Effect of Preceding Crops, Soil Packing and Tillage System on Soil Compaction, Organic Carbon Content and Maize Yield
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Soil Compaction
2.3. Maize Silage Mass Yield
2.4. Statistical Analysis
2.5. Atmospheric Conditions
3. Results
3.1. Soil Compaction
3.2. Soil Organic Content (SOC)
3.3. Maize Silage Mass Yield
4. Discussion
4.1. Preceding Crop
4.2. Soil Packing
4.3. Tillage Systems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lal, R.; Reicosky, D.C.; Hanson, J.D. Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil Tillage Res. 2007, 93, 1–12. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, W.; Zheng, J.; Luo, Y.; Li, R.; Wang, H.; Qi, H. Effect of long-term tillage on soil aggregates and aggregate-associated carbon in black soil of Northeast China. PLoS ONE 2018, 13, e0199523. [Google Scholar] [CrossRef]
- Aikins, S.; Afuakwa, J. Effect of four different tillage practices on soil physical properties under cowpea. Agric. Biol. J. N. Am. 2012, 3, 17–24. [Google Scholar] [CrossRef]
- Ernst, G.; Emmerling, C. Impact of five different tillage systems on soil organic carbon content and the density, biomass, and community composition of earthworms after a ten year period. Eur. J. Soil Biol. 2009, 45, 247–251. [Google Scholar] [CrossRef]
- Abdollahi, L.; Munkholm, L.J. Tillage System and Cover Crop Effects on Soil Quality: I. Chemical, Mechanical, and Biological Properties. Soil Sci. Soc. Am. J. 2014, 78, 262–270. [Google Scholar] [CrossRef]
- Pires, L.F.; Borges, J.A.R.; Rosa, J.A.; Cooper, M.; Heck, R.J.; Passoni, S.; Roque, W.L. Soil structure changes induced by tillage systems. Soil Tillage Res. 2017, 165, 66–79. [Google Scholar] [CrossRef]
- Coulibaly, S.F.M.; Aubert, M.; Brunet, N.; Bureau, F.; Legras, M.; Chauvat, M. Short-term dynamic responses of soil properties and soil fauna under contrasting tillage systems. Soil Tillage Res. 2022, 215, 105191. [Google Scholar] [CrossRef]
- Arvidsson, J.; Håkansson, I. Do effects of soil compaction persist after ploughing? Results from 21 long-term field experiments in Sweden. Soil Tillage Res. 1996, 39, 175–197. [Google Scholar] [CrossRef]
- Augustin, K.; Kuhwald, M.; Brunotte, J.; Duttmann, R. Wheel load and wheel pass frequency as indicators for soil compaction risk: A four-year analysis of traffic intensity at field scale. Geosciences 2020, 10, 292. [Google Scholar] [CrossRef]
- Schlüter, S.; Großmann, C.; Diel, J.; Wu, G.M.; Tischer, S.; Deubel, A.; Rücknagel, J. Long-term effects of conventional and reduced tillage on soil structure, soil ecological and soil hydraulic properties. Geoderma 2018, 332, 10–19. [Google Scholar] [CrossRef]
- Voltr, V.; Wollnerová, J.; Fuksa, P.; Hruška, M. Influence of Tillage on the Production Inputs, Outputs, Soil Compaction and GHG Emissions. Agriculture 2021, 11, 456. [Google Scholar] [CrossRef]
- Romaneckas, K.; Šarauskis, E.; Pilipavičius, V.; Sakalauskas, A. Impact of short-term ploughless tillage on soil physical properties, winter oilseed rape seedbed formation and productivity parameters. J. Food Agric. Environ. 2011, 9, 295–299. [Google Scholar]
- Six, J.; Feller, C.; Denef, K.; Ogle, S.M.; de Moraes, J.C.; Albrecht, A. Soil organic matter, biota and aggregation in temperate and tropical soils—Effects of no-tillage. Agronomie 2002, 22, 755–775. [Google Scholar] [CrossRef]
- Somasundaram, J.; Chaudhary, R.S.; Awanish Kumar, D.; Biswas, A.K.; Sinha, N.K.; Mohanty, M.; Hati, K.M.; Jha, P.; Sankar, M.; Patra, A.K.; et al. Effect of contrasting tillage and cropping systems on soil aggregation, carbon pools and aggregate-associated carbon in rainfed Vertisols. Eur. J. Soil Sci. 2018, 69, 879–891. [Google Scholar] [CrossRef]
- Shah, A.N.; Tanveer, M.; Shahzad, B.; Yang, G.; Fahad, S.; Ali, S.; Bukhari, M.A.; Tung, S.A.; Hafeez, A.; Souliyanonh, B. Soil compaction effects on soil health and cropproductivity: An overview. Environ. Sci. Pollut. Res. 2017, 24, 10056–10067. [Google Scholar] [CrossRef]
- Botta, G.F.; Tolón-Becerra, A.; Bienvenido, F.; Rivero, D.; Laureda, D.A.; Ezquerra-Canalejo, A.; Contessotto, E.E. Sunflower (Helianthus annuus L.) harvest: Tractor and grain chaser traffic effects on soil compaction and crop yields. Land Degrad. Dev. 2018, 29, 4252–4261. [Google Scholar] [CrossRef]
- Boydaş, M.G.; Turgut, N. Effect of tillage implements and operating speeds on soil physical properties and wheat emergence. Turk. J. Agric. For. 2007, 31, 399–412. [Google Scholar]
- Camara, K.M.; Payne, W.A.; Rasmussen, P.E. Long-term effects of tillage, nitrogen, and rainfall on winter wheat yields in the Pacific Northwest. Agron. J. 2003, 95, 828–835. [Google Scholar] [CrossRef]
- Lahmar, R. Adoption of conservation agriculture in Europe: Lessons of the KASSA project. Land Use Policy 2010, 27, 4–10. [Google Scholar] [CrossRef]
- Morris, N.L.; Miller, P.C.H.; Orson, J.H.; Froud-Williams, R.J. The adoption of non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment-A review. Soil Tillage Res. 2010, 108, 1–15. [Google Scholar] [CrossRef]
- Rieger, S.; Richner, W.; Streit, B.; Frossard, E.; Liedgens, M. Growth, yield, and yield components of winter wheat and the effects of tillage intensity, preceding crops, and N fertilisation. Eur. J. Agron. 2008, 28, 405–411. [Google Scholar] [CrossRef]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef]
- Maltas, A.; Kebli, H.; Oberholzer, H.R.; Weisskopf, P.; Sinaj, S. The effects of organic and mineral fertilizers on carbon sequestration, soil properties, and crop yields from a long-term field experiment under a Swiss conventional farming system. Land Degrad. Dev. 2018, 29, 926–938. [Google Scholar] [CrossRef]
- Song, K.; Yang, J.; Xue, Y.; Lv, W.; Zheng, X.; Pan, J. Influence of tillage practices and straw incorporation on soil aggregates, organic carbon, and crop yields in a rice-wheat rotation system. Sci. Rep. 2016, 6, 36602. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Li, T.; Zhao, D.; Liao, Y. Tillage practices with different soil disturbance shape the rhizosphere bacterial community throughout crop growth. Soil Tillage Res. 2020, 197, 104501. [Google Scholar] [CrossRef]
- Woźniak, A. Effect of various systems of tillage on winter barley yield, weed infestation and soil properties. Appl. Ecol. Environ. Res. 2020, 18, 3483–3496. [Google Scholar] [CrossRef]
- Derpsch, R.; Friedrich, T.; Kassam, A.; Li, H. Current Status of Adoption of No-till Farming in the World and Some of its Main Benefits. Int. J. Agric. Biol. Eng. 2010, 3, 1–25. [Google Scholar]
- Hobbs, P.R. Paper Presented at International Workshop on Increasing Wheat Yield Potential, CIMMYT, Obregon, Mexico, 20–24 March 2006. Conservation agriculture: What is it and why is it important for future sustainable food production? J. Agric. Sci. 2007, 145, 127–137. [Google Scholar] [CrossRef]
- Mbuthia, L.W.; Acosta-Martínez, V.; DeBryun, J.; Schaeffer, S.; Tyler, D.; Odoi, E.; Mpheshea, M.; Walker, F.; Eash, N. Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil quality. Soil Biol. Biochem. 2015, 89, 24–34. [Google Scholar] [CrossRef]
- Tiemann, L.K.; Grandy, A.S.; Atkinson, E.E.; Marin-Spiotta, E.; McDaniel, M.D. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol. Lett. 2015, 18, 761–771. [Google Scholar] [CrossRef]
- Van Eerd, L.L.; Congreves, K.A.; Hayes, A.; Verhallen, A.; Hooker, D.C. Long-term tillage and crop rotation effects on soil quality, organic carbon, and total nitrogen. Can. J. Soil Sci. 2014, 94, 303–315. [Google Scholar] [CrossRef]
- Lipiec, J.; Stępniewski, W. Effects of soil compaction and tillage systems on uptake and losses of nutrients. Soil Tillage Res. 1995, 35, 37–52. [Google Scholar] [CrossRef]
- Drzymała, S.; Mocek, A. Methods in soil physics and soil chemistry recomended by ISO (and Polish Comity Standarization). Acta Agrophysica 2001, 48, 253–264. (In Polish) [Google Scholar]
- Colombi, T.; Braun, S.; Keller, T.; Walter, A. Artificial macropores attract crop roots and enhance plant productivity on compacted soils. Sci. Total Environ. 2017, 574, 1283–1293. [Google Scholar] [CrossRef]
- Lemaire, G.; Gastal, F.; Franzluebbers, A.; Chabbi, A. Grassland–Cropping Rotations: An Avenue for Agricultural Diversification to Reconcile High Production with Environmental Quality. Environ. Manag. 2015, 56, 1065–1077. [Google Scholar] [CrossRef]
- Snapp, S.S.; Swinton, S.M.; Labarta, R.; Mutch, D.; Black, J.R.; Leep, R.; Nyiraneza, J.; O’Neil, K. Evaluating Cover Crops for Benefits, Costs and Performance within Cropping System Niches. Agron. J. 2005, 97, 322–332. [Google Scholar] [CrossRef]
- Jaskulski, D.; Jaskulska, I.; Janiak, A.; Boczkowski, T. Changes in some soil properties under the effect of diversified tillage for maize depending on the forecrop. Acta Sci. Pol. Agric. 2015, 14, 61–71. (In Polish) [Google Scholar]
- Husnjak, S.; Filipović, D.; Košutić, S. Influence of different tillage systems on soil physical properties and crop yield. Plant Soil Environ. 2002, 48, 249–254. [Google Scholar] [CrossRef]
- Rahman, M.H.; Okubo, A.; Sugiyama, S.; Mayland, H.F. Physical, chemical and microbiological properties of an Andisol as related to land use and tillage practice. Soil Tillage Res. 2008, 101, 10–19. [Google Scholar] [CrossRef]
- Loges, R.; Bunne, I.; Reinsch, T.; Malisch, C.; Kluß, C.; Herrmann, A.; Taube, F. Forage production in rotational systems generates similar yields compared to maize monocultures but improves soil carbon stocks. Eur. J. Agron. 2018, 97, 11–19. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Powlson, D.S.; Whitmore, A.P.; Goulding, K.W.T. Soil carbon sequestration to mitigate climate change: A critical re-examination to identify the true and the false. Eur. J. Soil Sci. 2011, 62, 42–55. [Google Scholar] [CrossRef]
- Ji, B.; Zhao, Y.; Mu, X.; Liu, K.; Li, C. Effects of tillage on soil physical properties and root growth of maize in loam and clay in central China. Plant Soil Environ. 2013, 59, 295–302. [Google Scholar] [CrossRef]
- Radford, B.J.; Yule, D.F.; McGarry, D.; Playford, C. Amelioration of soil compaction can take 5 years on a Vertisol under no till in the semi-arid subtropics. Soil Tillage Res. 2007, 97, 249–255. [Google Scholar] [CrossRef]
- Shaheb, M.R.; Venkatesh, R.; Shearer, S.A. A Review on the Effect of Soil Compaction and its Management for Sustainable Crop Production. J. Biosyst. Eng. 2021, 46, 417–439. [Google Scholar] [CrossRef]
- Woldeyohannis, Y.S.; S Hiremath, S.; Tola, S.; Wako, A. Influence of soil physical and chemical characteristics on soil compaction in farm field. Heliyon 2024, 10, e25140. [Google Scholar] [CrossRef]
- Zhu, X.; Peng, W.; Xie, Q.; Ran, E. Effects of soil compaction stress combined with drought on soil pore structure, root system development, and maize growth in early stage. Plants 2024, 13, 3185. [Google Scholar] [CrossRef]
- Singh, P.D.; Kumar, A.; Dhyani, B.; Kumar, S.; Shahi, U.; Singh, A.; Singh, A. Relationship between compaction levels (bulk density) and chemical properties of different textured soil. Int. J. Chem. Stud. 2020, 8, 179–183. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Lapen, D.R.; Ma, B.L.; McLaughlin, N.B.; VandenBygaart, A.J. Soil and Crop Response to Varying Levels of Compaction, Nitrogen Fertilization, and Clay Content. Soil Sci. Soc. Am. J. 2011, 75, 1483–1492. [Google Scholar] [CrossRef]
- Shaheb, M.R.; Grift, T.E.; Godwin, R.J.; Dickin, E.; White, D.R.; Misiewicz, P.A. Effect of tire inflation pressure on soil properties and yield in a corn—Soybean rotation for three tillage systems in the Midwestern United States. In Proceedings of the 2018 ASABE Annual International Meeting, Detroit, MI, USA, 29 July–1August 2018; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2018. [Google Scholar]
- Sidhu, D.; Duiker, S.W. Soil Compaction in Conservation Tillage: Crop Impacts. Agron. J. 2006, 98, 1257–1264. [Google Scholar] [CrossRef]
- Czyż, E.A.; Dexter, A.R. Soil physical properties as affected by traditional, reduced and no-tillage for winter wheat. Int. Agrophysics 2009, 23, 319–326. [Google Scholar]
- Lipiec, J.; Kuś, J.; Słowińska-Jurkiewicz, A.; Nosalewicz, A. Soil porosity and water infiltration as influenced by tillage methods. Soil Tillage Res. 2006, 89, 210–220. [Google Scholar] [CrossRef]
- Vogeler, I.; Rogasik, J.; Funder, U.; Panten, K.; Schnug, E. Effect of tillage systems and P-fertilization on soil physical and chemical properties, crop yield and nutrient uptake. Soil Tillage Res. 2009, 103, 137–143. [Google Scholar] [CrossRef]
- Strudley, M.; Green, T.; Ascoughii, J. Tillage effects on soil hydraulic properties in space and time: State of the science. Soil Tillage Res. 2008, 99, 4–48. [Google Scholar] [CrossRef]
- Jones, R.J.; Spoor, G.; Thomasson, A. Vulnerability of subsoils in Europe to compaction: A preliminary analysis. Soil Tillage Res. 2003, 73, 131–143. [Google Scholar] [CrossRef]
- Nassir, A.J. Effect of Moldboard Plow Types on Soil Physical Properties Under Different Soil Moisture Content and Tractor Speed. Basrah J. Agric. Sci. 2018, 31, 48–58. [Google Scholar] [CrossRef]
- Orzech, K.; Wanic, M.; Załuski, D.; Stepien, A. Influence of soil compaction and tillage methods on penetration resistance of soil and yields in the crop rotation system. Acta Agrophysica 2016, 23, 661–680. [Google Scholar]
- Małecka, I.; Blecharczyk, A.; Sawinska, Z.; Piechota, T.; Waniorek, B. Cereals yield response to tillage methods. Fragm. Agron. 2012, 29, 114–123. (In Polish) [Google Scholar]
- Majchrzak, L.; Skrzypczak, G. Influence of reduce tillage systems for maize and cover on soil physical properties. Fragm. Agron. 2007, 1, 174–181. (In Polish) [Google Scholar]
- Majchrowski, P.; Kordas, L.; Parylak, D. Changes in soil environment under different soil tillage and long-term continuous cropping of winter rye. Fragm. Agron. 2007, 1, 164–173. (In Polish) [Google Scholar]
- Yang, P.; Dong, W.; Heinen, M.; Qin, W.; Oenema, O. Soil Compaction Prevention, Amelioration and Alleviation Measures Are Effective in Mechanized and Smallholder Agriculture: A Meta-Analysis. Land 2022, 11, 645. [Google Scholar] [CrossRef]
- Gozubuyuk, Z.; Sahin, U.; Ozturk, I.; Celik, A.; Adiguzel, M.C. Tillage effects on certain physical and hydraulic properties of a loamy soil under a crop rotation in a semi-arid region with a cool climate. CATENA 2014, 118, 195–205. [Google Scholar] [CrossRef]
- Sleiderink, J.; Deru, J.G.C.; van der Weide, R.; van Eekeren, N. Effects of reduced tillage and prolonged cover cropping in maize on soil quality and yield. Soil Tillage Res. 2024, 244, 106196. [Google Scholar] [CrossRef]
- Maltas, A.; Charles, R.; Jeangros, B.; Sinaj, S. Effect of organic fertilizers and reduced-tillage on soil properties, crop nitrogen response and crop yield: Results of a 12-year experiment in Changins, Switzerland. Soil Tillage Res. 2013, 126, 11–18. [Google Scholar] [CrossRef]
- Ding, F.; Hu, Y.-L.; Li, L.-J.; Li, A.; Shi, S.; Lian, P.-Y.; Zeng, D.-H. Changes in soil organic carbon and total nitrogen stocks after conversion of meadow to cropland in Northeast China. Plant Soil. 2013, 373, 659–672. [Google Scholar] [CrossRef]
- Rusinamhodzi, L.; Corbeels, M.; van Wijk, M.T.; Rufino, M.C.; Nyamangara, J.; Giller, K.E. A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions. Agron. Sustain. Dev. 2011, 31, 657–673. [Google Scholar] [CrossRef]
- Ogle, S.M.; Swan, A.; Paustian, K. No-till management impacts on crop productivity, carbon input and soil carbon sequestration. Agric. Ecosyst. Environ. 2012, 149, 37–49. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; van Groenigen, K.J.; Lee, J.; Lundy, M.E.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Linquist, B.A.; Lundy, M.E.; Liang, X.; van Groenigen, K.J.; Lee, J.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. When does no-till yield more? A global meta-analysis. Field Crops Res. 2015, 183, 156–168. [Google Scholar] [CrossRef]
Source of Variation | Degree of Freedom (df) | Sum of Squares (SS) | Mean Square (MS) | F |
---|---|---|---|---|
Replication | r − 1 | var Rep. | SSRep./dfRep. | MSRep./MSE1 |
Factor A | a − 1 | var A | SSA/dfA | MSA/MSE1 |
Error (E1) | (r − 1)(a − 1) | var E1 | SSE1/dfE1 | |
Factor B | b − 1 | var B | SSB/dfB | MSB/MSE2 |
Error (E2) | (r − 1)(b − 1) | var E2 | SSE2/dfE2 | |
AB | (a − 1)(b − 1) | var AB | SSAB/dfAB | MSAB/MSE3 |
Error (E3) | (r − 1)(a − 1)(b − 1) | var E3 | SSE3/dfE3 | |
Factor C | (c − 1) | var C | SSC/dfC | MSC/MSE4 |
AC | (a − 1)(c − 1) | var AC | SSAC/dfAC | MSAC/MSE4 |
BC | (b − 1)(c − 1) | var BC | SSBC/dfBC | MSBC/MSE4 |
ABC | (a − 1)(b − 1)(c − 1) | var ABC | SSABC/dfABC | MSABC/MSE4 |
Error (E4) | ab(r − 1)(c − 1) | var E4 | SSE4/dfE4 |
Years | Months | Total/Mean | |||||
---|---|---|---|---|---|---|---|
IV | V | VI | VII | VIII | IX | ||
Mean Air Temperature °C | |||||||
2017 | 8.0 | 12.5 | 14.9 | 18.8 | 16.7 | 15.1 | 14.3 |
2018 | 7.8 | 12.6 | 16.1 | 21.1 | 17.3 | 15.8 | 15.1 |
2019 | 7.3 | 13.5 | 17.5 | 17.5 | 18.4 | 12.7 | 14.5 |
2020 | 7.0 | 12.5 | 16.6 | 18.3 | 17.7 | 11.8 | 14.0 |
2021 | 7.7 | 12.9 | 16.9 | 18.5 | 17.8 | 15.6 | 14.9 |
1962–2002 | 7.0 | 12.6 | 15.1 | 17.2 | 16.8 | 12.6 | 13.6 |
Precipitation (mm) | |||||||
2017 | 22.0 | 68.2 | 35.4 | 83.9 | 39.6 | 17.9 | 267.0 |
2018 | 24.2 | 93.2 | 83.5 | 27.1 | 141.7 | 105.6 | 475.3 |
2019 | 26.8 | 79.7 | 60.8 | 176.5 | 81.0 | 65.4 | 490.2 |
2020 | 33.8 | 48.4 | 27.8 | 47.0 | 103.1 | 17.0 | 277.1 |
2021 | 29.6 | 80.7 | 42.1 | 60.3 | 45.6 | 62.1 | 320.4 |
1962–2002 | 35.4 | 57.6 | 69.5 | 81.6 | 75.2 | 59.1 | 378.4 |
Source of Variation | df | Soil Compaction | SOC | Yield |
---|---|---|---|---|
Replication | 3 | 2.78 ns | 0.51 ns | 1.02 ns |
Preceding crop (A) | 1 | 604 *** | 1.73 ns | 640 *** |
Error (E1) | 3 | |||
Soil packing (B) | 1 | 225 *** | 87.47 ** | 0.07 ns |
Error (E2) | 3 | |||
AB | 1 | 825 *** | 5.75 ns | 0.43 ns |
Error (E3) | 3 | |||
Tillage system (C) | 3 | 29.2 **** | 2.34 ns | 4.20 * |
AC | 3 | 25.1 **** | 2.88 * | 1.66 ns |
BC | 3 | 14.0 **** | 4.54 ** | 0.56 ns |
ABC | 3 | 29.1 **** | 1.72 ns | 1.24 ns |
Error (E4) | 36 |
Tillage System (C) | Soil Packing (B) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Without Packing | With Packing | ||||||||
Preceding Crop (A) | Mean AC | Mean BC | |||||||
Grassland | Maize | Grassland | Maize | Grassland | Maize | Without Packing | With Packing | Mean C | |
#1 | 0.45 | 0.68 | 0.40 | 0.62 | 0.43 ns | 0.65 B | 0.57 b | 0.51 C | 0.54 b |
#2 | 0.28 | 0.69 | 0.48 | 1.34 | 0.38 ns | 1.02 A | 0.49 c | 0.91 A | 0.70 a |
#3 | 0.25 | 0.83 | 0.54 | 1.19 | 0.40 ns | 1.01 A | 0.54 bc | 0.87 A | 0.70 a |
#4 | 0.32 | 1.00 | 0.46 | 1.11 | 0.39 ns | 1.06 A | 0.66 a | 0.78 B | 0.72 a |
Mean AB | 0.33 b | 0.80 B | 0.47 a | 1.07 A | |||||
Mean B | 0.56 b | 0.77 a | |||||||
Mean A | 0.40 b—Grassland | 0.93 a—Maize |
Degree in Soil Packing | Tillage Systems | |||
---|---|---|---|---|
#1 | #2 | #3 | #4 | |
Leaf development (BBCH 19) | ||||
Soil layer of 0–10 cm | ||||
without packing | 0.27 | 0.19 ns | 0.21 ns | 0.25 ns |
with packing | 0.56 | 0.33 ns | 0.42 ns | 0.41 ns |
p-value | 0.0063 | 0.0001 | <0.0001 | 0.0145 |
Soil layer of 10–20 cm | ||||
without packing | 0.51 | 0.28 *** | 0.37 *** | 0.40 *** |
with packing | 0.46 | 0.47 ns | 0.63 *** | 0.40 ns |
p-value | 0.4409 | 0.0002 | 0.051 | 0.9329 |
Soil layer of 20–30 cm | ||||
without packing | 0.69 | 0.42 **** | 0.31 **** | 0.41 **** |
with packing | 0.35 | 0.76 *** | 0.75 *** | 0.64 *** |
p-value | <0.0001 | 0.0004 | 0.0005 | 0.0001 |
Flowering (BBCH 67) | ||||
Soil layer of 0–10 cm | ||||
without packing | 0.30 | 0.19 ** | 0.20 ** | 0.22 ** |
with packing | 0.56 | 0.26 ** | 0.38 ** | 0.38 ** |
p-value | 0.0115 | 0.0117 | 0.0003 | 0.0005 |
Soil layer of 10–20 cm | ||||
without packing | 0.48 | 0.23 **** | 0.25 **** | 0.32 **** |
with packing | 0.44 | 0.41 ns | 0.58 ns | 0.39 ns |
p-value | 0.5781 | 0.0038 | 0.0215 | 0.3307 |
Soil layer of 20–30 cm | ||||
without packing | 0.63 | 0.36 **** | 0.23 **** | 0.34 **** |
with packing | 0.28 | 0.71 **** | 0.72 **** | 0.64 **** |
p-value | <0.0001 | 0.0030 | 0.0002 | <0.0001 |
Development of kernels (BBCH 79) | ||||
Soil layer of 0–10 cm | ||||
without packing | 0.27 | 0.32 ns | 0.21 ns | 0.30 ns |
with packing | 0.17 | 0.39 ns | 0.31 ns | 0.33 ns |
p-value | 0.0188 | 0.5506 | 0.0403 | 0.8197 |
Soil layer of 10–20 cm | ||||
without packing | 0.49 | 0.41 ns | 0.28 ns | 0.37 ns |
with packing | 0.32 | 0.68 ** | 0.38 ns | 0.75 ** |
p-value | 0.2602 | 0.0346 | 0.0969 | 0.0413 |
Soil layer of 20–30 cm | ||||
without packing | 0.62 | 0.43 ** | 0.59 ns | 0.44 ** |
with packing | 0.28 | 0.88 **** | 1.28 **** | 1.12 **** |
p-value | 0.0140 | 0.0001 | 0.0177 | <0.0001 |
Degree in Soil Packing | Tillage Systems | |||
---|---|---|---|---|
#1 | #2 | #3 | #4 | |
Leaf development (BBCH 19) | ||||
Soil layer of 0–10 cm | ||||
without packing | 0.18 | 0.38 **** | 0.23 ns | 0.55 **** |
with packing | 0.22 | 1.32 *** | 0.85 *** | 0.69 *** |
p-value | 0.5320 | <0.0001 | <0.0001 | 0.0697 |
Soil layer of 10–20 cm | ||||
without packing | 0.18 | 0.49 *** | 0.94 *** | 1.39 ns |
with packing | 1.23 | 1.67 ns | 1.16 ns | 1.52 ns |
p-value | <0.0001 | <0.0001 | 0.3333 | 0.5329 |
Soil layer of 20–30 cm | ||||
without packing | 1.71 | 1.45 ns | 1.36 ns | 1.78 ns |
with packing | 1.81 | 1.99 ns | 1.85 ns | 1.85 ns |
p-value | 0.5294 | 0.0133 | 0.0248 | 0.3901 |
Flowering (BBCH 67) | ||||
Soil layer of 0–10 cm | ||||
without packing | 1.70 | 1.50 ns | 1.46 ns | 1.70 ns |
with packing | 0.19 | 0.26 ** | 0.92 **** | 0.19 ns |
p-value | <0.0001 | 0.0041 | 0.0013 | <0.0001 |
Soil layer of 10–20 cm | ||||
without packing | 0.27 | 0.28 ns | 0.65 **** | 0.42 **** |
with packing | 0.22 | 0.62 *** | 1.13 **** | 1.29 *** |
p-value | 0.0954 | 0.0001 | 0.0030 | <0.0001 |
Soil layer of 20–30 cm | ||||
without packing | 0.52 | 0.53 ns | 0.79 **** | 0.73 **** |
with packing | 0.44 | 1.99 **** | 1.36 *** | 1.11 *** |
p-value | 0.1144 | <0.0001 | 0.0002 | 0.0004 |
Development of kernels (BBCH 79) | ||||
Soil layer of 0–10 cm | ||||
without packing | 0.22 | 0.20 ns | 0.36 * | 0.41 ** |
with packing | 0.22 | 1.53 **** | 1.08 **** | 1.14 **** |
p-value | 0.9999 | <0.0001 | <0.0001 | <0.0001 |
Soil layer of 10–20 cm | ||||
without packing | 0.29 | 0.23 * | 0.36 *** | 0.39 *** |
with packing | 0.17 | 2.00 **** | 1.36 **** | 1.30 **** |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Soil layer of 20–30 cm | ||||
without packing | 0.34 | 0.32 ns | 0.44 * | 0.52 ** |
with packing | 0.64 | 2.54 *** | 1.44 **** | 1.92 **** |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Preceding Crop | Soil Packing | Tillage System | Year 2017 | Year 2021 | p-Value |
---|---|---|---|---|---|
Grassland | Without packing | #1 | 10.33 | 11.03 | 0.2491 |
#2 | 10.10 | 11.03 | 0.0004 | ||
#3 | 10.05 | 10.58 | 0.3101 | ||
#4 | 9.84 | 10.15 | 0.1890 | ||
With packing | #1 | 10.37 | 11.23 | 0.1459 | |
#2 | 10.99 | 11.43 | 0.1773 | ||
#3 | 10.67 | 11.81 | 0.0366 | ||
#4 | 11.10 | 11.04 | 0.7196 | ||
Maize | Without packing | #1 | 10.23 | 10.63 | 0.1472 |
#2 | 9.76 | 10.08 | 0.2591 | ||
#3 | 10.08 | 10.35 | 0.0260 | ||
#4 | 9.75 | 10.05 | 0.2908 | ||
With packing | #1 | 9.80 | 11.03 | 0.0260 | |
#2 | 10.03 | 11.60 | 0.0006 | ||
#3 | 9.98 | 11.57 | 0.0008 | ||
#4 | 9.99 | 11.76 | 0.0004 |
Tillage System (C) | Soil Packing (B) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Without Packing | With Packing | ||||||||
Preceding Crop (A) | Mean AC | Mean BC | |||||||
Grassland | Maize | Grassland | Maize | Grassland | Maize | Without Packing | With Packing | Mean C | |
#1 | 11.03 | 10.63 | 11.23 | 11.03 | 11.13 b | 10.83 ns | 10.83 a | 11.13 ns | 10.98 ns |
#2 | 11.03 | 10.08 | 11.43 | 11.60 | 11.23 a | 10.84 ns | 10.56 b | 11.51 ns | 11.03 ns |
#3 | 10.58 | 10.35 | 11.81 | 11.57 | 11.19 ab | 10.96 ns | 10.46 b | 11.69 ns | 11.07 ns |
#4 | 10.15 | 10.05 | 11.04 | 11.76 | 10.59 c | 10.91 ns | 10.10 c | 11.40 ns | 10.75 ns |
Mean AB | 10.69 ns | 10.28 ns | 11.38 ns | 11.49 ns | |||||
Mean B | 10.49 b | 11.43 a | |||||||
Mean A | 11.04 ns—Grassland | 10.88 ns—Maize |
Tillage System (C) | Soil Packing (B) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Without Packing | With Packing | ||||||||
Preceding Crop (A) | Mean AC | Mean BC | |||||||
Grassland | Maize | Grassland | Maize | Grassland | Maize | Without Packing | With Packing | Mean C | |
#1 | 69.77 | 64.13 | 70.37 | 61.73 | 70.07 ns | 62.93 ns | 66.95 ns | 66.05 ns | 66.50 a |
#2 | 69.78 | 61.54 | 70.48 | 60.32 | 70.13 ns | 60.93 ns | 65.66 ns | 65.40 ns | 65.53 b |
#3 | 70.03 | 60.05 | 69.78 | 61.03 | 69.90 ns | 60.54 ns | 65.04 ns | 65.40 ns | 65.22 b |
#4 | 68.33 | 59.75 | 68.78 | 60.25 | 68.55 ns | 60.00 ns | 64.04 ns | 64.51 ns | 64.28 c |
Mean AB | 69.47 ns | 61.37 ns | 69.85 ns | 60.83 ns | |||||
Mean B | 65.42 ns | 65.34 ns | |||||||
Mean A | 69.66 a—Grassland | 61.10 b—Maize |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orzech, K.; Wanic, M.; Załuski, D. Effect of Preceding Crops, Soil Packing and Tillage System on Soil Compaction, Organic Carbon Content and Maize Yield. Agriculture 2025, 15, 1231. https://doi.org/10.3390/agriculture15111231
Orzech K, Wanic M, Załuski D. Effect of Preceding Crops, Soil Packing and Tillage System on Soil Compaction, Organic Carbon Content and Maize Yield. Agriculture. 2025; 15(11):1231. https://doi.org/10.3390/agriculture15111231
Chicago/Turabian StyleOrzech, Krzysztof, Maria Wanic, and Dariusz Załuski. 2025. "Effect of Preceding Crops, Soil Packing and Tillage System on Soil Compaction, Organic Carbon Content and Maize Yield" Agriculture 15, no. 11: 1231. https://doi.org/10.3390/agriculture15111231
APA StyleOrzech, K., Wanic, M., & Załuski, D. (2025). Effect of Preceding Crops, Soil Packing and Tillage System on Soil Compaction, Organic Carbon Content and Maize Yield. Agriculture, 15(11), 1231. https://doi.org/10.3390/agriculture15111231