Effect of the Combined Use of Postbiotics and Oxalic Acid Against Varroa destructor Under Field Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Elaboration of Treatments
2.2. Experimental Design
2.3. Assessing the Effect of Treatments
- Phoretic V. destructor (PVD): Worker bees collected at M0 and M1, were immersed in a 5% ethanol solution and shaken for 5 min, after which they were passed through a sieve to count the total number of bees and mites [42]. Thus, the phoretic infestation level was determined for each beehive and monitored and expressed as the number of mites per 100 bees or percentage of phoretic infestation. Moreover, the evolution of this parameter was calculated between M0 and M1 for each colony as the Variation (Δ) of PVD.
- Brood V. destructor (BVD): Using the extracted fragments of the frames with capped brood at both monitoring times, the number of brood cells was recorded and the pupae and V. destructor mites were extracted from cells and counted (adult females and immature mites), to determine the level of infestation in brood or number of mites per 100 capped brood cells [43,44]. Moreover, the evolution of this parameter was calculated between M0 and M1 for each colony as the variation (Δ) of BVD.
- Effectiveness with amitraz treatment (Ef A): To check the capability of the different products to reduce the mite population in the beehives, the efficacy of each treatment was calculated using the fall of mites in the sanitary bottoms during the treatment period and later during amitraz treatments, assuming that amitraz made all of the mites fall, providing an estimation of the total V. destructor population that would be in the beehive after the experimental treatments [40]. Thus, the formula used to calculate the effectiveness was:
- Effectiveness without using amitraz (Ef B): Due to the recent records of resistant mite populations against amitraz [20,21], an alternative method based on the estimation of the total number of mites in the beehives after the experimental treatments was also conducted. For that, with the estimation of the number of adult bees and capped brood cells obtained from monitoring 1, as well as the infestation levels of PVD and BVD determined at the same point, the total mite population that would be in the beehive after experimental treatments was estimated, thus replacing the fall data with amitraz in the formula as follows:
2.4. Data Analyses
3. Results
3.1. Infestation Levels
3.2. Effectiveness
3.3. Techniques of Effectiveness Measurements
3.4. Seasonality of Experiments
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
C | Control group |
POS | Group treated with the postbiotic |
OX | Group treated with oxalic acid |
POX | Group treated with a postbiotic and oxalic acid combination |
PVD | Phoretic V. destructor |
BVD | Brood V. destructor |
TPM | Total phoretic mites |
TBM | Total mites in brood cells |
NB | Number of bees |
NC | Number of capped brood cells |
Ef A | Effectiveness A calculated with amitraz treatment fall |
Ef B | Effectiveness B calculated without amitraz treatment fall |
References
- Reams, T.; Rangel, J. Understanding the Enemy: A Review of the Genetics, Behavior and Chemical Ecology of Varroa destructor, the Parasitic Mite of Apis mellifera. J. Insect Sci. 2022, 22, 18. [Google Scholar] [CrossRef] [PubMed]
- Traynor, K.S.; Mondet, F.; de Miranda, J.R.; Techer, M.; Kowallik, V.; Oddie, M.A.Y.; Chantawannakul, P.; McAfee, A. Varroa destructor: A Complex Parasite, Crippling Honey Bees Worldwide. Trends Parasitol. 2020, 36, 592–606. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Novoa, E.; Eccles, L.; Calvete, Y.; Mcgowan, J.; Kelly, P.G.; Correa-Benítez, A. Varroa destructor Is the Main Culprit for the Death and Reduced Populations of Overwintered Honey Bee (Apis mellifera) Colonies in Ontario, Canada. Apidologie 2010, 41, 443–450. [Google Scholar] [CrossRef]
- Ramsey, S.D.; Ochoa, R.; Bauchan, G.; Gulbronson, C.; Mowery, J.D.; Cohen, A.; Lim, D.; Joklik, J.; Cicero, J.M.; Ellis, J.D.; et al. Varroa destructor Feeds Primarily on Honey Bee Fat Body Tissue and Not Hemolymph. Proc. Natl. Acad. Sci. USA 2019, 116, 1792–1801. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Wu, J.; Wei, Q.; Liu, F.; Cui, L.; Rueppell, O.; Xu, S. Life-History Stage Determines the Diet of Ectoparasitic Mites on Their Honey Bee Hosts. Nat. Commun. 2024, 15, 725. [Google Scholar] [CrossRef]
- Donzé, G.; Guerin, P.M. Behavioral Attributes and Parental Care of Varroa Mites Parasitizing Honeybee Brood. Behav. Ecol. Sociobiol. 1994, 34, 305–319. [Google Scholar] [CrossRef]
- Garedew, A.; Schmolz, E.; Lamprecht, I. The Energy and Nutritional Demand of the Parasitic Life of the Mite Varroa destructor. Apidologie 2004, 35, 419–430. [Google Scholar] [CrossRef]
- Rosenkranz, P.; Aumeier, P.; Ziegelmann, B. Biology and Control of Varroa destructor. J. Invertebr. Pathol. 2010, 103, S96–S119. [Google Scholar] [CrossRef]
- Giacobino, A.; Molineri, A.; Bulacio Cagnolo, N.; Merke, J.; Orellano, E.; Bertozzi, E.; Masciangelo, G.; Pietronave, H.; Pacini, A.; Salto, C.; et al. Key Management Practices to Prevent High Infestation Levels of Varroa destructor in Honey Bee Colonies at the Beginning of the Honey Yield Season. Prev. Vet. Med. 2016, 131, 95–102. [Google Scholar] [CrossRef]
- Chen, Y.; Siede, R. Honey Bee Viruses. Adv. Virus Res. 2007, 70, 33–80. [Google Scholar] [CrossRef]
- Gisder, S.; Genersch, E. Direct Evidence for Infection of Varroa destructor Mites with the Bee-Pathogenic Deformed Wing Virus Variant B, but Not Variant A, via Fluorescence In Situ Hybridization Analysis. J. Virol. 2021, 95, e01786-20. [Google Scholar] [CrossRef] [PubMed]
- Dainat, B.; Evans, J.D.; Chen, Y.P.; Gauthier, L.; Neumann, P. Dead or Alive: Deformed Wing Virus and Varroa destructor Reduce the Life Span of Winter Honeybees. Appl. Environ. Microbiol. 2012, 78, 981–987. [Google Scholar] [CrossRef] [PubMed]
- Mondet, F.; de Miranda, J.R.; Kretzschmar, A.; Le Conte, Y.; Mercer, A.R. On the Front Line: Quantitative Virus Dynamics in Honeybee (Apis mellifera L.) Colonies along a New Expansion Front of the Parasite Varroa destructor. PLoS Pathog. 2014, 10, e1004323. [Google Scholar] [CrossRef] [PubMed]
- Bubnič, J.; Moosbeckhofer, R.; Prešern, J.; Moškrič, A.; Formato, G.; Pietropaoli, M.; Gregorc, A.; Muz, M.N.; Škerl, M.I.S. Three Pillars of Varroa Control. Apidologie 2021, 52, 1305–1333. [Google Scholar] [CrossRef]
- Smoliński, S.; Langowska, A.; Glazaczow, A. Raised Seasonal Temperatures Reinforce Autumn Varroa destructor Infestation in Honey Bee Colonies. Sci. Rep. 2021, 11, 22256. [Google Scholar] [CrossRef]
- Nürnberger, F.; Härtel, S.; Steffan-Dewenter, I. Seasonal Timing in Honey Bee Colonies: Phenology Shifts Affect Honey Stores and Varroa Infestation Levels. Oecologia 2019, 189, 1121–1131. [Google Scholar] [CrossRef]
- Pereira, S.C.; Carvalho, D.; Rocha, A. Temperature and Precipitation Extremes over the Iberian Peninsula under Climate Change Scenarios: A Review. Climate 2021, 9, 139. [Google Scholar] [CrossRef]
- Rajagopalan, K.; DeGrandi-Hoffman, G.; Pruett, M.; Jones, V.P.; Corby-Harris, V.; Pireaud, J.; Curry, R.; Hopkins, B.; Northfield, T.D. Warmer Autumns and Winters Could Reduce Honey Bee Overwintering Survival with Potential Risks for Pollination Services. Sci. Rep. 2024, 14, 5410. [Google Scholar] [CrossRef]
- González-Cabrera, J.; Rodríguez-Vargas, S.; Davies, T.G.E.; Field, L.M.; Schmehl, D.; Ellis, J.D.; Krieger, K.; Williamson, M.S. Novel Mutations in the Voltage-Gated Sodium Channel of Pyrethroid-Resistant Varroa destructor Populations from the Southeastern USA. PLoS ONE 2016, 11, e0155332. [Google Scholar] [CrossRef]
- Hernández-Rodríguez, C.S.; Marín, Ó.; Calatayud, F.; Mahiques, M.J.; Mompó, A.; Segura, I.; Simó, E.; González-Cabrera, J. Large-Scale Monitoring of Resistance to Coumaphos, Amitraz, and Pyrethroids in Varroa destructor. Insects 2021, 12, 27. [Google Scholar] [CrossRef]
- Higes, M.; Martín-Hernández, R.; Hernández-Rodríguez, C.S.; González-Cabrera, J. Assessing the Resistance to Acaricides in Varroa destructor from Several Spanish Locations. Parasitol. Res. 2020, 119, 3595–3601. [Google Scholar] [CrossRef]
- Mitton, G.A.; Szawarski, N.; Ramos, F.; Fuselli, S.; Meroi Arcerito, F.R.; Eguaras, M.J.; Ruffinengo, S.R.; Maggi, M.D. Varroa destructor: When Reversion to Coumaphos Resistance Does Not Happen. J. Apic. Res. 2018, 57, 536–540. [Google Scholar] [CrossRef]
- Rinkevich, F.D. Detection of Amitraz Resistance and Reduced Treatment Efficacy in the Varroa Mite, Varroa destructor, within Commercial Beekeeping Operations. PLoS ONE 2020, 15, e0227264. [Google Scholar] [CrossRef] [PubMed]
- El Agrebi, N.; Traynor, K.; Wilmart, O.; Tosi, S.; Leinartz, L.; Danneels, E.; de Graaf, D.C.; Saegerman, C. Pesticide and Veterinary Drug Residues in Belgian Beeswax: Occurrence, Toxicity, and Risk to Honey Bees. Sci. Total Environ. 2020, 745, 141036. [Google Scholar] [CrossRef]
- Korta, E.; Bakkali, A.; Berrueta, L.A.; Gallo, B.; Vicente, F.; Kilchenmann, V.; Bogdanov, S. Study of Acaricide Stability in Honey. Characterization of Amitraz Degradation Products in Honey and Beeswax. J. Agric. Food Chem. 2001, 49, 5835–5842. [Google Scholar] [CrossRef] [PubMed]
- Murcia-Morales, M.; Gómez Ramos, M.J.; Parrilla Vázquez, P.; Díaz Galiano, F.J.; García Valverde, M.; Gámiz López, V.; Flores, J.M.; Fernández-Alba, A.R. Distribution of Chemical Residues in the Beehive Compartments and Their Transfer to the Honeybee Brood. Sci. Total Environ. 2020, 710, 136288. [Google Scholar] [CrossRef] [PubMed]
- Orantes-Bermejo, F.J.; Gómez-Pajuelo, A.; Megías, M.; Torres, C. Pesticide Residues in Beeswax and Beebread Samples Collected from Honey Bee Colonies (Apis mellifera L.) in Spain. Possible Implications for Bee Losses. J. Apic. Res. 2015, 49, 243–250. [Google Scholar] [CrossRef]
- Ravoet, J.; Reybroeck, W.; de Graaf, D.C. Pesticides for Apicultural and/or Agricultural Application Found in Belgian Honey Bee Wax Combs. Bull. Environ. Contam. Toxicol. 2015, 94, 543–548. [Google Scholar] [CrossRef]
- Tihelka, E. Effects of Synthetic and Organic Acaricides on Honey Bee Health: A Review. Slov. Vet. Res. 2018, 55, 119–140. [Google Scholar] [CrossRef]
- Bacandritsos, N.; Papanastasiou, I.; Saitanis, C.; Nanetti, A.; Roinioti, E. Efficacy of Repeated Trickle Applications of Oxalic Acid in Syrup for Varroosis Control in Apis mellifera: Influence of Meteorological Conditions and Presence of Brood. Vet. Parasitol. 2007, 148, 174–178. [Google Scholar] [CrossRef]
- Charriére, J.-D.; Imdorf, A. Oxalic Acid Treatment by Trickling against Varroa destructor: Recommendations for Use in Central Europe and under Temperate Climate Conditions. Bee World 2002, 83, 51–60. [Google Scholar] [CrossRef]
- Coffey, M.F.; Breen, J. Efficacy of Apilife Var® and Thymovar® against Varroa destructor as an Autumn Treatment in a Cool Climate. J. Apic. Res. 2013, 52, 210–218. [Google Scholar] [CrossRef]
- Rademacher, E.; Harz, M. Oxalic Acid for the Control of Varroosis in Honey Bee Colonies—A Review. Apidologie 2006, 37, 98–120. [Google Scholar] [CrossRef]
- Underwood, R.M.; Currie, R.W. The Effects of Temperature and Dose of Formic Acid on Treatment Efficacy against Varroa destructor (Acari: Varroidae), a Parasite of Apis mellifera (Hymenoptera: Apidae). Exp. Appl. Acarol. 2003, 29, 303–313. [Google Scholar] [CrossRef]
- MAPA. El Sector Apícola En Cifras. Principales Indicadores Económicos 2023; Ministerio de Agricultura, Pesca y Alimentación, Gobierno de España: Madrid, Spain, 2024; p. 51.
- De Piano, F.G.; Maggi, M.D.; Meroi Arceitto, F.R.; Audisio, M.C.; Eguaras, M.; Ruffinengo, S.R. Effects of Bacterial Cell-Free Supernatant on Nutritional Parameters of Apis mellifera and Their Toxicity Against Varroa destructor. J. Apic. Sci. 2020, 64, 55–66. [Google Scholar] [CrossRef]
- Saccà, M.L.; Lodesani, M. Isolation of Bacterial Microbiota Associated to Honey Bees and Evaluation of Potential Biocontrol Agents of Varroa destructor. Benef. Microbes 2020, 11, 641–654. [Google Scholar] [CrossRef] [PubMed]
- García-Vicente, E.J.; Benito-Murcia, M.; Martín, M.; Rey-Casero, I.; Pérez, A.; González, M.; Alonso, J.M.; Risco, D. Evaluation of the Potential Effect of Postbiotics Obtained from Honey Bees against Varroa destructor and Their Combination with Other Organic Products. Insects 2024, 15, 67. [Google Scholar] [CrossRef]
- MAPA. Caracterización Agroclimática de La Provincia de Cáceres, 2nd ed.; Ministerio de Agricultura Pesca y Alimentación, Dirección General de La Producción Agraria: Madrid, Spain, 1991.
- EMA. Guideline on Veterinary Medicinal Products Controlling Varroa destructor Parasitosis in Bees; European Medicines Agency—Committee for Medicinal Products for Veterinary Use: Amsterdam, The Netherlands, 2021; pp. 1–9. [Google Scholar]
- Delaplane, K.S.; van der Steen, J.; Guzman-Novoa, E. Standard Methods for Estimating Strength Parameters of Apis mellifera Colonies. J. Apic. Res. 2013, 52, 1–12. [Google Scholar] [CrossRef]
- Calatayud, F.; Verdú, M.J. Annual Evolution of Population Parameters of Apis mellifera L. (Hymenoptera: Apidae) Colonies Parasitized by Varroa jacobsoni Oud. (Mesostigmata: Varroidae). Bol. Sanid. Veg. Plagas 1992, 18, 777–788. [Google Scholar]
- EU RL for Bee Health Varroosis; ANSES: Sophia Antipolis, France, 2024; pp. 1–3.
- Ritter, W. Chapter 3.2.7. Varroosis of Honey Bees (Infestation of Honey Bees with Varroa spp.). In OIE Terrestrial Manual 2018; WOAH: Paris, France, 2018; pp. 777–782. [Google Scholar]
- Adjlane, N.; Tarek, E.-O.; Haddad, N. Evaluation of Oxalic Acid Treatments against the Mite Varroa destructor and Secondary Effects on Honey Bees Apis mellifera. J. Arthropod-Borne Dis. 2016, 10, 501–509. [Google Scholar]
- Gregorc, A.; Planinc, I. The Control of Varroa destructor Using Oxalic Acid. Vet. J. 2002, 163, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Nanetti, A. Oxalic Acid Treatments for Varroa Control (A Review). Apiacta 2003, 1, 1–5. [Google Scholar]
- Pawar, A.; Tiwari, S.K. Bacteriocin-Producing Probiotic Lactic Acid Bacteria in Controlling Dysbiosis of the Gut Microbiota. Front. Cell. Infect. Microbiol. 2022, 12, 851140. [Google Scholar] [CrossRef]
- Di Cerbo, A.; Palmieri, B.; Aponte, M.; Morales-Medina, J.C.; Iannitti, T. Mechanisms and Therapeutic Effectiveness of Lactobacilli. J. Clin. Pathol. 2016, 69, 187–203. [Google Scholar] [CrossRef]
- Machado, A.; Zamora-Mendoza, L.; Alexis, F.; Álvarez-Suarez, J.M. Use of Plant Extracts, Bee-Derived Products, and Probiotic-Related Applications to Fight Multidrug-Resistant Pathogens in the Post-Antibiotic Era. Future Pharmacol. 2023, 3, 535–567. [Google Scholar] [CrossRef]
- Jack, C.J.; Boncristiani, H.; Prouty, C.; Schmehl, D.R.; Ellis, J.D. Evaluating the Seasonal Efficacy of Commonly Used Chemical Treatments on Varroa destructor (Mesostigmata: Varroidae) Population Resurgence in Honey Bee Colonies. J. Insect Sci. 2024, 24, 11. [Google Scholar] [CrossRef]
Summer | ||||||||
Means of Phoretic V. destructor | Means of Brood V. destructor | |||||||
Treatment | M0 | M1 | p-Value | Δ | M0 | M1 | p-Value | Δ |
C (N = 14) | 0.8 | 1.17 | 0.119 | 0.37 | 0.85 * | 4.17 * | 0.008 | 3.32 |
OX (N = 12) | 0.65 | 0.62 | 0.812 | −0.03 | 1.95 | 1.36 | 0.527 | −0.59 |
POS (N = 14) | 0.66 * | 1.86POX * | 0.059 | 1.2 | 1.85 | 3.4 | 0.13 | 1.55 |
POX (N = 17) | 0.97 | 0.2POS | 0.67 | −0.77 | 2.44 | 0.84 | 0.308 | −1.6 |
p-value | 0.924 | 0.04 | 0.21 | 0.88 | 0.16 | 0.21 | ||
Autumn | ||||||||
Means of Phoretic V. destructor | Means of Brood V. destructor | |||||||
Treatment | M0 | M1 | p-Value | Δ | M0 | M1 | p-Value | Δ |
C (N = 7) | 7.07 * | 9.08 * | 0.001 | 2.01 | 6.81 * | 17.71OX/POX * | 1.2 × 10−4 | 10.9OX/POX |
OX (N = 6) | 4.49 * | 4.62 * | 1.8 × 10−5 | 0.13 | 14.95 * | 2.87C/POS * | 0.007 | −12.07C |
POS (N = 9) | 9.65 * | 10.33POX * | 7.8 × 10−6 | 0.68 | 14.78 * | 20.34OX/POX * | 9.3 × 10−7 | 5.56 |
POX (N = 6) | 4.19 * | 1.98POS * | 0.009 | −2.21 | 12.7 * | 3.63C/POS * | 0.001 | −9.07C |
p-value | 0.21 | 0.023 | 0.514 | 0.262 | 4.6 × 10−4 | 0.018 |
Summer | ||
Group | Ef A (%) | Ef B (%) |
C (N = 14) | 38.01OX/POX | 17.54POX |
OX (N = 12) | 76.61C/POS | 81.97 |
POS (N = 14) | 25.26OX/POX | 10.8 |
POX (N = 17) | 67.21C/POS | 87.59C |
p-value | 3.3 × 10−8 | 0.006 |
Autumn | ||
Group | Ef A (%) | Ef B (%) |
C (N = 7) | 53.65 | 15.46POX |
OX (N = 6) | 63.59 | 61.1 |
POS (N = 9) | 49.15 | 20.57POX |
POX (N = 6) | 66.44 | 61.82C/POS |
p-value | 0.587 | 0.001 |
Experiment | Bees | Brood | Phoretic V. destructor M0 (%) | Brood V. destructor M0 (%) |
---|---|---|---|---|
Summer (N = 57) | 7610 * | 15,556 * | 0.786 * | 1.852 * |
Autumn (N = 28) | 4844 * | 5849 * | 6.728 * | 12.377 * |
p-value | 0.002 | 3.38 × 10−4 | 3.83 × 10−11 | 1.8 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Vicente, E.J.; Benito-Murcia, M.; Martín, M.; Pérez, A.; Hermosilla, N.; Martínez-Morcillo, S.; Alonso, J.M.; Risco, D. Effect of the Combined Use of Postbiotics and Oxalic Acid Against Varroa destructor Under Field Conditions. Agriculture 2025, 15, 1292. https://doi.org/10.3390/agriculture15121292
García-Vicente EJ, Benito-Murcia M, Martín M, Pérez A, Hermosilla N, Martínez-Morcillo S, Alonso JM, Risco D. Effect of the Combined Use of Postbiotics and Oxalic Acid Against Varroa destructor Under Field Conditions. Agriculture. 2025; 15(12):1292. https://doi.org/10.3390/agriculture15121292
Chicago/Turabian StyleGarcía-Vicente, Eduardo José, María Benito-Murcia, María Martín, Ana Pérez, Noelia Hermosilla, Salomé Martínez-Morcillo, Juan Manuel Alonso, and David Risco. 2025. "Effect of the Combined Use of Postbiotics and Oxalic Acid Against Varroa destructor Under Field Conditions" Agriculture 15, no. 12: 1292. https://doi.org/10.3390/agriculture15121292
APA StyleGarcía-Vicente, E. J., Benito-Murcia, M., Martín, M., Pérez, A., Hermosilla, N., Martínez-Morcillo, S., Alonso, J. M., & Risco, D. (2025). Effect of the Combined Use of Postbiotics and Oxalic Acid Against Varroa destructor Under Field Conditions. Agriculture, 15(12), 1292. https://doi.org/10.3390/agriculture15121292