Continuous Cropping Alters Soil Microbial Community Assembly and Co-Occurrence Network Complexity in Arid Cotton Fields
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Sample Collection
2.3. Soil Physicochemical Properties Analysis
2.4. DNA Extraction
2.5. Illumina MiSeq High-Throughput Sequencing
2.6. Statistical Analyses
3. Results
3.1. Soil Physicochemical Characteristics
3.2. Bacterial and Fungal Biomass and Diversity
3.3. Compositional Differences in Soil Microbial Community Structure
3.4. Associations Between Environmental Factors and Microbial Communities
3.5. Bacterial and Fungal Co-Occurrence Networks
3.6. Microbial Community Assembly Processes
3.7. Predictors of Bacterial and Fungal Community Assembly Processes
4. Discussion
4.1. The Stage-Specific Impact of Continuous Cropping on Soil Physicochemical Properties and Microbial Diversity in Cotton Fields
4.2. Continuous Cropping Decreased the Complexity of Bacterial Networks and Modified the Structure of Fungal Networks
4.3. Variations in the Assembly Mechanisms of Microbial Communities in Soils Subjected to Continuous Cropping
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Yao, Q.; Li, Y.; Zhang, W.; Mi, G.; Chen, X.; Yu, Z.; Wang, G. Continuous Cropping of Soybean Alters the Bulk and Rhizospheric Soil Fungal Communities in a Mollisol of Northeast PR China. Land Degrad. Dev. 2019, 30, 1725–1738. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, F.; Xin, Q.; Li, Y.; Lin, Z. Historical Variability of Cotton Yield and Response to Climate and Agronomic Management in Xinjiang, China. Sci. Total. Environ. 2024, 912, 169327. [Google Scholar] [CrossRef]
- Yang, X.; Yu, W.; Li, Q.; Zhong, D.; He, J.; Dong, H. Latitude, Planting Density, and Soil Available Potassium Are the Key Driving Factors of the Cotton Harvest Index in Arid Regions. Agronomy 2025, 15, 743. [Google Scholar] [CrossRef]
- Han, S.; Ji, X.; Huang, L.; Liu, G.; Ye, J.; Wang, A. Effects of Aftercrop Tomato and Maize on the Soil Microenvironment and Microbial Diversity in a Long-Term Cotton Continuous Cropping Field. Front. Microbiol. 2024, 15, 1410219. [Google Scholar] [CrossRef] [PubMed]
- Rousk, J.; Bååth, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil Bacterial and Fungal Communities across a pH Gradient in an Arable Soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef]
- Tan, G.; Liu, Y.; Peng, S.; Yin, H.; Meng, D.; Tao, J.; Gu, Y.; Li, J.; Yang, S.; Xiao, N.; et al. Soil Potentials to Resist Continuous Cropping Obstacle: Three Field Cases. Environ. Res. 2021, 200, 111319. [Google Scholar] [CrossRef]
- Cui, F.; Li, Q.; Shang, S.; Hou, X.; Miao, H.; Chen, X. Effects of Cotton Peanut Rotation on Crop Yield Soil Nutrients and Microbial Diversity. Sci. Rep. 2024, 14, 28072. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Yu, Z.; Yao, Q.; Li, Y.; Liang, A.; Zhang, W.; Mi, G.; Jin, J.; Liu, X.; et al. Long-Term Continuous Cropping of Soybean Is Comparable to Crop Rotation in Mediating Microbial Abundance, Diversity and Community Composition. Soil Tillage Res. 2020, 197, 104503. [Google Scholar] [CrossRef]
- Shen, Z.; Penton, C.R.; Lv, N.; Xue, C.; Yuan, X.; Ruan, Y.; Li, R.; Shen, Q. Banana Fusarium Wilt Disease Incidence Is Influenced by Shifts of Soil Microbial Communities Under Different Monoculture Spans. Microb. Ecol. 2017, 75, 739–750. [Google Scholar] [CrossRef]
- Crowther, T.W.; van den Hoogen, J.; Wan, J.; Mayes, M.A.; Keiser, A.D.; Mo, L.; Averill, C.; Maynard, D.S. The Global Soil Community and Its Influence on Biogeochemistry. Science 2019, 365, eaav0550. [Google Scholar] [CrossRef]
- Wall, D.H.; Nielsen, U.N.; Six, J. Soil Biodiversity and Human Health. Nature 2015, 528, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Hu, Y.; Zhang, S.; Noll, L.; Böckle, T.; Dietrich, M.; Herbold, C.W.; Eichorst, S.A.; Woebken, D.; Richter, A.; et al. Soil Multifunctionality Is Affected by the Soil Environment and by Microbial Community Composition and Diversity. Soil Biol. Biochem. 2019, 136, 107521. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cheng, X.; Chu, G.; Hu, B.; Tao, R. Continuous Cropping of Cut Chrysanthemum Reduces Rhizospheric Soil Bacterial Community Diversity and Co-Occurrence Network Complexity. Appl. Soil Ecol. 2023, 185, 104801. [Google Scholar] [CrossRef]
- Li, R.; Liu, Y.; Chu, G. Response of Soil Enzyme Activity and Microbial Community Structure, Diversity to Continuous Cotton Cropping in Northern Xinjiang. Chin. J. Eco-Agric. Apr. 2015, 23, 432–440. [Google Scholar] [CrossRef]
- Freilich, M.A.; Wieters, E.; Broitman, B.R.; Marquet, P.A.; Navarrete, S.A. Species Co-Occurrence Networks: Can They Reveal Trophic and Non-Trophic Interactions in Ecological Communities? Ecology 2018, 99, 690–699. [Google Scholar] [CrossRef]
- Li, B.-B.; Roley, S.S.; Duncan, D.S.; Guo, J.; Quensen, J.F.; Yu, H.-Q.; Tiedje, J.M. Long-Term Excess Nitrogen Fertilizer Increases Sensitivity of Soil Microbial Community to Seasonal Change Revealed by Ecological Network and Metagenome Analyses. Soil Biol. Biochem. 2021, 160, 108349. [Google Scholar] [CrossRef]
- Ma, B.; Wang, H.; Dsouza, M.; Lou, J.; He, Y.; Dai, Z.; Brookes, P.C.; Xu, J.; Gilbert, J.A. Geographic Patterns of Co-Occurrence Network Topological Features for Soil Microbiota at Continental Scale in Eastern China. ISME J. 2016, 10, 1891–1901. [Google Scholar] [CrossRef]
- Stark, F.; González-García, E.; Navegantes, L.; Miranda, T.; Poccard-Chapuis, R.; Archimède, H.; Moulin, C.-H. Crop-Livestock Integration Determines the Agroecological Performance of Mixed Farming Systems in Latino-Caribbean Farms. Agron. Sustain. Dev. 2017, 38, 4. [Google Scholar] [CrossRef]
- Wagg, C.; Schlaeppi, K.; Banerjee, S.; Kuramae, E.E.; Heijden, M.G.A. van der Fungal-Bacterial Diversity and Microbiome Complexity Predict Ecosystem Functioning. Nat. Commun. 2019, 10, 4841. [Google Scholar] [CrossRef]
- Jiao, S.; Yang, Y.; Xu, Y.; Zhang, J.; Lu, Y. Balance between Community Assembly Processes Mediates Species Coexistence in Agricultural Soil Microbiomes across Eastern China. ISME J. 2019, 14, 202–216. [Google Scholar] [CrossRef]
- Chesson, P. Mechanisms of Maintenance of Species Diversity. Annu. Rev. Ecol. Evol. Syst. 2000, 31, 343–366. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, K.; Krause, S.M.B.; Li, S.; Wang, X.; Zhang, Z.; Shen, M.; Yang, Q.; Lian, J.; Wang, X.; et al. Changes in Assembly Processes of Soil Microbial Communities during Secondary Succession in Two Subtropical Forests. Soil Biol. Biochem. 2021, 154, 108144. [Google Scholar] [CrossRef]
- Dumbrell, A.J.; Nelson, M.; Helgason, T.; Dytham, C.; Fitter, A.H. Relative Roles of Niche and Neutral Processes in Structuring a Soil Microbial Community. ISME J. 2009, 4, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Mo, Y.; Peng, F.; Gao, X.; Xiao, P.; Logares, R.; Jeppesen, E.; Ren, K.; Xue, Y.; Yang, J. Low Shifts in Salinity Determined Assembly Processes and Network Stability of Microeukaryotic Plankton Communities in a Subtropical Urban Reservoir. Microbiome 2021, 9, 128. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Rahman, M.K.U.; Liu, J.; Wu, F. Soil Acidification Mediates Changes in Soil Bacterial Community Assembly Processes in Response to Agricultural Intensification. Environ. Microbiol. 2021, 23, 4741–4755. [Google Scholar] [CrossRef]
- Chen, Q.-L.; Hu, H.-W.; Yan, Z.-Z.; Li, C.-Y.; Nguyen, B.-A.T.; Sun, A.-Q.; Zhu, Y.-G.; He, J.-Z. Deterministic Selection Dominates Microbial Community Assembly in Termite Mounds. Soil. Biol. Biochem. 2021, 152, 108073. [Google Scholar] [CrossRef]
- CURTIS, T.; SLOAN, W. Prokaryotic Diversity and Its Limits: Microbial Community Structure in Nature and Implications for Microbial Ecology. Curr. Opin. Microbiol. 2004, 7, 221–226. [Google Scholar] [CrossRef]
- Sloan, W.T.; Lunn, M.; Woodcock, S.; Head, I.M.; Nee, S.; Curtis, T.P. Quantifying the Roles of Immigration and Chance in Shaping Prokaryote Community Structure. Environ. Microbiol. 2006, 8, 732–740. [Google Scholar] [CrossRef]
- Sloan, W.T.; Woodcock, S.; Lunn, M.; Head, I.M.; Curtis, T.P. Modeling Taxa-Abundance Distributions in Microbial Communities Using Environmental Sequence Data. Microb. Ecol. 2006, 53, 443–455. [Google Scholar] [CrossRef]
- Cao, J.; Yang, X.; Guo, M.; Wu, Y.; Wang, C. Reclamation of Abandoned Cropland Switches Fungal Community Assembly from Deterministic to Stochastic Processes. Sci. Total Environ. 2024, 951, 175494. [Google Scholar] [CrossRef]
- Li, T.; Xie, H.; Ren, Z.; Hou, Y.; Zhao, D.; Wang, W.; Wang, Z.; Liu, Y.; Wen, X.; Han, J.; et al. Soil Tillage Rather than Crop Rotation Determines Assembly of the Wheat Rhizobacterial Communities. Soil Tillage Res. 2023, 226, 105588. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, R.; Stegen, J.C.; Guo, Z.; Zhang, J.; Li, Z.; Lin, X. Two Key Features Influencing Community Assembly Processes at Regional Scale: Initial State and Degree of Change in Environmental Conditions. Mol. Ecol. 2018, 27, 5238–5251. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Graham, E.B.; Dong, Y.; Zhong, L.; Zhang, J.; Qiu, C.; Chen, R.; Lin, X.; Feng, Y. Balanced Stochastic versus Deterministic Assembly Processes Benefit Diverse yet Uneven Ecosystem Functions in Representative Agroecosystems. Environ. Microbiol. 2020, 23, 391–404. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Q.; Ku, Y.; Zhang, W.; Zhu, H.; Zhao, Z. Precipitation and Soil pH Drive the Soil Microbial Spatial Patterns in the Robinia Pseudoacacia Forests at the Regional Scale. Catena 2022, 212, 106120. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, X.; Tan, H.; Yin, S.; Su, L.; Du, B.; Khalid, M.; Sinkkonen, A.; Hui, N. Neighborhood Garden’s Age Shapes Phyllosphere Microbiota Associated with Respiratory Diseases in Cold Seasons. Environ. Sci. Ecotechnol. 2024, 18, 100315. [Google Scholar] [CrossRef]
- Zhou, J.; Ning, D. Stochastic Community Assembly: Does It Matter in Microbial Ecology? Microbiol. Mol. Biol. Rev. 2017, 81, 10–1128. [Google Scholar] [CrossRef]
- Li, T.; Liu, S.; Shi, Y.; Zhao, J.; Li, W.; Zhao, D.; Liu, Y.; Shi, Y.; Kuzyakov, Y.; Ma, X. Ecological Barrier of the Tianshan Mountains Controls Agroecosystem Multifunctionality through Soil Microbial Processes. CATENA 2025, 251, 108822. [Google Scholar] [CrossRef]
- Chen, Y.P.; Li, X.; Wang, J.; Ge, T. Evaluation on Soil Health under Different Continuous Cropping Years of Cotton in Xinjiang. J. Plant Nutr. Fertil. 2025, 31, 112–124. [Google Scholar] [CrossRef]
- Peng, Y.; Xu, H.; Shi, J.; Wang, Z.; Lv, J.; Li, L.; Wang, X. Soil Microbial Composition, Diversity, and Network Stability in Intercropping versus Monoculture Responded Differently to Drought. Agric. Ecosyst. Environ. 2024, 365, 108915. [Google Scholar] [CrossRef]
- Wang, L.; Liu, S.; Tian, G.; Pan, Y.; Wang, H.; Qiu, G.; Li, F.; Pang, Z.; Ding, K.; Zhang, J.; et al. Impacts of Continuous Potato Cropping on Soil Microbial Assembly Processes and Spread of Potato Common Scab. Appl. Soil Ecol. 2025, 206, 105805. [Google Scholar] [CrossRef]
- Li, N.; Lin, H.; Wang, T.; Li, Y.; Liu, Y.; Chen, X.; Hu, X. Impact of Climate Change on Cotton Growth and Yields in Xinjiang, China. Field Crops Res. 2020, 247, 107590. [Google Scholar] [CrossRef]
- Du, J.; Jiaerheng, A.; Zhao, C.; Fang, G.; Yin, J.; Xiang, B.; Yuan, X.; Fang, S. Dynamic changes in vegetation NDVI from 1982 to 2012 and its responses to climate change and human activities in Xinjiang, China. Ying Yong Sheng Tai Xue Bao 2015, 26, 3567–3578. [Google Scholar] [PubMed]
- Guli, J.; Liang, S.; Yi, Q.; Liu, J. Vegetation Dynamics and Responses to Recent Climate Change in Xinjiang Using Leaf Area Index as an Indicator. Ecol. Indic. 2015, 58, 64–76. [Google Scholar] [CrossRef]
- Elliott, E.T.; Cambardella, C.A. Physical Separation of Soil Organic Matter. Agric. Ecosyst. Environ. 1991, 34, 407–419. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agricultural Chemistry Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Chen, S.; Huang, J.; Guo, R.; Ma, H.; Guo, J.; Ling, N.; Xu, Q.; Wang, M.; Shen, Q.; Guo, S. Soil Net Carbon Balance Depends on Soil C: N: P Stoichiometry. Soil Tillage Res. 2025, 245, 106298. [Google Scholar] [CrossRef]
- Liu, L.; Qin, F.; Sheng, Y.; Li, L.; Dong, X.; Zhang, S.; Shen, C. Soil Quality Evaluation and Limiting Factor Analysis in Different Microtopographies of Hilly and Gully Region Based on Minimum Data Set. CATENA 2025, 254, 108973. [Google Scholar] [CrossRef]
- Burns, A.R.; Stephens, W.Z.; Stagaman, K.; Wong, S.; Rawls, J.F.; Guillemin, K.; Bohannan, B.J. Contribution of Neutral Processes to the Assembly of Gut Microbial Communities in the Zebrafish over Host Development. ISME J. 2015, 10, 655–664. [Google Scholar] [CrossRef]
- Jiao, S.; Peng, Z.; Qi, J.; Gao, J.; Wei, G.; Stegen, J.C. Linking Bacterial-Fungal Relationships to Microbial Diversity and Soil Nutrient Cycling. mSystems 2021, 6, e01052-20. [Google Scholar] [CrossRef]
- Ning, D.; Deng, Y.; Tiedje, J.M.; Zhou, J. A General Framework for Quantitatively Assessing Ecological Stochasticity. Proc. Natl. Acad. Sci. USA 2019, 116, 16892–16898. [Google Scholar] [CrossRef]
- Csardi, G.; Nepusz, T. The Igraph Software Package for Complex Network Research. InterJ. Complex. Syst. 2006, 1695, 1–9. [Google Scholar]
- Greenblum, S.; Turnbaugh, P.J.; Borenstein, E. Metagenomic Systems Biology of the Human Gut Microbiome Reveals Topological Shifts Associated with Obesity and Inflammatory Bowel Disease. Proc. Natl. Acad. Sci. USA 2012, 109, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 23, 18–22. [Google Scholar]
- Jiao, S.; Du, N.; Zai, X.; Gao, X.; Chen, W.; Wei, G. Temporal Dynamics of Soil Bacterial Communities and Multifunctionality Are More Sensitive to Introduced Plants than to Microbial Additions in a Multicontaminated Soil. Land Degrad. Dev. 2019, 30, 852–865. [Google Scholar] [CrossRef]
- Fortmann-Roe, S. Consistent and Clear Reporting of Results from Diverse Modeling Techniques: The A3 Method. J. Stat. Softw. 2015, 66, 1–23. [Google Scholar] [CrossRef]
- Sainju, U.M.; Liptzin, D.; Jabro, J.D. Relating Soil Physical Properties to Other Soil Properties and Crop Yields. Sci. Rep. 2022, 12, 22025. [Google Scholar] [CrossRef]
- Zhao, L.; He, Y.; Zheng, Y.; Xu, Y.; Shi, S.; Fan, M.; Gu, S.; Li, G.; Tianli, W.; Wang, J.; et al. Differences in Soil Physicochemical Properties and Rhizosphere Microbial Communities of Flue-Cured Tobacco at Different Transplantation Stages and Locations. Front. Microbiol. 2023, 14, 1141720. [Google Scholar] [CrossRef]
- Zhou, W.; Lv, T.-F.; Chen, Y.; Westby, A.P.; Ren, W.-J. Soil Physicochemical and Biological Properties of Paddy-Upland Rotation: A Review. Sci. World J. 2014, 2014, 856352. [Google Scholar] [CrossRef]
- Guo, C.; Yang, C.; Fu, J.; Song, Y.; Chen, S.; Li, H.; Ma, C. Effects of Crop Rotation on Sugar Beet Growth through Improving Soil Physicochemical Properties and Microbiome. Ind. Crops Prod. 2024, 212, 118331. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, M.; Zhang, R.; Zhang, W.; Liu, Y.; Sun, D.; Wang, X.; Qin, S.; Kang, Y. Legume-Potato Rotation Affects Soil Physicochemical Properties, Enzyme Activity, and Rhizosphere Metabolism in Continuous Potato Cropping. Chem. Biol. Technol. Agric. 2023, 10, 132. [Google Scholar] [CrossRef]
- Zhang, P.; Xia, L.; Sun, Y.; Gao, S. Soil Nutrients and Enzyme Activities Based on Millet Continuous Cropping Obstacles. Sci. Rep. 2024, 14, 17329. [Google Scholar] [CrossRef]
- Mng’ong’o, M.; Munishi, L.K.; Blake, W.; Comber, S.; Hutchinson, T.H.; Ndakidemi, P.A. Soil Fertility and Land Sustainability in Usangu Basin-Tanzania. Heliyon 2021, 7, e07745. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Yang, J.; Zeng, S.; Wu, D.; Jacobs, D.F.; Sloan, J.L. Soil pH, Organic Matter, and Nutrient Content Change with the Continuous Cropping of Cunninghamia Lanceolata Plantations in South China. J. Soils Sediments 2016, 17, 2230–2238. [Google Scholar] [CrossRef]
- Silva-Filho, M.C.; Vivanco, J.M. Guest Editorial: Plants and Their Surrounding Microorganisms: A Dynamic World of Interactions. Curr. Opin. Microbiol. 2017, 37, v–vi. [Google Scholar] [CrossRef] [PubMed]
- Beule, L.; Vaupel, A.; Moran-Rodas, V.E. Abundance, Diversity, and Function of Soil Microorganisms in Temperate Alley-Cropping Agroforestry Systems: A Review. Microorganisms 2022, 10, 616. [Google Scholar] [CrossRef] [PubMed]
- Sutela, S.; Poimala, A.; Vainio, E.J. Viruses of Fungi and Oomycetes in the Soil Environment. FEMS Microbiol. Ecol. 2019, 95, fiz119. [Google Scholar] [CrossRef]
- Benitez, M.-S.; Osborne, S.L.; Lehman, R.M. Previous Crop and Rotation History Effects on Maize Seedling Health and Associated Rhizosphere Microbiome. Sci. Rep. 2017, 7, 15709. [Google Scholar] [CrossRef]
- Bensch, K.; Braun, U.; Groenewald, J.Z.; Crous, P.W. The Genus Cladosporium. Stud. Mycol. 2012, 72, 1–401. [Google Scholar] [CrossRef]
- Liu, J.; Song, M.; Wei, X.; Zhang, H.; Bai, Z.; Zhuang, X. Responses of Phyllosphere Microbiome to Ozone Stress: Abundance, Community Compositions and Functions. Microorganisms 2022, 10, 680. [Google Scholar] [CrossRef]
- Cui, S.; Zhou, L.; Fang, Q.; Xiao, H.; Jin, D.; Liu, Y. Growth Period and Variety Together Drive the Succession of Phyllosphere Microbial Communities of Grapevine. Sci. Total Environ. 2024, 950, 175334. [Google Scholar] [CrossRef]
- Park, Y.-S.; Kim, K.-C.; Lee, J.-H.; Cho, S.-M.; Choi, Y.-S.; Kim, Y.-C. Cladosporium sp. Is the Major Causal Agent in the Microbial Complex Associated with the Skin Sooty Dapple Disease of the Asian Pear in Korea. Plant Pathol. J. 2008, 24, 118–124. [Google Scholar] [CrossRef]
- Fotios, B.; Sotirios, V.; Elena, P.; Anastasios, S.; Stefanos, T.; Danae, G.; Georgia, T.; Aliki, T.; Epaminondas, P.; Emmanuel, M.; et al. Grapevine Wood Microbiome Analysis Identifies Key Fungal Pathogens and Potential Interactions with the Bacterial Community Implicated in Grapevine Trunk Disease Appearance. Environ. Microbiome 2021, 16, 23. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Ye, J.; Li, Z. Changes of Rhizospheric Pathogen Alternaria sp. and Its Antagonistic Bacteria Pseudomonas sp. of Continuous Cropping Tea Plants Mediated by Phenolic Acids. J. Tea Sci. 2024, 43, 823–834. [Google Scholar]
- Tang, S.; Ma, Q.; Marsden, K.A.; Chadwick, D.R.; Luo, Y.; Kuzyakov, Y.; Wu, L.; Jones, D.L. Microbial Community Succession in Soil Is Mainly Driven by Carbon and Nitrogen Contents Rather than Phosphorus and Sulphur Contents. Soil Biol. Biochem. 2023, 180, 109019. [Google Scholar] [CrossRef]
- Wang, R.; Yang, L.; Gao, X.; Guo, S.; Wang, R. Changes in Fungal Diversity and Key-Stone Taxa along Soil-Eroding Catena. Appl. Soil Ecol. 2023, 188, 104924. [Google Scholar] [CrossRef]
- Allison, S.D.; Martiny, J.B.H. Colloquium Paper: Resistance, Resilience, and Redundancy in Microbial Communities. Proc. Natl. Acad. Sci. USA 2008, 105, 11512–11519. [Google Scholar] [CrossRef]
- Hibbing, M.E.; Fuqua, C.; Parsek, M.R.; Peterson, S.B. Bacterial Competition: Surviving and Thriving in the Microbial Jungle. Nat. Rev. Microbiol. 2009, 8, 15–25. [Google Scholar] [CrossRef]
- Ma, B.; Lv, X.; Cai, Y.; Chang, S.X.; Dyck, M.F. Liming Does Not Counteract the Influence of Long-Term Fertilization on Soil Bacterial Community Structure and Its Co-Occurrence Pattern. Soil Biol. Biochem. 2018, 123, 45–53. [Google Scholar] [CrossRef]
- Barberán, A.; Bates, S.T.; Casamayor, E.O.; Fierer, N. Erratum: Using Network Analysis to Explore Co-Occurrence Patterns in Soil Microbial Communities. ISME J. 2014, 8, 343–351. [Google Scholar] [CrossRef]
- Ma, B.; Wang, Y.; Ye, S.; Liu, S.; Stirling, E.; Gilbert, J.A.; Faust, K.; Knight, R.; Jansson, J.K.; Cardona, C.; et al. Earth Microbial Co-Occurrence Network Reveals Interconnection Pattern across Microbiomes. Microbiome 2020, 8, 82. [Google Scholar] [CrossRef]
- Sheng, M.; Hu, W.; Liu, C.-Q.; Niu, M.; Jin, R.; Deng, J.; Wu, L.; Li, P.; Yan, Z.; Zhu, Y.-G.; et al. Characteristics and Assembly Mechanisms of Bacterial and Fungal Communities in Soils from Chinese Forests across Different Climatic Zones. CATENA 2024, 245, 108306. [Google Scholar] [CrossRef]
- Huo, X.; Ren, C.; Wang, D.; Wu, R.; Wang, Y.; Li, Z.; Huang, D.; Qi, H. Microbial Community Assembly and Its Influencing Factors of Secondary Forests in Qinling Mountains. Soil Biol. Biochem. 2023, 184, 109075. [Google Scholar] [CrossRef]
- Xu, H.; Yu, F.; Zuo, Y.; Dai, Y.; Deng, H.; Xie, J. Selected Rhizosphere Bacteria Are Associated with Endangered Species—Scutellaria tsinyunensis via Comparative Microbiome Analysis. Microbiol. Res. 2022, 258, 126917. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Ma, Y.; Feng, T.; Kong, X.; Wang, Z.; Zheng, W.; Zhai, B. Assembly Processes of Abundant and Rare Microbial Communities in Orchard Soil under a Cover Crop at Different Periods. Geoderma 2022, 406, 115543. [Google Scholar] [CrossRef]
- Kang, P.; Pan, Y.; Yang, P.; Hu, J.; Zhao, T.; Zhang, Y.; Ding, X.; Yan, X. A Comparison of Microbial Composition under Three Tree Ecosystems Using the Stochastic Process and Network Complexity Approaches. Front. Microbiol. 2022, 13, 1018077. [Google Scholar] [CrossRef]
- Liu, C.; Zheng, C.; Wang, L.; Zhang, J.; Wang, Q.; Shao, S.; Qin, H.; Xu, Q.; Liang, C.; Chen, J. Moso Bamboo Invasion Changes the Assembly Process and Interactive Relationship of Soil Microbial Communities in a Subtropical Broadleaf Forest. For. Ecol. Manag. 2023, 536, 120901. [Google Scholar] [CrossRef]
- Zhang, P.; Guan, P.; Hao, C.; Yang, J.; Xie, Z.; Wu, D. Changes in Assembly Processes of Soil Microbial Communities in Forest-to-Cropland Conversion in Changbai Mountains, Northeastern China. Sci. Total Environ. 2022, 818, 151738. [Google Scholar] [CrossRef]
- Zheng, W.; Zhao, Z.; Lv, F.; Wang, R.; Wang, Z.; Zhao, Z.; Li, Z.; Zhai, B. Assembly of Abundant and Rare Bacterial and Fungal Sub-Communities in Different Soil Aggregate Sizes in an Apple Orchard Treated with Cover Crop and Fertilizer. Soil Biol. Biochem. 2021, 156, 108222. [Google Scholar] [CrossRef]
- Li, H.; Zhou, S.-Y.-D.; Neilson, R.; An, X.-L.; Su, J.-Q. Skin Microbiota Interact with Microbes on Office Surfaces. Environ. Int. 2022, 168, 107493. [Google Scholar] [CrossRef]
- Sayer, E.J.; Wagner, M.; Oliver, A.E.; Pywell, R.F.; James, P.; Whiteley, A.S.; Heard, M.S. Grassland Management Influences Spatial Patterns of Soil Microbial Communities. Soil Biol. Biochem. 2013, 61, 61–68. [Google Scholar] [CrossRef]
- Peng, W.; Song, M.; Du, H.; Jiang, S.; Zeng, F.; Chen, H.; Song, T. Assembly Processes and Networks of Soil Microbial Communities along Karst Forest Succession. CATENA 2025, 248, 108574. [Google Scholar] [CrossRef]
GY8 | GY15 | GY30 | |
---|---|---|---|
pH | 7.49 ± 0.04 a | 7.60 ± 0.04 a | 7.66 ± 0.11 a |
EC (mS cm−1) | 0.79 ± 0.14 a | 0.82 ± 0.29 a | 0.40 ± 0.05 a |
BD (g cm−3) | 1.34 ± 0.04 a | 1.37 ± 0.06 a | 1.27 ± 0.09 a |
SOM (g kg−1) | 15.89 ± 1.81 a | 14.86 ± 1.07 a | 12.15 ± 0.79 b |
Total N (g kg−1) | 1.03 ± 0.11 a | 0.97 ± 0.03 a | 0.84 ± 0.07 a |
Total P (g kg−1) | 0.78 ± 0.06 a | 0.77 ± 0.04 a | 0.79 ± 0.03 a |
Total K (g kg−1) | 21.83 ± 0.49 b | 24.56 ± 1.15 a | 22.78 ± 0.77 b |
AHN (mg kg−1) | 51.15 ± 4.12 a | 41.45 ± 1.58 b | 40.87 ± 2.35 b |
AP (mg kg−1) | 13.13 ± 1.55 b | 23.53 ± 3.31 b | 42.04 ± 8.30 a |
AK (mg kg−1) | 287.45 ± 36.81 a | 158.73 ± 9.96 b | 292.16 ± 22.48 a |
LM (%) | 0.04 ± 0.00 b | 0.07 ± 0.01 a | 0.03 ± 0.00 c |
SM (%) | 0.25 ± 0.03 a | 0.22 ± 0.02 a | 0.14 ± 0.02 b |
MA (%) | 0.30 ± 0.03 a | 0.35 ± 0.01 a | 0.28 ± 0.06 a |
SC (%) | 0.41 ± 0.05 ab | 0.36 ± 0.03 b | 0.56 ± 0.08 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Yang, X.; Zhong, D.; Huo, Z.; Sun, R.; Dong, H. Continuous Cropping Alters Soil Microbial Community Assembly and Co-Occurrence Network Complexity in Arid Cotton Fields. Agriculture 2025, 15, 1274. https://doi.org/10.3390/agriculture15121274
Chen J, Yang X, Zhong D, Huo Z, Sun R, Dong H. Continuous Cropping Alters Soil Microbial Community Assembly and Co-Occurrence Network Complexity in Arid Cotton Fields. Agriculture. 2025; 15(12):1274. https://doi.org/10.3390/agriculture15121274
Chicago/Turabian StyleChen, Jian, Xiaopeng Yang, Dongdong Zhong, Zhen Huo, Renhua Sun, and Hegan Dong. 2025. "Continuous Cropping Alters Soil Microbial Community Assembly and Co-Occurrence Network Complexity in Arid Cotton Fields" Agriculture 15, no. 12: 1274. https://doi.org/10.3390/agriculture15121274
APA StyleChen, J., Yang, X., Zhong, D., Huo, Z., Sun, R., & Dong, H. (2025). Continuous Cropping Alters Soil Microbial Community Assembly and Co-Occurrence Network Complexity in Arid Cotton Fields. Agriculture, 15(12), 1274. https://doi.org/10.3390/agriculture15121274