Response of Soil Organic Carbon and Its Components to Mixed Sowing of Green Manure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Measurement Items and Methods
2.3.1. Crop Examination and Yield Measurement
2.3.2. Determination of Soil Organic Carbon and Its Fractions
2.4. Data Analysis
3. Results
3.1. Effects of Mixed Sowing of Green Manure Combined with Nitrogen Reduction on Rice Yield and Yield Components
3.2. Effects of Mixed Sowing of Green Manure Combined with Nitrogen Reduction on Soil Organic Carbon and Its Fractions
3.2.1. Soil Total Organic Carbon
3.2.2. Soil Active Organic Carbon
3.2.3. Soil Microbiological Carbon
3.2.4. Soil Dissolved Organic Carbon
3.2.5. Soil Readily Oxidized Organic Carbon
3.3. Correlation Analysis Between Rice Yield, Yield Components, and Soil Organic Carbon and Its Fractions
4. Discussion
4.1. Study on Rice Yield and Yield Components Under Mixed Sowing of Green Manure Combined with Reduced Nitrogen Fertilization
4.2. Study on Soil Organic Carbon and Its Fractions Under Mixed Sowing of Green Manure Combined with Reduced Nitrogen Fertilization
4.3. Study on Correlation Analysis Between Rice Yield, Yield Components, and Soil Organic Carbon and Its Fractions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, W.D.; Gao, S.J. Chinese green manure development strategy by 2025. Chin. J. Agric. Resour. Reg. Plan. 2023, 44, 1–9. [Google Scholar]
- Wang, H.; Tang, S.; Wu, J.; Hu, R.; Han, S.; Liu, Y.; Zhu, Q.; Li, M.; Wang, Y.Q.; Shi, Z.L. Effects of nitrogen managements with incorporation of Chinese milk vetch on the yield of double cropping rice and fertilizer use efficiency. J. Agric. Resour. Environ. 2018, 35, 327–333. [Google Scholar]
- Zhou, G.P.; Xie, Z.J.; Cao, W.D.; Xu, C.X.; Bai, J.S.; Zeng, N.H.; Gao, S.J.; Yang, L. Co-incorporation of high rice stubble and Chinese milk vetch improving soil fertility and yield of rice. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2017, 33, 157–163. [Google Scholar]
- Wang, J.L.; Sun, C.F.; Cheng, Y.G.; Zheng, P.S.; Hong, J.P. Effects of different green manures on chemical properties and enzyme activities of reclaimed soil. Soils Fertil. Sci. China 2022, 305, 85–93. [Google Scholar]
- Blesh, J. Functional traits in cover crop mixtures: Biological nitrogen fixation and multifunctionality. J. Appl. Ecol. 2018, 55, 38–48. [Google Scholar] [CrossRef]
- White, C.M.; Dupont, S.T.; Hautau, M.; Hartman, D.; Finney, D.M.; Bradley, B.; La Chance, J.C.; Kaye, J.P. Managing the trade-off between nitrogen supply and retention with cover crop mixtures. Agric. Ecosyst. Environ. 2017, 237, 121–133. [Google Scholar] [CrossRef]
- Ju, X.T.; Xing, G.X.; Chen, X.P.; Zhang, S.L.; Zhang, L.J.; Liu, X.J.; Cui, Z.L.; Yin, B.; Christie, P.; Zhu, Z.L.; et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.S.; Tian, Y.H.; Yin, B.; Zhu, Z.L. Assessment of ammonia volatilization from paddy fields under crop management practices aimed to increase grain yield and N efficiency. Field Crops Res. 2013, 147, 23–31. [Google Scholar] [CrossRef]
- Peng, S.; Wang, H.; Zhang, W.Z.; Hou, H.J.; Chen, A.L.; Wei, W.X.; Wan, Y.J.; Yuan, H.Z. Effect of long-term reduction and deep placement of nitrogen fertilizer on rice yield and soil fertility in a double rice cropping system. J. Plant Nutr. Fertil. 2020, 26, 999–1007. [Google Scholar]
- Pu, J.; Li, Z.; Tang, H.; Zhou, G.; Wei, C.; Dong, W.; Jin, Z.; He, T. Response of soil microbial communities and rice yield to nitrogen reduction with green manure application in karst paddy areas. Front. Microbiol. 2023, 13, 1070876. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, J.; Gao, J.S.; Cao, W.D.; Gao, P.; Yang, Z.C. Effects of long-term green manure and reducing nitrogen applications on rice yield and soil nutrient content. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2020, 36, 106–112. [Google Scholar]
- Yang, W.; Yao, L.; Zhu, M.Z.; Li, C.W.; Li, S.Q.; Wang, B.; Dijkstra, P.; Liu, Z.Y.; Zhu, B. Replacing urea-N with Chinese milk vetch (Astragalus sinicus L.) mitigates CH4 and N2O emissions in rice paddy. Agric. Ecosyst. Environ. 2022, 336, 108033. [Google Scholar] [CrossRef]
- Li, F.D.; Li, Z.X.; Qiao, Y.F.; Liu, S.B.; Tian, C.; Zhu, N.; Hirwa, H.; Measho, S. Using soil organic carbon isotope composition analysis to elucidate the carbon cycle of agroecosystems. Chin. J. Eco-Agric. 2023, 31, 194–205. [Google Scholar]
- Xiao, X.J.; Xia, J.G.; Ma, D.Y.; Yu, Z.Y.; Zhou, Y.X. Effect of tea residue biochar on soil organic carbon and its active components in tea garden soil. J. Soil Water Conserv. 2020, 34, 294–300. [Google Scholar]
- Chang, L.X.; Liang, X.R.; Wang, L.; Li, Z.R.; Zhan, F.D.; He, Y.M. Characteristics and influencing factors of soil organic carbon sink in paddy fields in China: A review. Soils 2023, 55, 487–493. [Google Scholar]
- Guo, Q.K.; Liang, G.Q.; Zhou, W.; Chen, J.; Sun, J.W.; Wang, X.B.; Yu, X.C.; Li, D.M. Microbiological mechanism of long-term organic fertilization on improving soil biological properties and double rice yields in red paddy soil. J. Plant Nutr. Fertil. 2020, 26, 492–501. [Google Scholar]
- Gao, S.J.; Gao, J.S.; Cao, W.D.; Zou, C.Q.; Huang, J.; Bai, J.S.; Dou, F.G. Effects of long-term green manure application on the content and structure of dissolved organic matter in red paddy soil. J. Integr. Agric. 2018, 17, 1852–1860. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, S.M.; Zhang, T.; He, Y.; Zhao, Q.M.; Chen, Q.; Gao, X.Y. Effects of alfalfa green fertilizer return and fertilizer reduction on greenhouse gas emissions and maize yield in Guizhou yellow soil. Jiangsu Agric. Sci. 2023, 51, 238–244. [Google Scholar]
- Yang, X.H.; Yu, A.Z.; Chai, J.; Li, Y.; Wang, F.; Wang, P.F.; Lv, H.Q.; Wang, Y.L.; Shang, Y.P. Effects of green manure incorporation combined with nitrogen fertilizer reduction on soil respiration and its temperature sensitivity in regard to wheat fields. Chin. J. Eco-Agric. 2024, 32, 61–70. [Google Scholar]
- Liu, S.J.; Zhou, L.H.; Tang, L.Z.; Li, G.; Gao, X.C.; Huang, J.; Gao, J.S. Effects of chemical fertilizer substitution of milk vetch on aggregate composition and organic carbon distribution in red paddy soil. Soils Crops 2023, 12, 25–33. [Google Scholar]
- Chen, H.J. Research on Productivity, Ecological Environmental Effect and Sustainability Evaluation Under Paddy-Upland Rotation Systems. Master’s Thesis, Jiangxi Agricultural University, Nanchang, China, 2015. [Google Scholar]
- Yang, B.J.; Sun, S.; Chen, H.J.; Huang, G.Q. Research on energy analysis and sustainability evaluation under paddy-upland rotation systems. Ecol. Sci. 2017, 36, 123–131. [Google Scholar]
- Li, P. Effects of the Mixture of Chinese Milk Vetch and Rape on Soil Fertility, N2O Emission and Abundance of Related Functional Genes in Paddy Fields. Master’s Thesis, Jiangxi Agricultural University, Nanchang, China, 2020. [Google Scholar]
- Bao, S.D. Analysis Methods for Soil Chemistry of Agriculture; China Agricultural Press: Beijing, China, 2000. [Google Scholar]
- Huang, J.; Gao, J.S.; Liu, S.J.; Cao, W.D.; Zhang, Y.Z. Effect of Chinese milk vetch in winter on rice yield and its nutrient uptake. Soil Fertil. Sci. China 2013, 1, 88–92. [Google Scholar]
- Li, P.; Yang, B.J.; Zhang, P.; Li, X.M.; Huang, G.Q. Effects of the mixture of Chinese milk vetch and rape on the yield, dry matter and nitrogen uptake and utilization of double cropping rice. Acta Agric. Univ. Jiangxiensis 2020, 42, 219–228. [Google Scholar]
- Yang, L. Effects of Chinese Milk Vetch Planting and Co-Incorporation with Rice Straw on Fertilizer Reduction and Their Regulating Mechanisms of Biological Nitrogen Fixation. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2019. [Google Scholar]
- Yang, J.; Bo, R.Y.; Han, S.; Li, M.; Wang, H.; Cheng, W.L.; Tang, S.; Wu, J.; Zhu, L. Optimized configuration of green manure and the effect of nitrogen fertilizer reduction on single cropping paddy field in Anhui. J. Anhui Agric. Univ. 2023, 50, 1030–1035. [Google Scholar]
- Wang, H.; Zhou, G.P.; Chang, D.N.; Gao, S.J.; Liu, R.; Liao, Y.L.; Lu, Y.H.; Zeng, N.H.; Nie, J.; Cao, W.D. Nitrogen reduction effects in double rice by planting and returning Chinese milk vetch to the field in Northern Hunan Province. J. Plant Nutr. Fertil. 2022, 28, 33–44. [Google Scholar]
- Xie, X.; Lu, Y.H.; Liao, Y.L.; Nie, J.; Zhang, J.L.; Sun, Y.T.; Cao, W.D.; Gao, Y.J. Effects of returning Chinese milk vetch and rice straw to replace partial fertilizers on double season rice yield and soil active organic carbon. Sci. Agric. Sin. 2023, 56, 3585–3598. [Google Scholar]
- Wang, Y.H.; Wang, J.K.; Du, H.Y.; Ji, X.H.; Liu, X.W. The Impact of green manure planting on carbon and nitrogen content of freshwater salinized soil and leaching solution in saline-alkali winter fallow farmland. Acta Agric. Boreali-Simica 2024, 39, 143–149. [Google Scholar]
- Quan, Z.M.; Qi, Y.; Zhou, Z.H.; Mo, K.; Han, W.B.; Liang, Q. Effects of Lathyrus sativus return to the field and nitrogen rate reduction on paddy soil labile organic carbon and soil enzyme activities. Pratacult. Sci. 2024, 41, 1057–1067. [Google Scholar]
- Li, Z.Q.; Zhang, X.; Wang, J.H.; Cao, K.; Xu, C.X.; Cao, W.D. Effect of chemical fertilizer reduction with return of Chinese milk vetch (Astragalus sinicus L.) on soil active organic carbon and carbon conversion enzyme activities. J. Plant Nutr. Fertil. 2019, 25, 525–534. [Google Scholar]
- Jue, C.; Yang, N.J.; Wang, S.R. Effects of Chemical Fertilizer Combined with Microbial Inoculant and Improved Substrate on Soil Aggregate Organic Carbon and Microbial Community Structure. Jiangsu Agric. Sci. 2023, 51, 237–244. [Google Scholar]
- Liu, H.; Jiao, Y.; Li, Y.T.; Dou, W.Y.; Long, X.Y.; Pei, W. Effects of Combined Application of Biochar and Nitrogen Fertilizer on Soil Bacterial Community in Rice Production. Soils Fertil. Sci. China 2024, 7, 88–100. [Google Scholar]
- Song, G.; Wang, Q.C.; Zheng, Y.; He, J.Z. Responses of Arbuscular Mycorrhizal Fungi to Elevated Atmospheric CO2 Concentration and Warming: A Review. Chin. J. Appl. Ecol. 2022, 33, 1709–1718. [Google Scholar]
Treatment | Cropping Pattern | Fertilizer Application in Early Rice Season (kg ha−1) | Fertilizer Application in Late Rice Season (kg ha−1) | ||||
---|---|---|---|---|---|---|---|
N | K2O | P2O5 | N | K2O | P2O5 | ||
CK | No nitrogen fertilizer under the Chinese milk vetch × rapeseed - double cropping rice system | 0 | 120 | 90 | 0 | 120 | 90 |
N1MR | Conventional nitrogen fertilizer under the Chinese milk vetch × rapeseed - double cropping rice system | 150 | 120 | 90 | 150 | 120 | 90 |
N2MR | 20% nitrogen fertilizer reduction under the Chinese milk vetch × rapeseed - double cropping rice system | 120 | 120 | 90 | 120 | 120 | 90 |
N3MR | 40% nitrogen fertilizer reduction under the Chinese milk vetch × rapeseed - double cropping rice system | 90 | 120 | 90 | 90 | 120 | 90 |
N4MR | 60% nitrogen fertilizer reduction under the Chinese milk vetch × rapeseed - double cropping rice system | 60 | 120 | 90 | 60 | 120 | 90 |
Treatment | Crops | 2022 | 2023 |
---|---|---|---|
Fresh Weight | Fresh Weight | ||
CK | Chinese milk vetch × rapeseed | 30.80 ± 0.87 a | 22.53 ± 1.16 a |
N1MR | Chinese milk vetch × rapeseed | 34.33 ± 2.00 a | 25.93 ± 5.37 a |
N2MR | Chinese milk vetch × rapeseed | 32.67 ± 2.20 a | 31.30 ± 6.44 a |
N3MR | Chinese milk vetch × rapeseed | 30.93 ± 1.15 a | 27.57 ± 4.72 a |
N4MR | Chinese milk vetch × rapeseed | 33.93 ± 3.01 a | 24.37 ± 2.70 a |
Crop | Variety Name | Seeding Method | Seeding and Harvest Time | Fertilizing Amount |
---|---|---|---|---|
Chinese milk vetch | Yujiang dayezi | Sowing | 10 October 2021—10 April 2022 16 October 2022—7 April 2023 | Not fertilizing |
Rapeseed | Zhongyou No.5 | Sowing | 9 November 2021—10 April 2022 8 November 2022—7 April 2023 | Not fertilizing |
Early rice | Zhongjiazao17 | Transplant | 2 May 2022—23 July 2022 28 April 2023—26 July 2023 | N 180 kg ha−1 P2O5 90 kg ha−1 K2O 120 kg ha−1 |
Late rice | Tianyouhuazhan | Transplant | 30 July 2022—30 October 2022 29 July 2023—6 November 2023 | N 180 kg ha−1 P2O5 90 kg ha−1 K2O 120 kg ha−1 |
Year | Treatment | Early Rice | Late Rice | Total Yield |
---|---|---|---|---|
Yield | Yield | Yield | ||
2022 | CK | 4.08 ± 0.30 b | 7.34 ± 0.27 c | 11.42 ± 0.153 c |
N1MR | 5.40 ± 0.12 a | 8.60 ± 0.80 a | 14.00 ± 0.20 a | |
N2MR | 5.55 ± 0.18 a | 8.63 ± 0.24 a | 14.18 ± 0.31 a | |
N3MR | 5.42 ± 0.26 a | 8.72 ± 0.31 a | 14.14 ± 0.14 a | |
N4MR | 5.33 ± 0.12 a | 7.94 ± 0.37 b | 13.28 ± 0.43 b | |
2023 | CK | 4.71 ± 0.18 b | 4.81 ± 0.24 b | 9.53 ± 0.36 b |
N1MR | 5.56 ± 0.60 ab | 8.48 ± 0.44 a | 14.04 ± 0.95 a | |
N2MR | 6.35 ± 0.70 a | 7.96 ± 0.24 ab | 14.31 ± 0.63 a | |
N3MR | 6.05 ± 0.73 a | 7.31 ± 0.21 ab | 13.36 ± 0.28 a | |
N4MR | 5.75 ± 0.50 ab | 6.83 ± 0.72 ab | 12.57 ± 0.89 a |
Year | Planting Season | Treatment | Effective Spikes (104 ha−1) | Grain Number Per Panicle | Seed-Setting Rate (%) | 1000-Grain Weight (g) |
---|---|---|---|---|---|---|
2022 | Early rice | CK | 243.10 ± 22.15 ab | 88.09 ± 10.19 ab | 55.85 ± 7.30 bc | 27.90 ± 0.80 a |
N1MR | 297.37 ± 44.24 a | 74.75 ± 1.083 ab | 69.01 ± 5.70 a | 26.12 ± 0.73 b | ||
N2MR | 280.49 ± 38.67 ab | 68.43 ± 18.83 b | 54.34 ± 2.19 c | 27.63 ± 0.33 a | ||
N3MR | 245.76 ± 10.97 ab | 96.19 ± 18.18 a | 64.56 ± 3.34 ab | 28.04 ± 0.55 a | ||
N4MR | 237.70 ± 11.90 b | 88.35 ± 11.79 ab | 64.33 ± 5.12 ab | 27.83 ± 0.59 a | ||
Late rice | CK | 296.16 ± 17.58 a | 158.67 ± 16.50 a | 49.33 ± 11.09 a | 23.60 ± 0.26 b | |
N1MR | 334.84 ± 9.55 a | 149.00 ± 9.54 a | 61.33 ± 7.71 a | 24.93 ± 1.07 a | ||
N2MR | 326.04 ± 14.06 a | 150.33 ± 21.08 a | 49.67 ± 6.91 a | 23.71 ± 0.14 b | ||
N3MR | 336.15 ± 28.52 a | 168.00 ± 6.56 a | 49.67 ± 10.69 a | 24.20 ± 0.36 ab | ||
N4MR | 306.15 ± 30.61 a | 166.00 ± 8.54 a | 55.67 ± 8.34 a | 24.23 ± 0.70 ab | ||
2023 | Early rice | CK | 215.83 ± 17.81 a | 122.68 ± 19.36 a | 55.45 ± 0.82 c | 27.29 ± 0.71 ab |
N1MR | 236.26 ± 24.09 a | 97.47 ± 7.85 b | 71.00 ± 1.90 a | 25.64 ± 1.07 b | ||
N2MR | 202.09 ± 6.55 a | 127.49 ± 11.21 a | 65.56 ± 5.18 ab | 27.43 ± 1.15 ab | ||
N3MR | 207.74 ± 6.27 a | 125.82 ± 3.06 a | 65.24 ± 5.45 ab | 27.84 ± 1.08 a | ||
N4MR | 200.28 ± 29.68 a | 128.46 ± 13.71 a | 61.76 ± 2.38 bc | 27.79 ± 0.84 a | ||
Late rice | CK | 240.52 ± 42.62 b | 172.00 ± 22.11 a | 76.33 ± 44.16 a | 21.99 ± 0.81 b | |
N1MR | 342.43 ± 25.14 a | 171.33 ± 12.58 a | 71.33 ± .6.03 a | 24.74 ± 1.82 a | ||
N2MR | 311.25 ± 12.94 ab | 178.00 ± 26.46 a | 69.66 ± 3.06 a | 24.23 ± 0.94 a | ||
N3MR | 295.14 ± 38.33 ab | 189.67 ± 13.01 a | 77.33 ± 10.21 a | 24.00 ± 0.49 a | ||
N4MR | 280.26 ± 76.31 ab | 180.33 ± 10.60 a | 78.00 ± 16.52 a | 23.54 ± 0.60 ab |
Project | Rice Yield | Effective Spikes | Grain Number Per Panicle | Seed-Setting Rate | 1000-Grain Weight | Total Organic Carbon | Microbiological Carbon | Dissolved Organic Carbon | Active Organic Carbon | Readily Oxidized Organic Carbon |
---|---|---|---|---|---|---|---|---|---|---|
Rice yield | 0.43 | −0.04 | −0.07 | 0.62 * | 0.31 | 0.46 | −0.25 | −0.08 | 0.04 | |
Effective spikes | 0.04 | 0.22 | 0.36 | 0.77 ** | 0.21 | −0.27 | −0.39 | 0.53 * | ||
Grain number per panicle | −0.46 | 0.05 | 0.06 | −0.20 | 0.52 * | −0.04 | −0.48 | |||
Seed-setting rate | −0.15 | 0.11 | 0.06 | −0.03 | −0.05 | 0.66 ** | ||||
1000-grain weight | 0.40 | 0.10 | −0.02 | 0.17 | 0.31 | |||||
Total organic carbon | 0.36 | −0.32 | 0.08 | 0.54 * | ||||||
Microbiological carbon | −0.43 | 0.02 | 0.03 | |||||||
Dissolved organic carbon | −0.01 | −0.11 | ||||||||
Active organic carbon | −0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.-J.; Fang, Z.-H.; Chen, J.-R.; Liu, Q.; Huang, G.-Q. Response of Soil Organic Carbon and Its Components to Mixed Sowing of Green Manure. Agriculture 2025, 15, 1260. https://doi.org/10.3390/agriculture15121260
Yang B-J, Fang Z-H, Chen J-R, Liu Q, Huang G-Q. Response of Soil Organic Carbon and Its Components to Mixed Sowing of Green Manure. Agriculture. 2025; 15(12):1260. https://doi.org/10.3390/agriculture15121260
Chicago/Turabian StyleYang, Bin-Juan, Zhi-Hui Fang, Jing-Rui Chen, Qin Liu, and Guo-Qin Huang. 2025. "Response of Soil Organic Carbon and Its Components to Mixed Sowing of Green Manure" Agriculture 15, no. 12: 1260. https://doi.org/10.3390/agriculture15121260
APA StyleYang, B.-J., Fang, Z.-H., Chen, J.-R., Liu, Q., & Huang, G.-Q. (2025). Response of Soil Organic Carbon and Its Components to Mixed Sowing of Green Manure. Agriculture, 15(12), 1260. https://doi.org/10.3390/agriculture15121260