Digital Transition as a Driver for Sustainable Tailor-Made Farm Management: An Up-to-Date Overview on Precision Livestock Farming
Abstract
1. Introduction
2. Review Criteria
3. Basic Principles of the PLF Approach
4. PLF Reshapes the Intensive Livestock Industry
5. Main Steps to Create a Tailor-Made Farming System with PLF Transition
6. Assessing Animal Adaptative Bio-Responses Is Core to PLF
7. The Array of Precision Technologies in Livestock Farming
- -
- Environmental conditions: instrumentation for controlling the environmental conditions and optimize the living environment in the barn such as temperature, humidity, pollutant, radiation, wind, etc.
- -
- Animal welfare and behavior: broad-range tools to control the behavioral aspects and the physiological mechanisms of stress responses of single animals and/or the relations among animals.
- -
- Animal health: monitoring tools used to detect early state of sub-optimal conditions or diseases among which measure animal health parameters or that detect sounds, images and other data.
- -
- Animal production: instrumentation to control productive variables (e.g., automatic milking systems) or innovative husbandry techniques such as feed formulation optimization, nutritional supplements, and development and application of rearing equipment.
8. Sensor Devices
Sensor Type | Function/Application | Specific Measurements | Benefits | References |
---|---|---|---|---|
Wearable Sensors | Monitor individual animal health and behavior through continuous data collection. | Body temperature, heart rate, physical activity, feeding behavior. | Provides real-time health monitoring, allows early disease detection, tracks physical fitness. | [20,130,159,160,161,172,174]. |
RFID (Radio-Frequency Identification) | Track and identify individual animals for better management and health monitoring. | Feeding activity, movement patterns, social interactions, laying behavior. | Improves herd management, enhances record-keeping, supports individualized care. | [67,76,172,173] |
GPS (Global Positioning System) | Monitor grazing patterns and movement of livestock in real-time. | Location coordinates, grazing duration, movement trajectories. | Aids in pasture management, enhances animal welfare by understanding grazing behavior. | [23] |
Pedometers | Measure daily activity levels and detect deviations from normal behavior. | Steps taken, activity levels, rest periods. | Facilitates identification of health issues, encourages better physical activity. | [175,176]. |
Accelerometers | Monitor animal movement patterns and behavior, detecting changes indicative of health issues. | Locomotor activity, feeding behavior, behavioral anomalies. | Enhances disease detection, tracks changes in activity levels, supports behavioral research. | [19,67,123,178,179,181]. |
Biosensors | Analyze biological samples to detect specific health indicators or diseases. | Biomarkers in blood, saliva, or milk. | Enables early diagnosis of diseases, supports preventive health measures. | [207,208,209,210,212]. |
Multi-Sensor Systems | Combine multiple sensors for comprehensive health and welfare monitoring. | Various health metrics, behavioral data. | Provides a holistic view of animal health, improves data accuracy and management efficiency. | [67,107,108,109,184,189] |
9. Audio Visual Technologies
9.1. Visual Analysis
9.2. Acoustic Analysis
Sensor Type | Function/Application | Specific Measurements | Benefits | References |
---|---|---|---|---|
Video-Based Imaging Systems | Surveillance cameras for monitoring animal health, behavior, and welfare. | Animal behavior, feeding behavior, gait, posture, weight, social interactions, individual identification (facial recognition). | Non-invasive, reduces stress compared to wearable sensors, automates tasks like animal weighing and behavior analysis. | [72,126,213,214,216] |
Computer Vision (3D) | Vision systems that use 3D cameras to monitor animal behavior and physical characteristics. | Body weight, body dimensions, behavior, posture. | Provides precise measurement of body parameters, more accurate than 2D, allows detailed monitoring of animal health and behavior. | [122,213,221,222]. |
Thermal Infrared (TIR) Imaging | Sensors that detect infrared radiation to create thermal images, which help in detecting temperature changes on animal bodies. | Surface temperature, eye temperature, udder temperature, hoof temperature. | Non-invasive detects early signs of disease and stress, helps diagnose conditions like mastitis, lameness, and thermal stress. | [233,234,241]. |
Acoustic Analysis (Vocalizations) | Microphones placed in animal housing to analyze sound patterns, used to assess health, behavior, and welfare. | Coughing, grunting, vocalizations related to stress, pain, aggression, or illness. | Helps identify respiratory diseases, behavioral issues, and early signs of illness, offers real-time health monitoring. | [134,255,256]. |
eYeNamic System (Poultry) | Real-time behavioral monitoring system that uses cameras to analyze bird distribution, feeding, and water intake. | Bird distribution in the flock, feed and water intake, detection of system faults (feeding, heating, fans). | High accuracy in detecting issues in feeding and environment, enables early intervention for animal welfare and microclimate control. | [166,217,218]. |
Pecking Sound Detection (Poultry) | Acoustic system for detecting and analyzing pecking sounds to monitor feeding behavior and stress levels in poultry. | Pecking sounds, feeding behavior, stress-related vocalizations. | Helps monitor animal behavior without direct intervention, identifies feeding and stress patterns with high accuracy. | [253,260,261]. |
Cough Detection System (Pigs) | Acoustic systems for detecting coughing sounds to monitor respiratory diseases in pigs. | Coughing sounds, respiratory distress. | Early detection of respiratory diseases, improving health management and reducing the spread of infections. | [257] |
10. Principles of Precision Animal Nutrition
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Echegaray, N.; Hassoun, A.; Jagtap, S.; Tetteh-Caesar, M.; Kumar, M.; Tomasevic, I.; Goksen, G.; Lorenzo, J.M. Meat 4.0: Principles and Applications of Industry 4.0 Technologies in the Meat Industry. Appl. Sci. 2022, 12, 6986. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.-J. Big Data in Smart Farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Rose, D.C.; Chilvers, J. Agriculture 4.0: Broadening Responsible Innovation in an Era of Smart Farming. Front. Sustain. Food Syst. 2018, 2, 87. [Google Scholar] [CrossRef]
- Jamshidi, M.; Dehghaniyan Serej, A.; Jamshidi, A.; Moztarzadeh, O. The Meta-Metaverse: Ideation and Future Directions. Future Internet 2023, 15, 252. [Google Scholar] [CrossRef]
- Jamshidi, M.; Yahya, S.I.; Nouri, L.; Hashemi-Dezaki, H.; Rezaei, A.; Chaudhary, M.A. A Super-Efficient GSM Triplexer for 5G-Enabled IoT in Sustainable Smart Grid Edge Computing and the Metaverse. Sensors 2023, 23, 3775. [Google Scholar] [CrossRef]
- Sachs, J.; Kroll, C.; Lafortune, G.; Fuller, G.; Woelm, F. Sustainable Development Report 2022; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Kamilaris, A.; Kartakoullis, A.; Prenafeta-Boldú, F.X. A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 2017, 143, 23–37. [Google Scholar] [CrossRef]
- Knorr, D.; Augustin, M.A.; Tiwari, B. Advancing the role of food processing for improved integration in sustainable food chains. Front. Nutr. 2020, 7, 34. [Google Scholar] [CrossRef]
- Rodrigues, S.S.Q.; Leite, A.; Vasconcelos, L.; Teixeira, A. Exploring the Nexus of Feeding and Processing: Implications for Meat Quality and Sensory Perception. Foods 2024, 13, 3642. [Google Scholar] [CrossRef]
- Robling, H.; Abu Hatab, A.; Säll, S.; Hansson, H. Measuring sustainability at farm level—A critical view on data and indicators. Environ. Sustain. Indic. 2023, 18, 100258. [Google Scholar] [CrossRef]
- Pierce, J.; Strengers, Y.; Sengers, P.; Bødker, S. Introduction to the special issue on practice-oriented approaches to sustainable HCI. ACM Trans. Comput.-Hum. Interact. 2013, 20, 1–8. [Google Scholar] [CrossRef]
- Lindblom, J.; Lundström, C.; Ljung, M.; Jonsson, A. Promoting sustainable intensification in precision agriculture: Review of decision support systems development and strategies. Precis. Agric. 2017, 18, 309–331. [Google Scholar] [CrossRef]
- García, R.; Aguilar, J.; Toro, M.; Pinto, A.; Rodríguez, P. A systematic literature review on the use of machine learning in precision livestock farming. Comput. Electron. Agric. 2020, 179, 105826. [Google Scholar] [CrossRef]
- European Commission. Farm to fork strategy: For a fair, healthy and environmentally-friendly food system. Commun. Comm. Eur. Parliam. Counc. Eur. Econ. Soc. Comm. Comm. Reg. 2020, 381, 1–9. [Google Scholar]
- Gómez, Y.; Stygar, A.H.; Boumans, I.J.M.M.; Bokkers, E.A.M.; Pedersen, L.J.; Niemi, J.K.; Pastell, M.; Manteca, X.; Llonch, P. A systematic review on validated precision livestock farming technologies for pig production and its potential to assess animal welfare. Front. Vet. Sci. 2021, 8, 660565. [Google Scholar] [CrossRef]
- Andretta, I.; Pomar, C.; Rivest, J.; Pomar, J.; Lovatto, P.A.; Radünz Neto, J. The impact of feeding growing–finishing pigs with daily tailored diets using precision feeding techniques on animal performance, nutrient utilization, and body and carcass composition. J. Anim. Sci. 2014, 92, 3925–3936. [Google Scholar] [CrossRef]
- Fernández, A.P.; Norton, T.; Youssef, A.; Exadaktylos, V.; Bahr, C.; Bruininx, E.; Vranken, E.; Berckmans, D. Real-time modelling of individual weight response to feed supply for fattening pigs. Comput. Electron. Agric. 2019, 162, 895–906. [Google Scholar] [CrossRef]
- Bao, J.; Xie, Q. Artificial intelligence in animal farming: A systematic literature review. J. Clean. Prod. 2022, 331, 129956. [Google Scholar] [CrossRef]
- Benjamin, M.; Yik, S. Precision livestock farming in swine welfare: A review for swine practitioners. Animals 2019, 9, 133. [Google Scholar] [CrossRef]
- Neethirajan, S.; Kemp, B. Digital livestock farming. Sens. Bio-Sens. Res. 2021, 32, 100408. [Google Scholar] [CrossRef]
- Neethirajan, S. Artificial intelligence and sensor innovations: Enhancing livestock welfare with a human-centric approach. Hum.-Centric Intell. Syst. 2024, 4, 77–92. [Google Scholar] [CrossRef]
- Piñeiro, C.; Morales, J.; Rodríguez, M.; Aparicio, M.; Manzanilla, E.G.; Koketsu, Y. Big (pig) data and the internet of the swine things: A new paradigm in the industry. Anim. Front. 2019, 9, 6–15. [Google Scholar] [CrossRef]
- Mishra, S.; Sharma, S.K. Advanced contribution of IoT in agricultural production for the development of smart livestock environments. Internet Things 2023, 22, 100724. [Google Scholar] [CrossRef]
- Hassoun, A.; Aït-Kaddour, A.; Abu-Mahfouz, A.M.; Rathod, N.B.; Bader, F.; Barba, F.J.; Biancolillo, A.; Cropotova, J.; Galanakis, C.M.; Jambrak, A.R. The fourth industrial revolution in the food industry—Part I: Industry 4.0 technologies. Crit. Rev. Food Sci. Nutr. 2023, 63, 6547–6563. [Google Scholar] [CrossRef]
- Parlasca, M.C.; Qaim, M. Meat consumption and sustainability. Annu. Rev. Resour. Econ. 2022, 14, 17–41. [Google Scholar] [CrossRef]
- Berckmans, D. General introduction to precision livestock farming. Anim. Front. 2017, 7, 6–11. [Google Scholar] [CrossRef]
- Geels, F.W. Socio-technical transitions to sustainability: A review of criticisms and elaborations of the Multi-Level Perspective. Curr. Opin. Environ. Sustain. 2019, 39, 187–201. [Google Scholar] [CrossRef]
- de Oliveira, F.M.; Ferraz, G.A.e.S.; André, A.L.G.; Santana, L.S.; Norton, T.; Ferraz, P.F.P. Digital and Precision Technologies in Dairy Cattle Farming: A Bibliometric Analysis. Animals 2024, 14, 1832. [Google Scholar] [CrossRef]
- Lokhorst, C.; De Mol, R.M.; Kamphuis, C. Invited review: Big Data in precision dairy farming. Animal 2019, 13, 1519–1528. [Google Scholar] [CrossRef]
- Trivelli, L.; Apicella, A.; Chiarello, F.; Rana, R.; Fantoni, G.; Tarabella, A. From precision agriculture to Industry 4.0: Unveiling technological connections in the agrifood sector. Br. Food J. 2019, 121, 1730–1743. [Google Scholar] [CrossRef]
- Halachmi, I.; Guarino, M.; Bewley, J.; Pastell, M. Smart animal agriculture: Application of real-time sensors to improve animal well-being and production. Annu. Rev. Anim. Biosci. 2019, 7, 403–425. [Google Scholar] [CrossRef]
- Rutten, C.J.; Velthuis, A.G.J.; Steeneveld, W.; Hogeveen, H. Invited review: Sensors to support health management on dairy farms. J. Dairy Sci. 2013, 96, 1928–1952. [Google Scholar] [CrossRef]
- Berckmans, D. Automatic on-line monitoring of animals by precision livestock farming. In Livestock Production and Society; Wageningen Academic: Wageningen, The Netherlands, 2006; pp. 287–294. [Google Scholar]
- Berckmans, D.; Guarino, M. From the Editors: Precision livestock farming for the global livestock sector. Anim. Front. 2017, 7, 4–5. [Google Scholar] [CrossRef]
- Fournel, S.; Rousseau, A.N.; Laberge, B. Rethinking environment control strategy of confined animal housing systems through precision livestock farming. Biosyst. Eng. 2017, 155, 96–123. [Google Scholar] [CrossRef]
- Rojo-Gimeno, C.; van der Voort, M.; Niemi, J.K.; Lauwers, L.; Kristensen, A.R.; Wauters, E. Assessment of the value of information of precision livestock farming: A conceptual framework. NJAS-Wagening. J. Life Sci. 2019, 90, 100311. [Google Scholar] [CrossRef]
- Tullo, E.; Finzi, A.; Guarino, M. Environmental impact of livestock farming and Precision Livestock Farming as a mitigation strategy. Sci. Total Environ. 2019, 650, 2751–2760. [Google Scholar] [CrossRef] [PubMed]
- Van Hertem, T.; Rooijakkers, L.; Berckmans, D.; Fernández, A.P.; Norton, T.; Vranken, E. Appropriate data visualisation is key to Precision Livestock Farming acceptance. Comput. Electron. Agric. 2017, 138, 1–10. [Google Scholar] [CrossRef]
- Neethirajan, S. The role of sensors, big data and machine learning in modern animal farming. Sens. Bio-Sens. Res. 2020, 29, 100367. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Mason-D’Croz, D.; Palmer, J.; Benton, T.G.; Bodirsky, B.L.; Bogard, J.R.; Hall, A.; Lee, B.; Nyborg, K. Innovation can accelerate the transition towards a sustainable food system. Nat. Food 2020, 1, 266–272. [Google Scholar] [CrossRef]
- Banhazi, T.M.; Lehr, H.; Black, J.L.; Crabtree, H.; Schofield, P.; Tscharke, M.; Berckmans, D. Precision livestock farming: An international review of scientific and commercial aspects. Int. J. Agric. Biol. Eng. 2012, 5, 1–9. [Google Scholar]
- Wathes, C.M.; Kristensen, H.H.; Aerts, J.-M.; Berckmans, D. Is precision livestock farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall? Comput. Electron. Agric. 2008, 64, 2–10. [Google Scholar] [CrossRef]
- Buller, H.; Blokhuis, H.; Lokhorst, K.; Silberberg, M.; Veissier, I. Animal welfare management in a digital world. Animals 2020, 10, 1779. [Google Scholar] [CrossRef] [PubMed]
- Norton, T.; Chen, C.; Larsen, M.L.V.; Berckmans, D. Precision livestock farming: Building ‘digital representations’ to bring the animals closer to the farmer. Animal 2019, 13, 3009–3017. [Google Scholar] [CrossRef]
- Banhazi, T.M.; Black, J.L. Precision livestock farming: A suite of electronic systems to ensure the application of best practice management on livestock farms. Aust. J. Multi-Discip. Eng. 2009, 7, 1–14. [Google Scholar] [CrossRef]
- Ramil Brick, E.S.; Holland, J.; Anagnostou, D.E.; Brown, K.; Desmulliez, M.P.Y. A review of agroforestry, precision agriculture, and precision livestock farming—The case for a data-driven agroforestry strategy. Front. Sens. 2022, 3, 998928. [Google Scholar] [CrossRef]
- Krampe, C.; Ingenbleek, P.T.M.; Niemi, J.K.; Serratosa, J. Designing precision livestock farming system innovations: A farmer perspective. J. Rural. Stud. 2024, 111, 103397. [Google Scholar] [CrossRef]
- Morrone, S.; Dimauro, C.; Gambella, F.; Cappai, M.G. Industry 4.0 and precision livestock farming (PLF): An up to date overview across animal productions. Sensors 2022, 22, 4319. [Google Scholar] [CrossRef]
- Marquer, P.; Rabade, T.; Forti, R. Pig Farming in the European Union: Considerable Variations from One Member State to Another. Eurostat Statistics in Focus 15/2014. Agriculture and Fisheries; Eurostat, European Commission: Brussels, Belgium, 2014.
- Meen, G.H.; Schellekens, M.A.; Slegers, M.H.M.; Leenders, N.L.G.; van Erp-van der Kooij, E.; Noldus, L.P.J.J. Sound analysis in dairy cattle vocalisation as a potential welfare monitor. Comput. Electron. Agric. 2015, 118, 111–115. [Google Scholar] [CrossRef]
- Guarino, M.; Norton, T.; Berckmans, D.; Vranken, E.; Berckmans, D. A blueprint for developing and applying precision livestock farming tools: A key output of the EU-PLF project. Anim. Front. 2017, 7, 12–17. [Google Scholar] [CrossRef]
- Berckmans, D. Precision livestock farming technologies for welfare management in intensive livestock systems. Rev. Sci. Tech.—Off. Int. Épizooties 2014, 33, 189–196. [Google Scholar] [CrossRef]
- Ochs, D.S.; Wolf, C.A.; Widmar, N.J.O.; Bir, C. Consumer perceptions of egg-laying hen housing systems. Poult. Sci. 2018, 97, 3390–3396. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bacenetti, J.; Guarino, M. A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production? J. Clean. Prod. 2020, 262, 121409. [Google Scholar] [CrossRef]
- Menendez Iii, H.M.; Brennan, J.R.; Gaillard, C.; Ehlert, K.; Quintana, J.; Neethirajan, S.; Remus, A.; Jacobs, M.; Teixeira, I.A.M.A.; Turner, B.L. ASAS–NANP Symposium: Mathematical Modeling in Animal Nutrition: Opportunities and challenges of confined and extensive precision livestock production. J. Anim. Sci. 2022, 100, skac160. [Google Scholar] [CrossRef] [PubMed]
- FAO. Greenhouse Gas Emissions from Agrifood Systems. Global, Regional and Country Trends, 2000–2020 FAOSTAT Analytical Brief Series No. 50; FAO: Rome, Italy, 2022. [Google Scholar]
- Okinda, C.; Nyalala, I.; Korohou, T.; Okinda, C.; Wang, J.; Achieng, T.; Wamalwa, P.; Mang, T.; Shen, M. A review on computer vision systems in monitoring of poultry: A welfare perspective. Artif. Intell. Agric. 2020, 4, 184–208. [Google Scholar] [CrossRef]
- Pulido, M.; Barrena-González, J.; Badgery, W.; Rodrigo-Comino, J.; Cerdà, A. Sustainable grazing. Curr. Opin. Environ. Sci. Health 2018, 5, 42–46. [Google Scholar] [CrossRef]
- Wang, J.; Shen, M.; Liu, L.; Xu, Y.; Okinda, C. Recognition and Classification of Broiler Droppings Based on Deep Convolutional Neural Network. J. Sens. 2019, 2019, 3823515. [Google Scholar] [CrossRef]
- Cockshaw, R. The End of Factory Farming: Alternatives to improve sustainability, safety, and health. Voices Bioeth. 2021, 7, 1–6. [Google Scholar] [CrossRef]
- Priekulis, J.; Melece, L.; Laurs, A. Most Appropriate Measures for Reducing Ammonia Emissions in Latvia’s Pig and Poultry Housing; Estonian University of Life Sciences: Tartu, Estonia, 2019. [Google Scholar]
- Murtoff, J.; Metych, M. Intensive Animal Farming. Encyclopedia Britannica. 2024. Available online: https://www.britannica.com/technology/factory-farming (accessed on 12 April 2025).
- Berckmans, D. 1.2. Smart farming for Europe: Value creation through precision livestock farming. In Precision Livestock Farming Applications; Wageningen Academic: Wageningen, The Netherlands, 2015; pp. 25–36. [Google Scholar] [CrossRef]
- Godfrey, M. Substantial pig and pork processing project planned for China. 2015. Available online: https://www.foodnavigator-asia.com/Article/2015/07/03/Substantial-pig-and-pork-processing-project-planned-for-China/ (accessed on 17 April 2025).
- Neethirajan, S. The significance and ethics of digital livestock farming. AgriEngineering 2023, 5, 488–505. [Google Scholar] [CrossRef]
- Broom, D.M. Animal Welfare in the European Union. In Directorate General for Internal Policies; European Parliament, Policy Department C; Policy Department for Citizens’ Rights and Constitutional Affairs: Brussels, Belgium, 2017. [Google Scholar]
- Caja, G.; Castro-Costa, A.; Knight, C.H. Engineering to support wellbeing of dairy animals. J. Dairy Res. 2016, 83, 136–147. [Google Scholar] [CrossRef]
- Berckmans, D. Bright farm by precision livestock farming. Impact 2017, 2017, 4–6. [Google Scholar] [CrossRef]
- Werkheiser, I. Technology and responsibility: A discussion of underexamined risks and concerns in precision livestock farming. Anim. Front. 2020, 10, 51–57. [Google Scholar] [CrossRef]
- Halachmi, I.; Guarino, M. Precision livestock farming: A ‘per animal’ approach using advanced monitoring technologies. Animal 2016, 10, 1482–1483. [Google Scholar] [CrossRef]
- Tzanidakis, C.; Simitzis, P.; Arvanitis, K.; Panagakis, P. An overview of the current trends in precision pig farming technologies. Livest. Sci. 2021, 249, 104530. [Google Scholar] [CrossRef]
- Tu, S.; Ou, H.; Mao, L.; Du, J.; Cao, Y.; Chen, W. Behavior Tracking and Analyses of Group-Housed Pigs Based on Improved ByteTrack. Animals 2024, 14, 3299. [Google Scholar] [CrossRef] [PubMed]
- Uwizeye, A.; Gerber, P.J.; Schulte, R.P.O.; de Boer, I.J.M. A comprehensive framework to assess the sustainability of nutrient use in global livestock supply chains. J. Clean. Prod. 2016, 129, 647–658. [Google Scholar] [CrossRef]
- Meunier, B.; Pradel, P.; Sloth, K.H.; Cirié, C.; Delval, E.; Mialon, M.M.; Veissier, I. Image analysis to refine measurements of dairy cow behaviour from a real-time location system. Biosyst. Eng. 2018, 173, 32–44. [Google Scholar] [CrossRef]
- Riaboff, L.; Poggi, S.; Madouasse, A.; Couvreur, S.; Aubin, S.; Bédère, N.; Goumand, E.; Chauvin, A.; Plantier, G. Development of a methodological framework for a robust prediction of the main behaviours of dairy cows using a combination of machine learning algorithms on accelerometer data. Comput. Electron. Agric. 2020, 169, 105179. [Google Scholar] [CrossRef]
- Chien, Y.-R.; Chen, Y.-X. An RFID-Based Smart Nest Box: An Experimental Study of Laying Performance and Behaviour of Individual Hens. Sensors 2018, 18, 859. [Google Scholar] [CrossRef]
- Tullo, E.; Mattachini, G.; Riva, E.; Finzi, A.; Provolo, G.; Guarino, M. Effects of climatic conditions on the lying behaviour of a group of primiparous dairy cows. Animals 2019, 9, 869. [Google Scholar] [CrossRef]
- Jorquera-Chavez, M.; Fuentes, S.; Dunshea, F.R.; Jongman, E.C.; Warner, R.D. Computer vision and remote sensing to assess physiological responses of cattle to pre-slaughter stress, and its impact on beef quality: A review. Meat Sci. 2019, 156, 11–22. [Google Scholar] [CrossRef]
- Costa, A.; Mentasti, T.; Guarino, M.; Leroy, T.; Berckmans, D. Real time monitoring of pig activity: Practical difficulties in pigs’ behaviour labelling. In Precision Livestock Farming’07; Wageningen Academic: Wageningen, The Netherlands, 2007; pp. 299–307. [Google Scholar]
- Niloofar, P.; Francis, D.P.; Lazarova-Molnar, S.; Vulpe, A.; Vochin, M.-C.; Suciu, G.; Balanescu, M.; Anestis, V.; Bartzanas, T. Data-driven decision support in livestock farming for improved animal health, welfare and greenhouse gas emissions: Overview and challenges. Comput. Electron. Agric. 2021, 190, 106406. [Google Scholar] [CrossRef]
- Mizik, T. How can precision farming work on a small scale? A systematic literature review. Precis. Agric. 2023, 24, 384–406. [Google Scholar] [CrossRef]
- Wathes, C.M. The prospects for precision livestock farming. J. R. Agric. Soc. Engl. 2010, 171, 26–32. [Google Scholar]
- Renaudeau, D.; Collin, A.; Yahav, S.; De Basilio, V.; Gourdine, J.-L.; Collier, R.J. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 2012, 6, 707–728. [Google Scholar] [CrossRef] [PubMed]
- David, B.; Mejdell, C.; Michel, V.; Lund, V.; Oppermann Moe, R. Air quality in alternative housing systems may have an impact on laying hen welfare. Part II—Ammonia. Animals 2015, 5, 886–896. [Google Scholar] [CrossRef]
- Dallimore, K. Canadian Poultry—Precision Livestock Farming. 2017. Available online: https://www.canadianpoultrymag.com/precision-livestock-farming-30052/ (accessed on 21 April 2025).
- Astill, J.; Dara, R.A.; Fraser, E.D.G.; Roberts, B.; Sharif, S. Smart poultry management: Smart sensors, big data, and the internet of things. Comput. Electron. Agric. 2020, 170, 105291. [Google Scholar] [CrossRef]
- Wasti, S.; Sah, N.; Mishra, B. Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals 2020, 10, 1266. [Google Scholar] [CrossRef]
- Berckmans, D. Precision livestock farming (PLF). Comput. Electron. Agric. 2008, 62, 1. [Google Scholar] [CrossRef]
- Berckmans, D. What Can We Expect from Precision Livestock Farming and Why. Acceptable and Practical Precision Livestock Farming. Smith, I.G., Lehr, H., Eds.; European Commission: Halifax, UK, 2011; pp. 7–10. [Google Scholar]
- Hogeveen, H.; Rutten, N.; Kamphuis, C.; van der Voort, M. Economics of precision dairy monitoring techniques. In Proceedings of the Conference & Expo on Precision Dairy Farming, Lexington, KY, USA, 30 May 2017; p. 87. [Google Scholar]
- Berckmans, D.; Aerts, J.M. Integration of biological responses in the management of bioprocesses. In Master Course in the Masters of BioSystems and of Human Health Engineering at KU Leuven; KU Leuven: Leuven, Belgium, 2016. [Google Scholar]
- Gaughan, J.B.; Sejian, V.; Mader, T.L.; Dunshea, F.R. Adaptation strategies: Ruminants. Anim. Front. 2019, 9, 47–53. [Google Scholar] [CrossRef]
- Niyas, P.A.A.; Chaidanya, K.; Shaji, S.; Sejian, V.; Bhatta, R. Adaptation of livestock to environmental challenges. J. Vet. Sci. Med. Diagn. 2015, 4, 2. [Google Scholar]
- Sejian, V.; Naqvi, S.M.K.; Ezeji, T.; Lakritz, J.; Lal, R. Environmental Stress and Amelioration in Livestock Production; Springer: Berlin/Heidelberg, Germany, 2012; Volume 5. [Google Scholar]
- Farooq, U.; Samad, H.A.; Shehzad, F.; Qayyum, A. Physiological responses of cattle to heat stress. World Appl. Sci. J. 2010, 8, 38–43. [Google Scholar]
- Nasirahmadi, A.; Sturm, B.; Edwards, S.; Jeppsson, K.-H.; Olsson, A.-C.; Müller, S.; Hensel, O. Deep learning and machine vision approaches for posture detection of individual pigs. Sensors 2019, 19, 3738. [Google Scholar] [CrossRef] [PubMed]
- Kerketta, S.; Singh, A.K.; Kumar, C.; Rajak, S.K.; Mandal, B. Integrating On-Farm Animal Welfare Assessments into Regulatory Frameworks: Challenges and Solutions for Improved Animal Care; IntechOpen: London, UK, 2024. [Google Scholar]
- Simitzis, P.; Tzanidakis, C.; Tzamaloukas, O.; Sossidou, E. Contribution of precision livestock farming systems to the improvement of welfare status and productivity of dairy animals. Dairy 2021, 3, 12–28. [Google Scholar] [CrossRef]
- Dawkins, M.S.; Roberts, S.J.; Cain, R.J.; Nickson, T.; Donnelly, C.A. Early warning of footpad dermatitis and hockburn in broiler chicken flocks using optical flow, bodyweight and water consumption. Vet. Rec. 2017, 180, 499. [Google Scholar] [CrossRef] [PubMed]
- Green, L.E.; Kaler, J.; Wassink, G.J.; King, E.M.; Thomas, R.G. Impact of rapid treatment of sheep lame with footrot on welfare and economics and farmer attitudes to lameness in sheep. Anim. Welf. 2012, 21, 65–71. [Google Scholar] [CrossRef]
- Salois, M.; Baker, K. Factors Affecting Broiler Livability: Implications for Animal Welfare & Food Policy. In Proceedings of the 2018 Annual Meeting, Jacksonville, FL, USA, 2–6 February 2018. [Google Scholar]
- Okinda, C.; Lu, M.; Liu, L.; Nyalala, I.; Muneri, C.; Wang, J.; Zhang, H.; Shen, M. A machine vision system for early detection and prediction of sick birds: A broiler chicken model. Biosyst. Eng. 2019, 188, 229–242. [Google Scholar] [CrossRef]
- Singer, R.S.; Porter, L.J.; Thomson, D.U.; Gage, M.; Beaudoin, A.; Wishnie, J.K. Potential impacts on animal health and welfare of raising animals without antibiotics. BioRxiv 2019, 600965. [Google Scholar]
- Machado, M.; da Silva, I.J.O. Does farm animals experience emotions and feelings? J. Anim. Behav. Biometeorol. 2020, 7, 170–175. [Google Scholar] [CrossRef]
- Ganaie, A.H.; Ghasura, R.S.; Mir, N.A.; Bumla, N.A.; Sankar, G.; Wani, S.A. Biochemical and physiological changes during thermal stress in bovines: A review. J. Vet. Sci. Technol. 2013, 4, 1000126. [Google Scholar]
- Joosen, P.; Norton, T.; Marchant-Forde, J.; Berckmans, D. Animal welfare monitoring by real-time physiological signals. In Proceedings of the Precision Livestock Farming’19, Cork, Ireland, 26–29 August 2020; pp. 337–344. [Google Scholar]
- Chaudhry, A.A.; Mumtaz, R.; Zaidi, S.M.H.; Tahir, M.A.; Syed Hassan Muzammil School. Internet of Things (IoT) and machine learning (ML) enabled livestock monitoring. In Proceedings of the 2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET), Charlotte, NC, USA, 14–16 December 2020; pp. 151–155. [Google Scholar]
- Aswini, D.; Santhya, S.; Nandheni, T.S.; Sukirthini, N. Cattle health and environment monitoring system. Int. Res. J. Eng. Technol. 2017, 4, 1899–1903. [Google Scholar]
- Costa, D.d.S.; Turco, S.H.N.; Ramos, R.P.; Silva, F.M.F.M.; Freire, M.S. Electronic monitoring system for measuring heart rate and skin temperature in small ruminants. Eng. Agrícola 2018, 38, 166–172. [Google Scholar] [CrossRef]
- Grandin, T. The effect of stress on livestock and meat quality prior to and during slaughter. Int. J. Study Anim. Probl. 1980, 1, 313–337. [Google Scholar]
- Anton, A.; Solcan, G. Heart rate variability for assessing stress in cows. Vet. Med. 2012, 58, 12–19. [Google Scholar]
- Moura Rocha, L. Validation of Stress Indicators for the Assessment of Animal Welfare and Prediction of Pork Meat Quality Variation at Commercial Level. 2016. Available online: https://www.semanticscholar.org/paper/Validation-of-stress-indicators-for-the-assessment-Rocha/52860cf0418b75329e2d8611b85934b1a1e3afa1 (accessed on 21 April 2025).
- Pighin, D.G.; Davies, P.; Grigioni, G.; Pazos, A.A.; Ceconi, I.; Mendez, D.; Buffarini, M.; Sancho, A.; Gonzalez, C.B. Effect of slaughter handling conditions and animal temperament on bovine meat quality markers. Arch. Zootec. 2013, 62, 399–409. [Google Scholar] [CrossRef]
- Möstl, E.; Palme, R. Hormones as indicators of stress. Domest. Anim. Endocrinol. 2002, 23, 67–74. [Google Scholar] [CrossRef]
- Proverbio, D.; Perego, R.; Spada, E.; Bagnagatti de Giorgi, G.; Belloli, A.; Pravettoni, D. Comparison of VIDAS and radioimmunoassay methods for measurement of cortisol concentration in bovine serum. Sci. World J. 2013, 2013, 216569. [Google Scholar] [CrossRef]
- Xing, T.; Gao, F.; Tume, R.K.; Zhou, G.; Xu, X. Stress effects on meat quality: A mechanistic perspective. Compr. Rev. Food Sci. Food Saf. 2019, 18, 380–401. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Hopkins, D.L.; Bruce, H.; Li, D.; Baldi, G.; Bekhit, A.E.d. Causes and contributing factors to “dark cutting” meat: Current trends and future directions: A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 400–430. [Google Scholar] [CrossRef]
- Faucitano, L. Preslaughter handling practices and their effects on animal welfare and pork quality. J. Anim. Sci. 2018, 96, 728–738. [Google Scholar] [CrossRef]
- Alm, M.; Tauson, R.; Holm, L.; Wichman, A.; Kalliokoski, O.; Wall, H. Welfare indicators in laying hens in relation to nest exclusion. Poult. Sci. 2016, 95, 1238–1247. [Google Scholar] [CrossRef]
- Sukumar, P.; Sri Swethaa, K.; Santhiya, E.; Vishnu Kumar, R.; Surya Prakash, P. IoT based Cattle Feed and Health Monitoring System. Int. J. Res. Appl. Sci. Eng. Technol. 2021, 9, 1015–1021. [Google Scholar]
- Dominiak, K.N.; Kristensen, A.R. Prioritizing alarms from sensor-based detection models in livestock production—A review on model performance and alarm reducing methods. Comput. Electron. Agric. 2017, 133, 46–67. [Google Scholar] [CrossRef]
- Shao, B.; Xin, H. A real-time computer vision assessment and control of thermal comfort for group-housed pigs. Comput. Electron. Agric. 2008, 62, 15–21. [Google Scholar] [CrossRef]
- Ahmed, S.T.; Mun, H.S.; Islam, M.M.; Yoe, H.; Yang, C.J. Monitoring activity for recognition of illness in experimentally infected weaned piglets using received signal strength indication ZigBee-based wireless acceleration sensor. Asian-Australas. J. Anim. Sci. 2015, 29, 149. [Google Scholar] [CrossRef] [PubMed]
- Syarif, I.; Ahsan, A.S.; Rasyid, M.U.H.A.; Pratama, Y.P. Health Monitoring and Early Diseases Detection on Dairy Cow Based on Internet of Things and Intelligent System. In Proceedings of the 2019 International Electronics Symposium (IES), Surabaya, Indonesia, 27–28 September 2019; pp. 183–188. [Google Scholar]
- Chen, Y.; Arsenault, R.; Napper, S.; Griebel, P. Models and methods to investigate acute stress responses in cattle. Animals 2015, 5, 1268–1295. [Google Scholar] [CrossRef]
- Kashiha, M.; Bahr, C.; Ott, S.; Moons, C.P.; Niewold, T.A.; Ödberg, F.O.; Berckmans, D. Automatic weight estimation of individual pigs using image analysis. Comput. Electron. Agric. 2014, 107, 38–44. [Google Scholar] [CrossRef]
- Tattersall, G.J. Infrared thermography: A non-invasive window into thermal physiology. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2016, 202, 78–98. [Google Scholar] [CrossRef]
- Lagua, E.B.; Mun, H.S.; Ampode, K.M.B.; Kim, Y.H.; Yang, C.J. Artificial intelligence for automatic monitoring of respiratory health conditions in smart swine farming. Animals 2023, 13, 1860. [Google Scholar] [CrossRef]
- Tahsin, K.N. Development of a propeller P8X 32A based wireless biosensor system for cattle health monitoring and disease detection. Br. J. Appl. Sci. Technol. 2016, 18, 1–14. [Google Scholar] [CrossRef]
- Alipio, M.; Villena, M.L. Intelligent wearable devices and biosensors for monitoring cattle health conditions: A review and classification. Smart Health 2023, 27, 100369. [Google Scholar] [CrossRef]
- Shields, S.; Orme-Evans, G. The impacts of climate change mitigation strategies on animal welfare. Animals 2015, 5, 361–394. [Google Scholar] [CrossRef]
- Papakonstantinou, G.I.; Voulgarakis, N.; Terzidou, G.; Fotos, L.; Giamouri, E.; Papatsiros, V.G. Precision livestock farming technology: Applications and challenges of animal welfare and climate change. Agriculture 2024, 14, 620. [Google Scholar] [CrossRef]
- Gernand, E.; König, S.; Kipp, C. Influence of on-farm measurements for heat stress indicators on dairy cow productivity, female fertility, and health. J. Dairy Sci. 2019, 102, 6660–6671. [Google Scholar] [CrossRef]
- Lee, J.; Noh, B.; Jang, S.; Park, D.; Chung, Y.; Chang, H.-H. Stress detection and classification of laying hens by sound analysis. Asian-Australas. J. Anim. Sci. 2015, 28, 592. [Google Scholar] [CrossRef] [PubMed]
- Mylostyvyi, R.; Izhboldina, O.; Chernenko, O.; Khramkova, O.; Kapshuk, N.; Hoffmann, G. Microclimate modeling in naturally ventilated dairy barns during the hot season: Checking the accuracy of forecasts. J. Therm. Biol. 2020, 93, 102720. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.V. Heat stress interaction with shade and cooling. J. Dairy Sci. 1994, 77, 2044–2050. [Google Scholar] [CrossRef] [PubMed]
- Curtis, A.K.; Scharf, B.; Eichen, P.A.; Spiers, D.E. Relationships between ambient conditions, thermal status, and feed intake of cattle during summer heat stress with access to shade. J. Therm. Biol. 2017, 63, 104–111. [Google Scholar] [CrossRef]
- Polsky, L.; Von Keyserlingk, M.A.G. Invited review: Effects of heat stress on dairy cattle welfare. J. Dairy Sci. 2017, 100, 8645–8657. [Google Scholar] [CrossRef]
- da Costa, A.N.L.; Feitosa, J.V.; Montezuma, P.A.; de Souza, P.T.; de Araújo, A.A. Rectal temperatures, respiratory rates, production, and reproduction performances of crossbred Girolando cows under heat stress in northeastern Brazil. Int. J. Biometeorol. 2015, 59, 1647–1653. [Google Scholar] [CrossRef]
- Kulaz, E.; Ser, G. A meta-analysis of heat stress in dairy cattle: The increase in temperature humidity index affects both milk yield and some physiological parameters. Czech J. Anim. Sci. 2022, 67, 209–217. [Google Scholar] [CrossRef]
- Wang, X.; Gao, H.; Gebremedhin, K.G.; Bjerg, B.S.; Van Os, J.; Tucker, C.B.; Zhang, G. A predictive model of equivalent temperature index for dairy cattle (ETIC). J. Therm. Biol. 2018, 76, 165–170. [Google Scholar] [CrossRef]
- Antanaitis, R.; Juozaitienė, V.; Džermeikaitė, K.; Bačėninaitė, D.; Šertvytytė, G.; Danyla, E.; Rutkauskas, A.; Viora, L.; Baumgartner, W. Change in rumination behaviour parameters around calving in cows with subclinical ketosis diagnosed during 30 days after calving. Animals 2023, 13, 595. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Tiwari, S.; Singh, S.K. Face recognition of cattle: Can it be done? Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2016, 86, 137–148. [Google Scholar] [CrossRef]
- Müller, B.R.; Soriano, V.S.; Bellio, J.C.B.; Molento, C.F.M. Facial expression of pain in Nellore and crossbred beef cattle. J. Vet. Behav. 2019, 34, 60–65. [Google Scholar] [CrossRef]
- Viscardi, A.V.; Hunniford, M.; Lawlis, P.; Leach, M.; Turner, P.V. Development of a piglet grimace scale to evaluate piglet pain using facial expressions following castration and tail docking: A pilot study. Front. Vet. Sci. 2017, 4, 51. [Google Scholar] [CrossRef]
- Schillings, J.; Bennett, R.; Rose, D.C. Exploring the potential of precision livestock farming technologies to help address farm animal welfare. Front. Anim. Sci. 2021, 2, 639678. [Google Scholar] [CrossRef]
- Eckelkamp, E.A. Invited review: Current state of wearable precision dairy technologies in disease detection. Appl. Anim. Sci. 2019, 35, 209–220. [Google Scholar] [CrossRef]
- King, A. Technology: The future of agriculture. Nature 2017, 544, S21–S23. [Google Scholar] [CrossRef]
- Jacobs, J.A.; Siegford, J.M. Invited review: The impact of automatic milking systems on dairy cow management, behaviour, health, and welfare. J. Dairy Sci. 2012, 95, 2227–2247. [Google Scholar] [CrossRef]
- Lessire, F.; Moula, N.; Hornick, J.-L.; Dufrasne, I. Systematic review and meta-analysis: Identification of factors influencing milking frequency of cows in automatic milking systems combined with grazing. Animals 2020, 10, 913. [Google Scholar] [CrossRef]
- Cogato, A.; Brščić, M.; Guo, H.; Marinello, F.; Pezzuolo, A. Challenges and tendencies of automatic milking systems (AMS): A 20-years systematic review of literature and patents. Animals 2021, 11, 356. [Google Scholar] [CrossRef]
- Svennesen, L.; Nielsen, S.S.; Mahmmod, Y.S.; Krömker, V.; Pedersen, K.; Klaas, I.C. Association between teat skin colonization and intramammary infection with Staphylococcus aureus and Streptococcus agalactiae in herds with automatic milking systems. J. Dairy Sci. 2019, 102, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Bhakat, C.; Mohammad, A.; Mandal, D.K.; Mandal, A.; Rai, S.; Chatterjee, A.; Ghosh, M.K.; Dutta, T.K. Readily usable strategies to control mastitis for production augmentation in dairy cattle: A review. Vet. World 2020, 13, 2364. [Google Scholar] [CrossRef] [PubMed]
- Piwczyński, D.; Brzozowski, M.; Sitkowska, B. The impact of the installation of an automatic milking system on female fertility traits in Holstein-Friesian cows. Livest. Sci. 2020, 240, 104140. [Google Scholar] [CrossRef]
- Salfer, J.A.; Siewert, J.M.; Endres, M.I. Housing, management characteristics, and factors associated with lameness, hock lesion, and hygiene of lactating dairy cattle on Upper Midwest United States dairy farms using automatic milking systems. J. Dairy Sci. 2018, 101, 8586–8594. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.P.; Kuhn-Sherlock, B.; Rue, B.T.D.; Eastwood, C.R. Technologies and milking practices that reduce hours of work and increase flexibility through milking efficiency in pasture-based dairy farm systems. J. Dairy Sci. 2020, 103, 7172–7179. [Google Scholar] [CrossRef]
- John, A.J.; Clark, C.E.F.; Freeman, M.J.; Kerrisk, K.L.; Garcia, S.C.; Halachmi, I. Milking robot utilization, a successful precision livestock farming evolution. Animal 2016, 10, 1484–1492. [Google Scholar] [CrossRef]
- Berckmans, D. Basic principles of PLF: Gold standard, labelling and field data. In Proceedings of the recision Livestock Farming 2013–Papers Presented at the 6th European Conference on Precision Livestock Farming, Leuven, Belgium, 10–12 September 2013; pp. 21–29. [Google Scholar]
- Sellier, N.; Guettier, E.; Staub, C. A review of methods to measure animal body temperature in precision farming. Am. J. Agric. Sci. Technol. 2014, 2, 74–99. [Google Scholar] [CrossRef]
- Kim, J.; Cho, T.N.; Valdés-Ramírez, G.; Wang, J. A wearable fingernail chemical sensing platform: pH sensing at your fingertips. Talanta 2016, 150, 622–628. [Google Scholar] [CrossRef]
- Van Nuffel, A.; Zwertvaegher, I.; Van Weyenberg, S.; Pastell, M.; Thorup, V.M.; Bahr, C.; Sonck, B.; Saeys, W. Lameness detection in dairy cows: Part 2. Use of sensors to automatically register changes in locomotion or behaviour. Animals 2015, 5, 861–885. [Google Scholar] [CrossRef]
- Corkery, G.; Ward, S.; Kenny, C.; Hemmingway, P. Incorporating smart sensing technologies into the poultry industry. J. World’s Poult. Res. 2013, 3, 106–128. [Google Scholar]
- Abu-Dieyeh, Z.H.M. Effect of high temperature per se on growth performance of broilers. Int. J. Poult. Sci. 2006, 5, 19–21. [Google Scholar]
- Ferreira, V.; Francisco, N.S.; Belloni, M.; Aguirre, G.M.Z.; Caldara, F.R.; Nääs, I.A.; Garcia, R.G.; Almeida Paz, I.C.L.; Polycarpo, G.V. Infrared thermography applied to the evaluation of metabolic heat loss of chicks fed with different energy densities. Braz. J. Poult. Sci. 2011, 13, 113–118. [Google Scholar] [CrossRef]
- Conley, S. Poultry Barn Meteorology Managing Air Quality Through Humidity Control [WWW Document]. 2012. Available online: https://www.canadianpoultrymag.com/production/bird-management/poultry-barn-meteorology-12641 (accessed on 21 April 2025).
- Olejnik, K.; Popiela, E.; Opaliński, S. Emerging precision management methods in poultry sector. Agriculture 2022, 12, 718. [Google Scholar] [CrossRef]
- Ben Sassi, N.; Averós, X.; Estevez, I. Technology and poultry welfare. Animals 2016, 6, 62. [Google Scholar] [CrossRef]
- Jackman, P.; Ward, S.; Brennan, L.; Corkery, G.; McCarthy, U. Application of wireless technologies to forward predict crop yields in the poultry production chain. Agric. Eng. Int. CIGR J. 2015, 17, 287–295. [Google Scholar]
- Dawkins, M.S. The Science of Animal Welfare: Understanding What Animals Want; Oxford Academic: Oxford, UK, 2021. [Google Scholar] [CrossRef]
- Paul, E.S.; Browne, W.; Mendl, M.T.; Caplen, G.; Trevarthen, A.; Held, S.; Nicol, C.J. Assessing animal welfare: A triangulation of preference, judgement bias and other candidate welfare indicators. Anim. Behav. 2022, 186, 151–177. [Google Scholar] [CrossRef]
- Helwatkar, A.; Riordan, D.; Walsh, J. Sensor Technology For Animal Health Monitoring. Int. J. Smart Sens. Intell. Syst. 2014, 7, 1–6. [Google Scholar] [CrossRef]
- Neethirajan, S. Recent advances in wearable sensors for animal health management. Sens. Bio-Sens. Res. 2017, 12, 15–29. [Google Scholar] [CrossRef]
- Barbari, M.; Leso, L.; Rossi, G.; Simonini, S. Use of Radio Frequency Identification Active Technology to Monitor Animals in Open Spaces. Australian J. Multi-Discip. Eng. 2013, 10, 18–25. [Google Scholar] [CrossRef]
- Džermeikaitė, K.; Bačėninaitė, D.; Antanaitis, R. Innovations in Cattle Farming: Application of Innovative Technologies and Sensors in the Diagnosis of Diseases. Animals 2023, 13, 780. [Google Scholar] [CrossRef]
- Alsaaod, M.; Büscher, W. Detection of hoof lesions using digital infrared thermography in dairy cows. J. Dairy Sci. 2012, 95, 735–742. [Google Scholar] [CrossRef]
- Mazrier, H.; Tal, S.; Aizinbud, E.; Bargai, U. A field investigation of the use of the pedometer for the early detection of lameness in cattle. Can. Vet. J. La Rev. Vet. Can. 2006, 47, 883–886. [Google Scholar]
- Bikker, J.P.; van Laar, H.; Rump, P.; Doorenbos, J.; van Meurs, K.; Griffioen, G.M.; Dijkstra, J. Technical note: Evaluation of an ear-attached movement sensor to record cow feeding behaviour and activity. J. Dairy Sci. 2014, 97, 2974–2979. [Google Scholar] [CrossRef]
- Benaissa, S.; Tuyttens, F.A.M.; Plets, D.; de Pessemier, T.; Trogh, J.; Tanghe, E.; Martens, L.; Vandaele, L.; Van Nuffel, A.; Joseph, W.; et al. On the use of on-cow accelerometers for the classification of behaviours in dairy barns. Res. Vet. Sci. 2019, 125, 425–433. [Google Scholar] [CrossRef]
- Lee, M.; Seo, S. Wearable Wireless Biosensor Technology for Monitoring Cattle: A Review. Animals 2021, 11, 2779. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, S.J.; Phyn, C.V.C.; Huzzey, J.M.; Mueller, K.R.; Turner, S.A.; Donaghy, D.J.; Roche, J.R. Graduate Student Literature Review: Evaluating the appropriate use of wearable accelerometers in research to monitor lying behaviours of dairy cows. J. Dairy Sci. 2020, 103, 12140–12157. [Google Scholar] [CrossRef]
- Richeson, J.T.; Lawrence, T.E.; White, B.J. Using advanced technologies to quantify beef cattle behaviour. Transl. Anim. Sci. 2018, 2, 223–229. [Google Scholar] [CrossRef]
- Andriamandroso, A.; Bindelle, J.; Mercatoris, B.; Lebeau, F. A review on the use of sensors to monitor cattle jaw movements and behaviour when grazing. Biotechnol. Agron. Société Environ. 2016, 20, 273–286. [Google Scholar] [CrossRef]
- Raynor, E.J.; Derner, J.D.; Soder, K.J.; Augustine, D.J. Noseband sensor validation and behavioural indicators for assessing beef cattle grazing on extensive pastures. Appl. Anim. Behav. Sci. 2021, 242, 105402. [Google Scholar] [CrossRef]
- Antanaitis, R.; Juozaitienė, V.; Malašauskienė, D.; Televičius, M.; Urbutis, M.; Rutkaukas, A.; Šertvytytė, G.; Baumgartner, W. Identification of Changes in Rumination Behaviour Registered with an Online Sensor System in Cows with Subclinical Mastitis. Vet. Sci. 2022, 9, 454. [Google Scholar] [CrossRef]
- Shahriar, M.S.; Smith, D.; Rahman, A.; Freeman, M.; Hills, J.; Rawnsley, R.; Henry, D.; Bishop-Hurley, G. Detecting heat events in dairy cows using accelerometers and unsupervised learning. Comput. Electron. Agric. 2016, 128, 20–26. [Google Scholar] [CrossRef]
- Moore, S.G.; Aublet, V.; Butler, S.T. Monitoring estrous activity in pasture-based dairy cows. Theriogenology 2021, 160, 90–94. [Google Scholar] [CrossRef]
- Werner, J.; Umstatter, C.; Leso, L.; Kennedy, E.; Geoghegan, A.; Shalloo, L.; Schick, M.; O’Brien, B. Evaluation and application potential of an accelerometer-based collar device for measuring grazing behaviour of dairy cows. Animal 2019, 13, 2070–2079. [Google Scholar] [CrossRef] [PubMed]
- Lewis Baida, B.E.; Swinbourne, A.M.; Barwick, J.; Leu, S.T.; van Wettere, W.H.E.J. Technologies for the automated collection of heat stress data in sheep. Anim. Biotelemetry 2021, 9, 4. [Google Scholar] [CrossRef]
- Ruuska, S.; Kajava, S.; Mughal, M.; Zehner, N.; Mononen, J. Validation of a pressure sensor-based system for measuring eating, rumination and drinking behaviour of dairy cattle. Appl. Anim. Behav. Sci. 2016, 174, 19–23. [Google Scholar] [CrossRef]
- Williams, L.R.; Moore, S.T.; Bishop-Hurley, G.J.; Swain, D.L. A sensor-based solution to monitor grazing cattle drinking behaviour and water intake. Comput. Electron. Agric. 2020, 168, 105141. [Google Scholar] [CrossRef]
- Pan, L.; Xu, M.; Xi, L.; Hao, Y. Research of livestock farming IoT system based on RESTful web services. In Proceedings of the 2016 5th International Conference on Computer Science and Network Technology (ICCSNT), Changchun, China, 10–11 December 2016; pp. 113–116. [Google Scholar]
- Big Dutchman. Big Farm Net; Big Dutchman: Vechta, Germany, 2014. [Google Scholar]
- Zhang, F.; Hu, Y.; Chen, L.; Guo, L.; Duan, W.; Wang, L. Monitoring behaviour of poultry based on RFID radio frequency network. Int. J. Agric. Biol. Eng. 2016, 9, 139–147. [Google Scholar]
- Nääs, I.d.A.; Paz, I.C.d.L.A.; Baracho, M.d.S.; Menezes, A.G.d.; Lima, K.A.O.d.; Bueno, L.G.d.F.; Mollo Neto, M.; Carvalho, V.C.d.; Almeida, I.C.d.L.; Souza, A.L.d. Assessing locomotion deficiency in broiler chicken. Sci. Agric. 2010, 67, 129–135. [Google Scholar] [CrossRef]
- Ledgerwood, D.N.; Winckler, C.; Tucker, C.B. Evaluation of data loggers, sampling intervals, and editing techniques for measuring the lying behaviour of dairy cattle. J. Dairy Sci. 2010, 93, 5129–5139. [Google Scholar] [CrossRef]
- Tucker, C.B.; Weary, D.M. Bedding on Geotextile Mattresses: How Much is Needed to Improve Cow Comfort? J. Dairy Sci. 2004, 87, 2889–2895. [Google Scholar] [CrossRef]
- Benaissa, S.; Tuyttens, F.A.M.; Plets, D.; Cattrysse, H.; Martens, L.; Vandaele, L.; Joseph, W.; Sonck, B. Classification of ingestive-related cow behaviours using RumiWatch halter and neck-mounted accelerometers. Appl. Anim. Behav. Sci. 2019, 211, 9–16. [Google Scholar] [CrossRef]
- Grinter, L.N.; Campler, M.R.; Costa, J.H.C. Technical note: Validation of a behaviour-monitoring collar’s precision and accuracy to measure rumination, feeding, and resting time of lactating dairy cows. J. Dairy Sci. 2019, 102, 3487–3494. [Google Scholar] [CrossRef] [PubMed]
- Schirmann, K.; Chapinal, N.; Weary, D.M.; Vickers, L.; von Keyserlingk, M.A.G. Short communication: Rumination and feeding behaviour before and after calving in dairy cows. J. Dairy Sci. 2013, 96, 7088–7092. [Google Scholar] [CrossRef] [PubMed]
- Stangaferro, M.L.; Wijma, R.; Caixeta, L.S.; Al-Abri, M.A.; Giordano, J.O. Use of rumination and activity monitoring for the identification of dairy cows with health disorders: Part III. Metritis. J. Dairy Sci. 2016, 99, 7422–7433. [Google Scholar] [CrossRef]
- Rutten, C.J.; Kamphuis, C.; Hogeveen, H.; Huijps, K.; Nielen, M.; Steeneveld, W. Sensor data on cow activity, rumination, and ear temperature improve prediction of the start of calving in dairy cows. Comput. Electron. Agric. 2017, 132, 108–118. [Google Scholar] [CrossRef]
- Whay, H.R.; Shearer, J.K. The Impact of Lameness on Welfare of the Dairy Cow. Vet. Clin. Food Anim. Pract. 2017, 33, 153–164. [Google Scholar] [CrossRef]
- Jaeger, M.; Brügemann, K.; Brandt, H.; König, S. Associations between precision sensor data with productivity, health and welfare indicator traits in native black and white dual-purpose cattle under grazing conditions. Appl. Anim. Behav. Sci. 2019, 212, 9–18. [Google Scholar] [CrossRef]
- Norring, M.; Häggman, J.; Simojoki, H.; Tamminen, P.; Winckler, C.; Pastell, M. Short communication: Lameness impairs feeding behaviour of dairy cows. J. Dairy Sci. 2014, 97, 4317–4321. [Google Scholar] [CrossRef]
- Zehner, N.; Umstätter, C.; Niederhauser, J.J.; Schick, M. System specification and validation of a noseband pressure sensor for measurement of ruminating and eating behaviour in stable-fed cows. Comput. Electron. Agric. 2017, 136, 31–41. [Google Scholar] [CrossRef]
- Antanaitis, R.; Anskienė, L.; Rapaliutė, E.; Bilskis, R.; Džermeikaitė, K.; Bačėninaitė, D.; Juškienė, V.; Juška, R.; Meškinytė, E. Relationship between Reticulorumen Parameters Measured in Real Time and Methane Emission and Heat Stress Risk in Dairy Cows. Animals 2022, 12, 3257. [Google Scholar] [CrossRef]
- Carvalho-Sombra, T.C.F.; Fernandes, D.D.; Bezerra, B.M.O.; Nunes-Pinheiro, D.C.S. Systemic inflammatory biomarkers and somatic cell count in dairy cows with subclinical mastitis. Vet. Anim. Sci. 2021, 11, 100165. [Google Scholar] [CrossRef] [PubMed]
- Castro-Costa, A.; Salama, A.A.K.; Moll, X.; Aguiló, J.; Caja, G. Using wireless rumen sensors for evaluating the effects of diet and ambient temperature in nonlactating dairy goats. J. Dairy Sci. 2015, 98, 4646–4658. [Google Scholar] [CrossRef]
- Weng, X.; Chen, L.; Neethirajan, S.; Duffield, T. Development of quantum dots-based biosensor towards on-farm detection of subclinical ketosis. Biosens. Bioelectron. 2015, 72, 140–147. [Google Scholar] [CrossRef]
- Tuteja, S.K.; Duffield, T.; Neethirajan, S. Liquid exfoliation of 2D MoS2 nanosheets and their utilization as a label-free electrochemical immunoassay for subclinical ketosis. Nanoscale 2017, 9, 10886–10896. [Google Scholar] [CrossRef]
- Cook, N.J. Minimally invasive sampling media and the measurement of corticosteroids as biomarkers of stress in animals. Can. J. Anim. Sci. 2012, 92, 227–259. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Matsuda, Y.; Sasaki, S.; Sasaki, M.; Kadoma, Y.; Imai, Y.; Niwa, D.; Shetty, V. Immunosensor with fluid control mechanism for salivary cortisol analysis. Biosens. Bioelectron. 2013, 41, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Ruchay, A.; Kober, V.; Dorofeev, K.; Kolpakov, V.; Dzhulamanov, K.; Kalschikov, V.; Guo, H. Comparative analysis of machine learning algorithms for predicting live weight of Hereford cows. Comput. Electron. Agric. 2022, 195, 106837. [Google Scholar] [CrossRef]
- Lind, N.M.; Vinther, M.; Hemmingsen, R.P.; Hansen, A.K. Validation of a digital video tracking system for recording pig locomotor behaviour. J. Neurosci. Methods 2005, 143, 123–132. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, W.; Winter, P.; Walker, L. Walk-through weighing of pigs using machine vision and an artificial neural network. Biosyst. Eng. 2008, 100, 117–125. [Google Scholar] [CrossRef]
- Guo, Y.-Z.; Zhu, W.-X.; Jiao, P.-P.; Ma, C.-H.; Yang, J.-J. Multi-object extraction from topview group-housed pig images based on adaptive partitioning and multilevel thresholding segmentation. Biosyst. Eng. 2015, 135, 54–60. [Google Scholar] [CrossRef]
- Mollo, M.N.; Vendrametto, O.; Okano, M.T. Precision livestock tools to improve products and processes in broiler production: A review. Braz. J. Poult. Sci. 2009, 11, 211–218. [Google Scholar] [CrossRef]
- Kashiha, M.; Pluk, A.; Bahr, C.; Vranken, E.; Berckmans, D. Development of an early warning system for a broiler house using computer vision. Biosyst. Eng. 2013, 116, 36–45. [Google Scholar] [CrossRef]
- Song, X.; Bokkers, E.A.M.; van Mourik, S.; Groot Koerkamp, P.W.G.; van der Tol, P.P.J. Automated body condition scoring of dairy cows using 3-dimensional feature extraction from multiple body regions. J. Dairy Sci. 2019, 102, 4294–4308. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mücher, S.; Wang, W.; Guo, L.; Kooistra, L. A review of three-dimensional computer vision used in precision livestock farming for cattle growth management. Comput. Electron. Agric. 2023, 206, 107687. [Google Scholar] [CrossRef]
- Nasirahmadi, A.; Edwards, S.A.; Sturm, B. Implementation of machine vision for detecting behaviour of cattle and pigs. Livest. Sci. 2017, 202, 25–38. [Google Scholar] [CrossRef]
- Cominotte, A.; Fernandes, A.F.A.; Dorea, J.R.R.; Rosa, G.J.M.; Ladeira, M.M.; van Cleef, E.H.C.B.; Pereira, G.L.; Baldassini, W.A.; Machado Neto, O.R. Automated computer vision system to predict body weight and average daily gain in beef cattle during growing and finishing phases. Livest. Sci. 2020, 232, 103904. [Google Scholar] [CrossRef]
- Wang, Z.; Shadpour, S.; Chan, E.; Rotondo, V.; Wood, K.M.; Tulpan, D. ASAS-NANP SYMPOSIUM: Applications of machine learning for livestock body weight prediction from digital images. J. Anim. Sci. 2021, 99, skab022. [Google Scholar] [CrossRef]
- Rathbun, F.M.; Pralle, R.S.; Bertics, S.J.; Armentano, L.E.; Cho, K.; Do, C.; Weigel, K.A.; White, H.M. Relationships between body condition score change, prior mid-lactation phenotypic residual feed intake, and hyperketonemia onset in transition dairy cows. J. Dairy Sci. 2017, 100, 3685–3696. [Google Scholar] [CrossRef]
- Bradshaw, R.H.; Kirkden, R.D.; Broom, D.M. A review of the aetiology and pathology of leg weakness in broilers in relation to welfare. Avian Poult. Biol. Rev. 2002, 13, 45–103. [Google Scholar] [CrossRef]
- Shepherd, E.M.; Fairchild, B.D. Footpad dermatitis in poultry. Poult. Sci. 2010, 89, 2043–2051. [Google Scholar] [CrossRef]
- Hocking, P.M.; Wu, K. Traditional and commercial turkeys show similar susceptibility to foot pad dermatitis and behavioural evidence of pain. Br. Poult. Sci. 2013, 54, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Narinc, D.; Aksoy, T.; Onenc, A.; Çürek, D. The influence of body weight on carcass and carcass part yields, and some meat quality traits in fast-and slow-growing broiler chickens. Kafkas Univ. Vet. Fak. Derg. 2015, 21, 527–534. [Google Scholar] [CrossRef]
- Caplen, G.; Hothersall, B.; Murrell, J.C.; Nicol, C.J.; Waterman-Pearson, A.E.; Weeks, C.A.; Colborne, G.R. Kinematic analysis quantifies gait abnormalities associated with lameness in broiler chickens and identifies evolutionary gait differences. PLoS ONE 2012, 7, e40800. [Google Scholar] [CrossRef] [PubMed]
- Pearce, J.; Chang, Y.-M.; Abeyesinghe, S. Individual monitoring of activity and lameness in conventional and slower-growing breeds of broiler chickens using accelerometers. Animals 2023, 13, 1432. [Google Scholar] [CrossRef] [PubMed]
- De Jong, I.C.; Van Harn, J.; Gunnink, H.; Lourens, A.; Van Riel, J.W. Measuring foot-pad lesions in commercial broiler houses. Some aspects of methodology. Anim. Welf. 2012, 21, 325–330. [Google Scholar] [CrossRef]
- Aydin, A. Using 3D vision camera system to automatically assess the level of inactivity in broiler chickens. Comput. Electron. Agric. 2017, 135, 4–10. [Google Scholar] [CrossRef]
- George, W.D.; Godfrey, R.W.; Ketring, R.C.; Vinson, M.C.; Willard, S.T. Relationship among eye and muzzle temperatures measured using digital infrared thermal imaging and vaginal and rectal temperatures in hair sheep and cattle. J. Anim. Sci. 2014, 92, 4949–4955. [Google Scholar] [CrossRef]
- McManus, C.; Tanure, C.B.; Peripolli, V.; Seixas, L.; Fischer, V.; Gabbi, A.M.; Menegassi, S.R.O.; Stumpf, M.T.; Kolling, G.J.; Dias, E.; et al. Infrared thermography in animal production: An overview. Comput. Electron. Agric. 2016, 123, 10–16. [Google Scholar] [CrossRef]
- Warriss, P.D.; Pope, S.J.; Brown, S.N.; Wilkins, L.J.; Knowles, T.G. Estimating the body temperature of groups of pigs by thermal imaging. Vet. Rec. 2006, 158, 331–334. [Google Scholar] [CrossRef]
- Knízková, İ.; Kunc, P.; Gürdil, G.; Pınar, Y.; Selvi, K.Ç. Applications of infrared thermography in animal production. Anadolu Tarım Bilim. Derg. 2007, 22, 329–336. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Q.; Chu, M.; Kang, X.; Liu, G. Application of infrared thermography and machine learning techniques in cattle health assessments: A review. Biosyst. Eng. 2023, 230, 361–387. [Google Scholar] [CrossRef]
- LokeshBabu, D.S.; Jeyakumar, S.; Vasant, P.J.; Sathiyabarathi, M.; Manimaran, A.; Kumaresan, A.; Pushpadass, H.A.; Sivaram, M.; Ramesha, K.P.; Kataktalware, M.A. Monitoring foot surface temperature using infrared thermal imaging for assessment of hoof health status in cattle: A review. J. Therm. Biol. 2018, 78, 10–21. [Google Scholar]
- Zhang, Z.; Zhang, H.; Liu, T. Study on body temperature detection of pig based on infrared technology: A review. Artif. Intell. Agric. 2019, 1, 14–26. [Google Scholar] [CrossRef]
- Salles, M.S.V.; da Silva, S.C.; Salles, F.A.; Roma, L.C., Jr.; El Faro, L.; Mac Lean, P.A.B.; de Oliveira, C.E.L.; Martello, L.S. Mapping the body surface temperature of cattle by infrared thermography. J. Therm. Biol. 2016, 62, 63–69. [Google Scholar] [CrossRef]
- Schaefer, A.; Cook, N.J. Heat generation and the role of infrared thermography in pathological conditions. Thermogr. Curr. Status Adv. Livest. Anim. Vet. Med. 2013, 2013, 69–78. [Google Scholar]
- Koltes, J.E.; Koltes, D.A.; Mote, B.E.; Tucker, J.; Hubbell Iii, D.S. Automated collection of heat stress data in livestock: New technologies and opportunities. Transl. Anim. Sci. 2018, 2, 319–323. [Google Scholar] [CrossRef]
- Martinez, B.; Reaser, J.K.; Dehgan, A.; Zamft, B.; Baisch, D.; McCormick, C.; Giordano, A.J.; Aicher, R.; Selbe, S. Technology innovation: Advancing capacities for the early detection of and rapid response to invasive species. Biol. Invasions 2020, 22, 75–100. [Google Scholar] [CrossRef]
- Neculai-Valeanu, A.-S.; Ariton, A.-M. Udder health monitoring for prevention of bovine mastitis and improvement of milk quality. Bioengineering 2022, 9, 608. [Google Scholar] [CrossRef] [PubMed]
- Zaninelli, M.; Redaelli, V.; Luzi, F.; Bronzo, V.; Mitchell, M.; Dell’Orto, V.; Bontempo, V.; Cattaneo, D.; Savoini, G. First evaluation of infrared thermography as a tool for the monitoring of udder health status in farms of dairy cows. Sensors 2018, 18, 862. [Google Scholar] [CrossRef]
- Orman, A.; Endres, M.I. Use of thermal imaging for identification of foot lesions in dairy cattle. Acta Agric. Scand. Sect. A—Anim. Sci. 2016, 66, 1–7. [Google Scholar] [CrossRef]
- Caja, G.; Castro-Costa, A.; Salama, A.A.K.; Oliver, J.; Baratta, M.; Ferrer, C.; Knight, C.H. Sensing solutions for improving the performance, health and wellbeing of small ruminants. J. Dairy Res. 2020, 87, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Vicentini, R.R.; Montanholi, Y.R.; Veroneze, R.; Oliveira, A.P.; Lima, M.L.P.; Ujita, A.; El Faro, L. Infrared thermography reveals surface body temperature changes during proestrus and estrus reproductive phases in Gyr heifers (Bos taurus indicus). J. Therm. Biol. 2020, 92, 102662. [Google Scholar] [CrossRef] [PubMed]
- Marquez, H.J.P.; Ambrose, D.J.; Schaefer, A.L.; Cook, N.J.; Bench, C.J. Infrared thermography and behavioural biometrics associated with estrus indicators and ovulation in estrus-synchronized dairy cows housed in tiestalls. J. Dairy Sci. 2019, 102, 4427–4440. [Google Scholar] [CrossRef] [PubMed]
- At-Taras, E.E.; Spahr, S.L. Detection and characterization of estrus in dairy cattle with an electronic heatmount detector and an electronic activity tag. J. Dairy Sci. 2001, 84, 792–798. [Google Scholar] [CrossRef]
- Sykes, D.J.; Couvillion, J.S.; Cromiak, A.; Bowers, S.; Schenck, E.; Crenshaw, M.; Ryan, P.L. The use of digital infrared thermal imaging to detect estrus in gilts. Theriogenology 2012, 78, 147–152. [Google Scholar] [CrossRef]
- Simões, V.G.; Lyazrhi, F.; Picard-Hagen, N.; Gayrard, V.; Martineau, G.-P.; Waret-Szkuta, A. Variations in the vulvar temperature of sows during proestrus and estrus as determined by infrared thermography and its relation to ovulation. Theriogenology 2014, 82, 1080–1085. [Google Scholar] [CrossRef]
- Du, X.; Lao, F.; Teng, G. A sound source localisation analytical method for monitoring the abnormal night vocalisations of poultry. Sensors 2018, 18, 2906. [Google Scholar] [CrossRef]
- McLoughlin, M.P.; Stewart, R.; McElligott, A.G. Automated bioacoustics: Methods in ecology and conservation and their potential for animal welfare monitoring. J. R. Soc. Interface 2019, 16, 20190225. [Google Scholar] [CrossRef]
- Moshou, D.; Chedad, A.; Van Hirtum, A.; De Baerdemaeker, J.; Berckmans, D.; Ramon, H. Neural recognition system for swine cough. Math. Comput. Simul. 2001, 56, 475–487. [Google Scholar] [CrossRef]
- Van Hirtum, A.; Berckmans, D. Fuzzy approach for improved recognition of citric acid induced piglet coughing from continuous registration. J. Sound Vib. 2003, 266, 677–686. [Google Scholar] [CrossRef]
- Hemeryck, M.; Berckmans, D. 5.4. Pig cough monitoring in the EU-PLF project: First results. In Precision Livestock Farming Applications; Wageningen Academic: Wageningen, The Netherlands, 2015; pp. 199–208. [Google Scholar]
- Yin, Y.; Tu, D.; Shen, W.; Bao, J. Recognition of sick pig cough sounds based on convolutional neural network in field situations. Inf. Process. Agric. 2021, 8, 369–379. [Google Scholar] [CrossRef]
- Carpentier, L.; Berckmans, D.; Youssef, A.; Berckmans, D.; van Waterschoot, T.; Johnston, D.; Ferguson, N.; Earley, B.; Fontana, I.; Tullo, E. Automatic cough detection for bovine respiratory disease in a calf house. Biosyst. Eng. 2018, 173, 45–56. [Google Scholar] [CrossRef]
- Aydin, A.; Berckmans, D. Using sound technology to automatically detect the short-term feeding behaviours of broiler chickens. Comput. Electron. Agric. 2016, 121, 25–31. [Google Scholar] [CrossRef]
- Aydin, A.; Bahr, C.; Viazzi, S.; Exadaktylos, V.; Buyse, J.; Berckmans, D. A novel method to automatically measure the feed intake of broiler chickens by sound technology. Comput. Electron. Agric. 2014, 101, 17–23. [Google Scholar] [CrossRef]
- Rizwan, M.; Carroll, B.T.; Anderson, D.V.; Daley, W.; Harbert, S.; Britton, D.F.; Jackwood, M.W. Identifying rale sounds in chickens using audio signals for early disease detection in poultry. In Proceedings of the 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington, DC, USA, 7–9 December 2016; pp. 55–59. [Google Scholar]
- Curtin, R.R.; Daley, W.; Anderson, D.V. Classifying broiler chicken condition using audio data. In Proceedings of the 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Atlanta, GA, USA, 3–5 December 2014; pp. 1141–1144. [Google Scholar]
- Chung, Y.; Kim, H.; Lee, H.; Park, D.; Jeon, T.; Chang, H.-H. A cost-effective pigsty monitoring system based on a video sensor. KSII Trans. Internet Inf. Syst. (TIIS) 2014, 8, 1481–1498. [Google Scholar]
- Stygar, A.H.; Gómez, Y.; Berteselli, G.V.; Dalla Costa, E.; Canali, E.; Niemi, J.K.; Llonch, P.; Pastell, M. A systematic review on commercially available and validated sensor technologies for welfare assessment of dairy cattle. Front. Vet. Sci. 2021, 8, 634338. [Google Scholar] [CrossRef]
- González, L.A.; Kyriazakis, I.; Tedeschi, L.O. Precision nutrition of ruminants: Approaches, challenges and potential gains. Animal 2018, 12, s246–s261. [Google Scholar] [CrossRef]
- Pomar, C.; Remus, A. Fundamentals, limitations and pitfalls on the development and application of precision nutrition techniques for precision livestock farming. Animal 2023, 17, 100763. [Google Scholar] [CrossRef]
- Zuidhof, M.J.; Fedorak, M.V.; Ouellette, C.A.; Wenger, I.I. Precision feeding: Innovative management of broiler breeder feed intake and flock uniformity. Poult. Sci. 2017, 96, 2254–2263. [Google Scholar] [CrossRef]
- Arcidiacono, C.; Porto, S.M.C.; Mancino, M.; Cascone, G. Development of a threshold-based classifier for real-time recognition of cow feeding and standing behavioural activities from accelerometer data. Comput. Electron. Agric. 2017, 134, 124–134. [Google Scholar] [CrossRef]
- Tufarelli, V.; Puvača, N.; Glamočić, D.; Pugliese, G.; Colonna, M.A. The most important metabolic diseases in dairy cattle during the transition period. Animals 2024, 14, 816. [Google Scholar] [CrossRef] [PubMed]
- Pomar, C.; van Milgen, J.; Remus, A. 18: Precision livestock feeding, principle and practice. In Poultry and Pig Nutrition; Wageningen Academic: Wageningen, The Netherlands, 2019; pp. 397–418. [Google Scholar]
- Martin, O.; Sauvant, D. A teleonomic model describing performance (body, milk and intake) during growth and over repeated reproductive cycles throughout the lifespan of dairy cattle. 1. Trajectories of life function priorities and genetic scaling. Animal 2010, 4, 2030–2047. [Google Scholar] [CrossRef]
- Puillet, L.; Réale, D.; Friggens, N.C. Disentangling the relative roles of resource acquisition and allocation on animal feed efficiency: Insights from a dairy cow model. Genet. Sel. Evol. 2016, 48, 72. [Google Scholar] [CrossRef]
- Hauschild, L.; Lovatto, P.A.; Pomar, J.; Pomar, C. Development of sustainable precision farming systems for swine: Estimating real-time individual amino acid requirements in growing-finishing pigs. J. Anim. Sci. 2012, 90, 2255–2263. [Google Scholar] [CrossRef] [PubMed]
- Nkrumah, J.D.; Okine, E.K.; Mathison, G.W.; Schmid, K.; Li, C.; Basarab, J.A.; Price, M.A.; Wang, Z.; Moore, S.S. Relationships of feedlot feed efficiency, performance, and feeding behaviour with metabolic rate, methane production, and energy partitioning in beef cattle1. J. Anim. Sci. 2006, 84, 145–153. [Google Scholar] [CrossRef]
- Greenwood, P.L.; Valencia, P.; Overs, L.; Paull, D.R.; Purvis, I.W. New ways of measuring intake, efficiency and behaviour of grazing livestock. Anim. Prod. Sci. 2014, 54, 1796–1804. [Google Scholar] [CrossRef]
- González, L.A.; Bishop-Hurley, G.; Henry, D.; Charmley, E. Wireless sensor networks to study, monitor and manage cattle in grazing systems. Anim. Prod. Sci. 2014, 54, 1687–1693. [Google Scholar] [CrossRef]
- Manning, J.; Cronin, G.; González, L.; Hall, E.; Merchant, A.; Ingram, L. The Behavioural Responses of Beef Cattle (Bos taurus) to Declining Pasture Availability and the Use of GNSS Technology to Determine Grazing Preference. Agriculture 2017, 7, 45. [Google Scholar] [CrossRef]
- González, L.A.; Charmley, E.; Henry, B.K. Modelling methane emissions from remotely collected liveweight data and faecal near-infrared spectroscopy in beef cattle. Anim. Prod. Sci. 2014, 54, 1980–1987. [Google Scholar] [CrossRef]
- Cabrera, V.E.; Contreras, F.; Shaver, R.D.; Armentano, L. Grouping strategies for feeding lactating dairy cattle. In Proceedings of the Four State Dairy Nutrition & Management Conference, Dubuque, IA, USA, 11–12 June 2014; pp. 40–44. [Google Scholar]
- Yin, M.; Ma, R.; Luo, H.; Li, J.; Zhao, Q.; Zhang, M. Non-contact sensing technology enables precision livestock farming in smart farms. Comput. Electron. Agric. 2023, 212, 108171. [Google Scholar] [CrossRef]
- Du, X.; Zhou, J. Application of biosensors to detection of epidemic diseases in animals. Res. Vet. Sci. 2018, 118, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, C.; Brossard, L.; Dourmad, J.-Y. Improvement of feed and nutrient efficiency in pig production through precision feeding. Anim. Feed. Sci. Technol. 2020, 268, 114611. [Google Scholar] [CrossRef]
- Zuidhof, M.J. Precision livestock feeding: Matching nutrient supply with nutrient requirements of individual animals. J. Appl. Poult. Res. 2020, 29, 11–14. [Google Scholar] [CrossRef]
- Pomar, C.; Hauschild, L.; Zhang, G.-H.; Pomar, J.; Lovatto, P.A. Applying precision feeding techniques in growing-finishing pig operations. Rev. Bras. Zootec. 2009, 38, 226–237. [Google Scholar] [CrossRef]
- Hanson, B. Variation in Beef Cattle Supplement Intake Using a Precision Feeding System. 2023. Available online: http://hdl.handle.net/1993/37300 (accessed on 21 April 2025).
- Empel, M.J.v.; Makkar, H.P.S.; Dijkstra, J.; Lund, P. Nutritional, technological and managerial parameters for precision feeding to enhance feed nutrient utilization and productivity in different dairy cattle production systems. CABI Rev. 2016, 11, 1–27. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Losacco, C.; Pugliese, G.; Forte, L.; Tufarelli, V.; Maggiolino, A.; De Palo, P. Digital Transition as a Driver for Sustainable Tailor-Made Farm Management: An Up-to-Date Overview on Precision Livestock Farming. Agriculture 2025, 15, 1383. https://doi.org/10.3390/agriculture15131383
Losacco C, Pugliese G, Forte L, Tufarelli V, Maggiolino A, De Palo P. Digital Transition as a Driver for Sustainable Tailor-Made Farm Management: An Up-to-Date Overview on Precision Livestock Farming. Agriculture. 2025; 15(13):1383. https://doi.org/10.3390/agriculture15131383
Chicago/Turabian StyleLosacco, Caterina, Gianluca Pugliese, Lucrezia Forte, Vincenzo Tufarelli, Aristide Maggiolino, and Pasquale De Palo. 2025. "Digital Transition as a Driver for Sustainable Tailor-Made Farm Management: An Up-to-Date Overview on Precision Livestock Farming" Agriculture 15, no. 13: 1383. https://doi.org/10.3390/agriculture15131383
APA StyleLosacco, C., Pugliese, G., Forte, L., Tufarelli, V., Maggiolino, A., & De Palo, P. (2025). Digital Transition as a Driver for Sustainable Tailor-Made Farm Management: An Up-to-Date Overview on Precision Livestock Farming. Agriculture, 15(13), 1383. https://doi.org/10.3390/agriculture15131383