 ns | 3.07 ns | 1.27 ns | 1.55 b | 32.80 a | 2.09 ns | 25.56 b | 59.65 ns | 0.07 ns | 2.50 ns | 5.71 ns | 23.79 ns | 0.16 b |
2018 | 0.85 b | 1.74 a | 3.02 b | 1.29 ns | 2.60 ns | 37.99 a | 2.26 ns | 26.67 ns | 63.07 a | 0.08 a | 2.25 b | 4.85 b | 25.43 a | 0.19 a |
2020 | 1.29 a | 1.51 b | 3.17 a | 1.29 ns | 1.94 ns | 13.59 b | 2.11 ns | 27.01 ns | 52.42 b | 0.07 b | 2.61 a | 6.40 a | 21.60 b | 0.16 b |
p value | ||||||||||||||
SP | 0.165 | 0.012 | 0.000 | 0.000 | 0.001 | 0.038 | 0.000 | 0.000 | 0.000 | 0.245 | 0.000 | 0.631 | 0.000 | 0.001 |
BF | 0.138 | 0.320 | 0.395 | 0.431 | 0.000 | 0.024 | 0.270 | 0.004 | 0.303 | 0.201 | 0.261 | 0.481 | 0.639 | 0.001 |
Y | 0.000 | 0.000 | 0.003 | 0.965 | 0.082 | 0.000 | 0.377 | 0.707 | 0.003 | 0.013 | 0.001 | 0.000 | 0.000 | 0.000 |
SP × BF | 0.334 | 0.081 | 0.000 | 0.000 | 0.000 | 0.013 | 0.000 | 0.000 | 0.001 | 0.323 | 0.000 | 0.952 | 0.004 | 0.000 |
SP × Y | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
BF × Y | 0.000 | 0.000 | 0.017 | 0.437 | 0.000 | 0.000 | 0.570 | 0.021 | 0.001 | 0.047 | 0.001 | 0.000 | 0.000 | 0.000 |
SP × BF × Y | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Measured Parameters | BF | BFϴ | ||||||
---|---|---|---|---|---|---|---|---|
S1 | S1M1 | S2M2 | S2M4 | S1 | S1M1 | S2M2 | S2M4 | |
FBY (t ha−1) | 36.14 ± 4.73 ns | 42.10 ± 6.11 ns | 40.41 ± 6.10 ns | 34.66 ± 3.93 ns | 32.28 ± 2.67 ns | 42.31 ± 5.17 ns | 42.35 ± 2.00 ns | 30.47 ± 4.18 ns |
DBY (t ha−1) | 10.00 ± 1.33 ns | 12.51 ± 2.02 ns | 12.11 ± 1.73 ns | 10.43 ± 1.29 ns | 9.45 ± 0.67 ns | 13.39 ± 1.78 ns | 12.84 ± 1.07 ns | 9.45 ± 1.38 ns |
Ca (g kg−1) | 15.20 ± 0.45 c | 17.04 ± 0.39 a,b | 17.85 ± 0.48 a | 16.97 ± 0.41 a,b | 15.53 ± 0.33 b,c | 16.39 ± 0.24 b | 17.54 ± 0.24 a | 16.09 ± 0.53 b,c |
Mg (g kg−1) | 5.73 ± 0.03 ns | 5.24 ± 0.05 ns | 6.01 ± 0.03 ns | 5.89 ± 0.03 ns | 5.98 ± 0.02 ns | 5.26 ± 0.03 ns | 5.53 ± 0.06 ns | 5.91 ± 0.03 ns |
P (g kg−1) | 3.31 ± 0.02 b | 3.09 ± 0.02 c | 3.29 ± 0.01 b | 3.37 ± 0.01 b | 3.60 ± 0.01 a | 3.04 ± 0.01 c | 3.29 ± 0.01 b | 3.48 ± 0.02 a,b |
S (g kg−1) | 1.88 ± 0.01 c,d | 1.93 ± 0.00 c | 1.83 ± 0.01 d | 1.96 ± 0.02 b,c | 2.07 ± 0.01 a | 1.91 ± 0.01 c | 1.69 ± 0.00 e | 1.99 ± 0.01 b |
B (mg kg−1) | 30.01 ± 2.36 ns | 29.03 ± 4.07 ns | 36.84 ± 4.15 ns | 24.45 ± 2.96 ns | 31.83 ± 2.55 ns | 29.76 ± 3.57 ns | 34.28 ± 2.68 ns | 29.32 ± 2.24 ns |
Al (mg kg−1) | 86.47 ± 4.16 ns | 73.16 ± 1.03 ns | 61.94 ± 2.34 ns | 75.62 ± 3.26 ns | 82.92 ± 4.40 ns | 74.44 ± 3.90 ns | 68.78 ± 2.49 ns | 78.59 ± 1.43 ns |
Cr (mg kg−1) | 0.87 ± 0.01 b | 1.16 ± 0.12 a,b | 0.82 ± 0.01 b | 1.25 ± 0.02 a | 0.91 ± 0.02 b | 1.41 ± 0.03 a | 1.21 ± 0.01 a,b | 1.31 ± 0.03 a |
Mn (mg kg−1) | 72.79 ± 0.41 ns | 73.24 ± 0.64 ns | 79.77 ± 1.51 ns | 64.18 ± 0.46 ns | 78.97 ± 0.92 ns | 79.01 ± 1.47 ns | 80.91 ± 1.02 ns | 71.49 ± 0.73 ns |
Fe (mg kg−1) | 114.43 ± 1.34 ns | 99.31 ± 0.60 ns | 114.12 ± 1.27 ns | 120.75 ± 0.59 ns | 100.19 ± 1.02 ns | 99.75 ± 1.77 ns | 113.02 ± 1.42 ns | 118.89 ± 1.62 ns |
Co (mg kg−1) | 0.09 ± 0.00 ns | 0.09 ± 0.00 ns | 0.08 ± 0.00 ns | 0.08 ± 0.00 ns | 0.08 ± 0.00 ns | 0.08 ± 0.00 ns | 0.09 ± 0.01 ns | 0.09 ± 0.00 ns |
Ni (mg kg−1) | 1.40 ± 0.02 ns | 0.99 ± 0.03 ns | 1.05 ± 0.03 ns | 1.13 ± 0.03 ns | 1.33 ± 0.03 ns | 0.83 ± 0.02 ns | 1.08 ± 0.02 ns | 1.22 ± 0.03 ns |
Cu (mg kg−1) | 6.03 ± 0.04 a | 5.66 ± 0.06 b | 5.80 ± 0.05 b | 5.42 ± 0.04 c | 5.97 ± 0.06 a | 6.13 ± 0.05 a | 5.78 ± 0.07 b | 5.28 ± 0.06 c |
Zn (mg kg−1) | 22.80 ± 0.30 b | 22.51 ± 0.38 b | 29.69 ± 0.19 a | 32.65 ± 0.43 a | 21.85 ± 0.27 b | 31.86 ± 0.42 a | 28.69 ± 0.45 a | 28.91 ± 0.54 a |
Mo (mg kg−1) | 0.47 ± 0.01 ns | 0.62 ± 0.01 ns | 0.50 ± 0.01 ns | 0.32 ± 0.01 ns | 0.55 ± 0.01 ns | 0.51 ± 0.02 ns | 0.43 ± 0.01 ns | 0.38 ± 0.01 ns |
Measured Parameters | BF | BFϴ | ||||||
---|---|---|---|---|---|---|---|---|
S1 | S1M1 | S2M2 | S2M4 | S1 | S1M1 | S2M2 | S2M4 | |
FBY (t ha−1) | 5.87 ± 0.90 ns | 8.78 ± 1.17 ns | 7.52 ± 1.43 ns | 6.33 ± 0.78 ns | 5.66 ± 0.50 ns | 8.30 ± 0.89 ns | 8.90 ± 0.31 ns | 5.55 ± 0.69 ns |
DBY (t ha−1) | 1.46 ± 0.22 ns | 2.18 ± 0.33 ns | 1.91 ± 0.35 ns | 1.63 ± 0.22 ns | 1.37 ± 0.09 ns | 2.03 ± 0.26 ns | 2.20 ± 0.18 ns | 1.37 ± 0.18 ns |
Ca (g kg−1) | 8.56 ± 0.32 a | 8.01 ± 0.32 b | 7.35 ± 0.21 c | 8.14 ± 0.14 a,b | 8.51 ± 0.44 a | 7.92 ± 0.41 b | 7.35 ± 0.19 c | 7.73 ± 0.07 b,c |
Mg (g kg−1) | 3.98 ± 0.04 ns | 3.80 ± 0.03 ns | 3.98 ± 0.03 ns | 3.89 ± 0.03 ns | 3.67 ± 0.02 ns | 3.68 ± 0.03 ns | 3.70 ± 0.02 ns | 3.94 ± 0.01 ns |
P (g kg−1) | 4.76 ± 0.01 a | 4.58 ± 0.02 b | 4.36 ± 0.02 c | 4.26 ± 0.03 c,d | 4.35 ± 0.01 c | 4.18 ± 0.02 d | 4.01 ± 0.02 d | 4.18 ± 0.02 d |
S (g kg−1) | 2.02 ± 0.01 a,b | 2.05 ± 0.02 a | 2.00 ± 0.01 a,b | 1.83 ± 0.01 b | 1.85 ± 0.01 b | 1.93 ± 0.02 b | 1.86 ± 0.01 b | 1.69 ± 0.01 c |
B (mg kg−1) | 26.57 ± 5.31 ns | 30.80 ± 0.72 ns | 36.84 ± 4.73 ns | 32.47 ± 3.00 ns | 28.37 ± 2.21 ns | 30.66 ± 3.42 ns | 35.93 ± 2.23 ns | 33.65 ± 3.02 ns |
Al (mg kg−1) | 132.18 ± 1.97 ns | 121.34 ± 1.61 ns | 97.37 ± 5.17 ns | 103.45 ± 3.69 ns | 134.93 ± 5.36 ns | 101.07 ± 2.70 ns | 106.97 ± 2.98 ns | 143.48 ± 4.99 ns |
Cr (mg kg−1) | 1.98 ± 0.08 c | 3.06 ± 0.04 b,c | 4.52 ± 0.03 a | 2.86 ± 0.03 b,c | 1.92 ± 0.02 c | 3.28 ± 0.04 b | 3.86 ± 0.02 a,b | 3.82 ± 0.05 a,b |
Mn (mg kg−1) | 35.79 ± 0.36 b | 38.94 ± 0.44 b | 42.68 ± 0.05 a,b | 37.53 ± 0.32 b | 37.78 ± 0.46 b | 39.84 ± 0.52 b | 46.11 ± 0.64 a | 38.19 ± 0.26 b |
Fe (mg kg−1) | 167.85 ± 2.29 ns | 145.58 ± 1.10 ns | 157.36 ± 0.92 ns | 166.41 ± 0.34 ns | 155.69 ± 2.20 ns | 146.02 ± 0.86 ns | 161.21 ± 1.73 ns | 189.20 ± 1.72 ns |
Co (mg kg−1) | 0.17 ± 0.01 b | 0.21 ± 0.00 a | 0.15 ± 0.00 b | 0.15 ± 0.01 b | 0.16 ± 0.00 b | 0.21 ± 0.00 a | 0.19 ± 0.00 a,b | 0.15 ± 0.00 b |
Ni (mg kg−1) | 4.29 ± 0.06 ns | 5.39 ± 0.15 ns | 5.13 ± 0.09 ns | 4.35 ± 0.05 ns | 4.54 ± 0.07 ns | 4.88 ± 0.03 ns | 4.81 ± 0.06 ns | 4.69 ± 0.03 ns |
Cu (mg kg−1) | 7.31 ± 0.29 ns | 8.27 ± 0.20 ns | 8.45 ± 0.12 ns | 7.95 ± 0.06 ns | 7.92 ± 0.10 ns | 8.66 ± 0.29 ns | 8.22 ± 0.15 ns | 7.43 ± 0.09 ns |
Zn (mg kg−1) | 40.21 ± 0.81 ns | 38.10 ± 0.88 ns | 40.79 ± 0.08 ns | 38.35 ± 0.59 ns | 36.08 ± 0.32 ns | 37.25 ± 0.66 ns | 41.09 ± 0.45 ns | 36.40 ± 0.11 ns |
Mo (mg kg−1) | 0.73 ± 0.02 ns | 0.69 ± 0.03 ns | 0.79 ± 0.01 ns | 0.71 ± 0.01 ns | 0.74 ± 0.01 ns | 0.70 ± 0.01 ns | 0.72 ± 0.02 ns | 0.61 ± 0.00 ns |
Measured Parameters | BF | BFϴ | ||||||
---|---|---|---|---|---|---|---|---|
M1 | S1M1 | S2M2 | S2M4 | M1 | S1M1 | S2M2 | S2M4 | |
FBY (t ha−1) | 18.25 ± 1.55 ns | 12.33 ± 3.90 ns | 15.93 ± 3.26 ns | 16.19 ± 1.67 ns | 17.28 ± 1.35 ns | 12.12 ± 2.35 ns | 16.37 ± 4.62 ns | 15.43 ± 0.87 ns |
DBY (t ha−1) | 5.62 ± 0.65 a | 3.26 ± 1.12 b | 4.13 ± 1.00 b | 4.63 ± 0.62 a,b | 5.39 ± 0.55 a,b | 3.20 ± 0.80 b | 4.26 ± 1.31 b | 4.56 ± 0.63 a,b |
Ca (g kg−1) | 5.29 ± 0.20 ns | 5.90 ± 0.36 ns | 5.30 ± 0.37 ns | 5.73 ± 0.28 ns | 5.13 ± 0.24 ns | 6.02 ± 0.19 ns | 5.45 ± 0.39 ns | 5.74 ± 0.21 ns |
Mg (g kg−1) | 3.94 ± 0.03 c | 4.67 ± 0.03 a,b | 4.45 ± 0.04 b | 4.05 ± 0.05 c | 3.81 ± 0.02 c | 4.70 ± 0.02 a | 4.72 ± 0.02 a | 4.02 ± 0.02 c |
P (g kg−1) | 1.96 ± 0.00 c | 1.97 ± 0.04 c | 2.20 ± 0.02 b | 2.22 ± 0.01 b | 2.36 ± 0.01 b | 2.39 ± 0.02 b | 2.64 ± 0.01 a | 2.32 ± 0.02 b |
S (g kg−1) | 1.85 ± 0.01 c | 2.18 ± 0.02 b | 2.14 ± 0.01 b | 1.82 ± 0.02 c | 1.87 ± 0.02 c | 2.38 ± 0.01 a | 2.38 ± 0.01 a | 1.86 ± 0.02 c |
B (mg kg−1) | 2.79 ± 0.21 ns | 2.37 ± 0.18 ns | 3.03 ± 0.32 ns | 2.41 ± 0.23 ns | 1.22 ± 0.17 ns | 1.85 ± 0.19 ns | 3.60 ± 0.14 ns | 1.55 ± 0.34 ns |
Al (mg kg−1) | 103.71 ± 3.59 a | 73.23 ± 2.97 b | 92.89 ± 0.86 a,b | 56.48 ± 3.30 b | 123.17 ± 3.89 a | 72.41 ± 1.17 b | 105.24 ± 1.78 a | 60.93 ± 3.68 b |
Cr (mg kg−1) | 1.43 ± 0.01 ns | 3.16 ± 0.06 ns | 2.55 ± 0.00 ns | 2.91 ± 0.03 ns | 3.25 ± 0.03 ns | 5.55 ± 0.04 ns | 3.67 ± 0.04 ns | 4.65 ± 0.04 ns |
Mn (mg kg−1) | 34.92 ± 0.49 b | 41.61 ± 0.60 a | 44.05 ± 0.53 a | 44.46 ± 0.53 a | 31.93 ± 0.07 b | 44.44 ± 0.63 a | 41.43 ± 0.19 a | 43.65 ± 0.30 a |
Fe (mg kg−1) | 81.44 ± 0.99 b | 83.72 ± 0.65 b | 89.83 ± 1.37 a,b | 85.78 ± 1.79 b | 78.19 ± 1.68 b | 95.10 ± 0.90 a | 88.45 ± 1.07 a,b | 81.46 ± 1.62 b |
Co (mg kg−1) | 0.08 ± 0.00 ns | 0.07 ± 0.01 ns | 0.08 ± 0.00 ns | 0.09 ± 0.00 ns | 0.08 ± 0.00 ns | 0.10 ± 0.00 ns | 0.09 ± 0.00 ns | 0.09 ± 0.00 ns |
Ni (mg kg−1) | 1.46 ± 0.02 ns | 1.44 ± 0.06 ns | 1.71 ± 0.03 ns | 2.49 ± 0.02 ns | 2.32 ± 0.02 ns | 1.63 ± 0.02 ns | 2.06 ± 0.03 ns | 2.37 ± 0.03 ns |
Cu (mg kg−1) | 2.98 ± 0.07 ns | 3.07 ± 0.05 ns | 3.90 ± 0.07 ns | 3.64 ± 0.04 ns | 3.10 ± 0.03 ns | 3.28 ± 0.06 ns | 3.21 ± 0.04 ns | 3.08 ± 0.07 ns |
Zn (mg kg−1) | 13.56 ± 0.28 b,c | 10.84 ± 0.38 c | 8.98 ± 0.16 c | 14.61 ± 0.33 b,c | 17.58 ± 0.30 a,b | 15.77 ± 0.10 b | 11.73 ± 0.11 c | 19.89 ± 0.45 a |
Mo (mg kg−1) | 0.21 ± 0.01 ns | 0.30 ± 0.01 ns | 0.25 ± 0.01 ns | 0.25 ± 0.01 ns | 0.27 ± 0.01 ns | 0.31 ± 0.00 ns | 0.28 ± 0.00 ns | 0.25 ± 0.01 ns |
Measured Parameters | BF | BFϴ | ||||||
---|---|---|---|---|---|---|---|---|
M1 | S1M1 | S2M2 | S2M4 | M1 | S1M1 | S2M2 | S2M4 | |
FBY (t ha−1) | 8.66 ± 0.72 a | 5.81 ± 1.88 b | 7.62 ± 1.71 a,b | 7.39 ± 0.76 a,b | 8.46 ± 0.63 a | 5.99 ± 1.16 b | 7.93 ± 2.24 a | 7.56 ± 0.44 a,b |
DBY (t ha−1) | 5.32 ± 0.62 a | 3.02 ± 1.08 b | 4.02 ± 1.12 a,b | 4.20 ± 0.62 a,b | 5.14 ± 0.48 a | 3.18 ± 0.80 b | 4.22 ± 1.31 a,b | 4.34 ± 0.62 a,b |
Ca (g kg−1) | 1.07 ± 0.07 ns | 1.13 ± 0.10 ns | 1.02 ± 0.09 ns | 1.31 ± 0.07 ns | 0.90 ± 0.06 ns | 1.04 ± 0.09 ns | 1.00 ± 0.10 ns | 1.11 ± 0.05 ns |
Mg (g kg−1) | 1.61 ± 0.01 ns | 1.82 ± 0.02 ns | 1.59 ± 0.01 ns | 1.58 ± 0.02 ns | 1.55 ± 0.02 ns | 1.70 ± 0.02 ns | 1.58 ± 0.02 ns | 1.57 ± 0.01 ns |
P (g kg−1) | 3.09 ± 0.02 b | 3.25 ± 0.01 a | 3.08 ± 0.02 b | 3.05 ± 0.01 b | 2.99 ± 0.02 b | 3.32 ± 0.01 a | 2.96 ± 0.01 b | 3.02 ± 0.01 b |
S (g kg−1) | 1.20 ± 0.01 c | 1.40 ± 0.01 a | 1.28 ± 0.01 b,c | 1.32 ± 0.01 b | 1.13 ± 0.04 d | 1.44 ± 0.01 a | 1.24 ± 0.01 c | 1.30 ± 0.01 b |
B (mg kg−1) | 4.35 ± 0.52 a | 2.50 ± 0.47 b,c | 2.04 ± 0.45 c | 3.05 ± 0.43 b | 2.63 ± 0.53 b,c | 1.20 ± 0.14 c,d | 1.15 ± 0.34 d | 1.24 ± 0.54 c |
Al (mg kg−1) | 20.96 ± 1.10 b | 13.52 ± 1.38 b | 14.33 ± 1.71 b | 26.30 ± 2.23 b | 53.48 ± 2.09 a | 17.51 ± 1.28 b | 23.22 ± 1.39 b | 37.00 ± 2.01 a,b |
Cr (mg kg−1) | 2.65 ± 0.05 b | 2.06 ± 0.03 c | 2.73 ± 0.04 b | 1.69 ± 0.04 d | 1.84 ± 0.02 c,d | 1.62 ± 0.01 d | 3.10 ± 0.03 a | 1.79 ± 0.02 c,d |
Mn (mg kg−1) | 24.85 ± 0.33 d | 27.04 ± 0.43 c | 31.61 ± 0.53 a | 28.96 ± 0.31 b | 22.28 ± 0.17 f | 23.75 ± 0.12 e | 29.68 ± 0.42 b | 26.54 ± 0.47 c |
Fe (mg kg−1) | 56.49 ± 0.83 b | 47.79 ± 0.72 b,c | 61.63 ± 2.10 a,b | 57.45 ± 1.39 b | 53.99 ± 0.79 b,c | 45.82 ± 0.55 c | 70.48 ± 1.30 a | 68.28 ± 0.75 a |
Co (mg kg−1) | 0.08 ± 0.00 ns | 0.07 ± 0.00 ns | 0.07 ± 0.01 ns | 0.08 ± 0.00 ns | 0.06 ± 0.00 ns | 0.06 ± 0.00 ns | 0.07 ± 0.00 ns | 0.08 ± 0.00 ns |
Ni (mg kg−1) | 2.33 ± 0.04 b,c | 2.40 ± 0.03 b,c | 2.55 ± 0.04 b | 2.20 ± 0.05 c | 2.23 ± 0.02 c | 2.29 ± 0.03 b,c | 3.16 ± 0.02 a | 2.31 ± 0.01 b,c |
Cu (mg kg−1) | 5.56 ± 0.11 ns | 5.77 ± 0.13 ns | 5.55 ± 0.07 ns | 5.28 ± 0.10 ns | 5.77 ± 0.11 ns | 5.90 ± 0.05 ns | 5.72 ± 0.07 ns | 5.47 ± 0.04 ns |
Zn (mg kg−1) | 27.05 ± 0.39 a | 22.24 ± 0.21 b | 23.09 ± 0.38 b | 20.59 ± 0.18 b | 26.79 ± 0.28 a | 20.50 ± 0.24 b | 25.43 ± 0.33 a,b | 22.43 ± 0.55 b |
Mo (mg kg−1) | 0.21 ± 0.01 a | 0.16 ± 0.01 b,c | 0.19 ± 0.00 a,b | 0.20 ± 0.00 a,b | 0.17 ± 0.00 b | 0.13 ± 0.01 c | 0.17 ± 0.01 b | 0.18 ± 0.00 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šenk, M.; Simić, M.; Milojković-Opsenica, D.M.; Brankov, M.; Trifković, J.; Perić, V.; Dragičević, V. Intercropping of Soybean and Common Millet—A Rational Way of Forage Biomass Quality Enhancement. Agriculture 2025, 15, 2029. https://doi.org/10.3390/agriculture15192029
Šenk M, Simić M, Milojković-Opsenica DM, Brankov M, Trifković J, Perić V, Dragičević V. Intercropping of Soybean and Common Millet—A Rational Way of Forage Biomass Quality Enhancement. Agriculture. 2025; 15(19):2029. https://doi.org/10.3390/agriculture15192029
Chicago/Turabian StyleŠenk, Milena, Milena Simić, Dušanka M. Milojković-Opsenica, Milan Brankov, Jelena Trifković, Vesna Perić, and Vesna Dragičević. 2025. "Intercropping of Soybean and Common Millet—A Rational Way of Forage Biomass Quality Enhancement" Agriculture 15, no. 19: 2029. https://doi.org/10.3390/agriculture15192029
APA StyleŠenk, M., Simić, M., Milojković-Opsenica, D. M., Brankov, M., Trifković, J., Perić, V., & Dragičević, V. (2025). Intercropping of Soybean and Common Millet—A Rational Way of Forage Biomass Quality Enhancement. Agriculture, 15(19), 2029. https://doi.org/10.3390/agriculture15192029