Heavy Metal Contamination of Guizhou Tea Gardens: Soil Enrichment, Low Bioavailability, and Consumption Risks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Chemical Analysis
2.3. Soil Pollution Assessment and Tea Bioconcentration Factor Calculation
2.3.1. Geo-Accumulation Index Method
2.3.2. Bioconcentration Factor (BCF) of Trace Metals in Tea Leaves
2.4. Health Risk Assessment
2.4.1. Calculation of Estimated Daily Intake
2.4.2. Calculation of Target Hazard Quotient
2.4.3. Calculation of Hazard Index of Drinking Tea
2.5. Data Processing and Software
3. Results and Discussion
3.1. Physicochemical Properties of and Heavy Metals in Tea Garden Soil
3.2. Heavy Metal Contamination Levels in Tea Garden Soil
3.3. Heavy Metal Contents in Tea Leaves
3.4. Factors Influencing Heavy Metals in Tea Leaves
3.5. Enrichment of Heavy Metals in Tea Leaves
3.6. Health Risk Assessment of Drinking Tea
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, R.; Ren, Y. Determination of lead content in soil and tea trees in Guiyang tea plantations and their relationship. Guizhou Agric. Sci. 2013, 41, 179–181, (In Chinese with English Abstract). [Google Scholar]
- Novotny, J.A.; Baer, D.J. Encyclopedia of Human Nutrition, 3rd ed.; Caballero, B., Ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 260–263. [Google Scholar]
- Abbasi, E.; Yousefi, M.H.; Hashemi, S.; Hosseinzadeh, S.; Ghadimi, A.H.; Safapour, M.; Azari, A. Aflatoxin B1 and heavy metals in imported black tea to Bushehr, southern Iran; Contamination rate and risk assessment. J. Food Compos. Anal. 2022, 106, 104277. [Google Scholar] [CrossRef]
- de Mejia, E.G.; Ramirez-Mares, M.V.; Puangpraphant, S. Bioactive components of tea: Cancer, inflammation and behavior. Brain Behav. Immun. 2009, 23, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Pȩkal, A.; Dróżdż, P.; Biesaga, M.; Pyrzynska, K. Screening of the antioxidant properties and polyphenol composition of aromatised green tea infusions. J. Sci. Food Agric. 2012, 92, 2244–2249. [Google Scholar] [CrossRef]
- Chang, Y.; Jiang, F.; Peñuelas, J.; Sardans, J.; Wu, Z. Assessment of Heavy Metals in Tea Plantation Soil and Their Uptake by Tieguanyin Tea Leaves and Potential Health Risk Assessment in Anxi County in Southeast China. Agriculture 2024, 14, 1907. [Google Scholar] [CrossRef]
- FAOSTAT Food and Agriculture Organization of the United Nations. 2025. Available online: http://faostat.fao.org (accessed on 4 April 2025).
- National Bureau of Statistics of China, Output of Tea and Fruits. 2024. Available online: http://data.stats.gov.cn/english/easyquery.htm?cn=E0103 (accessed on 4 April 2025).
- Mei, Y.; Zhang, S. Analysis of China’s tea production and domestic sales in 2022. China Tea 2023, 45, 25–30, (In Chinese with English Abstract). [Google Scholar]
- Bureau of Statistics of Guizhou. Guizhou Statistical Yearbook; China Statistics Press: Guizhou, China, 2023. (In Chinese) [Google Scholar]
- Nie, L.; Liu, X.; Wang, X.; Liu, H.; Wang, W. Interpretation of regional-scale distribution of high Hg in soils of karst area in southwest China. Geochem. Explor. Environ. Anal. 2019, 19, 289–298. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, R.; Li, Y.C.; Peng, Y.; Wen, X.; Ni, X. Distribution, accumulation, and potential risks of heavy metals in soil and tea leaves from geologically different plantations. Ecotoxicol. Environ. Saf. 2020, 195, 110475. [Google Scholar] [CrossRef]
- Hu, R.; Fu, S.; Huang, Y.; Zhou, M.F.; Fu, S.; Zhao, C.; Wang, Y.; Bi, X.; Xiao, J. The giant South China Mesozoic low-temperature metallogenic domain: Reviews and a new geodynamic model. J. Asian Earth Sci. 2017, 137, 9–34. [Google Scholar] [CrossRef]
- Xiao, T.; Guha, J.; Boyle, D.; Liu, C.Q.; Chen, J. Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China. Sci. Total Environ. 2004, 318, 223–244. [Google Scholar] [CrossRef]
- He, M.; Wang, X.; Wu, F.; Fu, Z. Antimony pollution in China. Sci. Total Environ. 2012, 421, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Li, W.C.; Ouyang, Y.; Ye, Z.H. Accumulation of mercury and cadmium in rice from paddy soil near a mercury mine. Environ. Toxicol. Chem. 2014, 33, 2438–2447. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, R.; Chen, R.; Peng, Y.; Wen, X.; Gao, L. Accumulation of heavy metals in tea leaves and potential health risk assessment: A case study from Puan County, Guizhou Province, China. Int. J. Environ. Res. Public Health 2018, 15, 133. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Song, H.; Jin, T.; Yang, R.; Shi, J. Distribution characteristics of potentially toxic metal(loid) s in the soil and in tea plant (Camellia sinensis). Sci. Rep. 2024, 14, 14741. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, N.; Meng, W.; He, J.; Wu, P. Accumulation and health risk assessment of heavy metal(loid) s in soil-crop systems from Central Guizhou, Southwest China. Agriculture 2022, 12, 981. [Google Scholar] [CrossRef]
- Li, Q.; Li, C.; Liu, L.; Heng, W.; Chen, C.; Long, J.; Wen, X. Geochemical characteristics of heavy metals of bedrock, soil, and tea in a metamorphic rock area of Guizhou Province, China. Environ. Sci. Pollut. Res. 2023, 30, 7402–7414. [Google Scholar] [CrossRef]
- Wen, X.; Zhang, Z.; Huang, X. Heavy metals in karst tea garden soils under different ecological environments in southwestern China. Trop. Ecol. 2022, 63, 495–505. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, D.; Li, Z.; Wang, Y.; Yang, Y.; Liu, M.; Li, D.; Sun, G.; Zeng, B. Concentrations, leachability, and health risks of mercury in green tea from major production areas in China. Ecotoxicol. Environ. Saf. 2022, 232, 113279. [Google Scholar] [CrossRef]
- Liu, J.; Wei, X.; Zhou, Y.; Tsang, D.C.; Bao, Z.A.; Yin, M.; Lippold, H.; Yuan, W.; Wang, J.; Feng, Y.; et al. Thallium contamination, health risk assessment and source apportionment in common vegetables. Sci. Total Environ. 2020, 703, 135547. [Google Scholar] [CrossRef]
- Saerens, A.; Ghosh, M.; Verdonck, J.; Godderis, L. Risk of Cancer for Workers Exposed to Antimony Compounds: A Systematic Review. Int. J. Environ. Res. Public Health 2019, 16, 4474. [Google Scholar] [CrossRef]
- Gerenfes, D.; Giorgis, A.; Negasa, G. Comparison of organic matter determination methods in soil by loss on ignition and potassium dichromate method. Int. J. Hortic. Food Sci. 2022, 4, 49–53. [Google Scholar] [CrossRef]
- Zafarzadeh, A.; Taghani, J.M.; Toomaj, M.A.; Ramavandi, B.; Bonyadi, Z.; Sillanpää, M. Assessment of the health risk and geo-accumulation of toxic metals in agricultural soil and wheat, northern Iran. Environ. Monit. Assess. 2021, 193, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Cai, D.W.; Li, L.B.; Jiang, G.C.; Yan, Q.; Ren, M.Q. Statistics and analysis of geochemical backgrounds of main elements of cultivated land in Guizhou Province. Guizhou Geol. 2020, 37, 233–239, (In Chinese with English Abstract). [Google Scholar]
- Bonanno, G.; Raccuia, S.A. Seagrass Halophila stipulacea: Capacity of accumulation and biomonitoring of trace elements. Sci. Total Environ. 2018, 633, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Yu, C.; Guo, Y.; Bian, Z.; Zhu, N.; Yang, L.; Chen, Y.; Luo, G.; Li, J.; Qin, Y.; et al. Habitual tea consumption and risk of fracture in 0.5 million Chinese adults: A prospective cohort study. Nutrients 2018, 10, 1633. [Google Scholar] [CrossRef]
- Zhao, Y.; Tang, C.; Tang, W.; Zhang, X.; Jiang, X.; Duoji, Z.; Kangzhu, Y.; Zhao, X.; Xu, X.; Hong, F.; et al. The association between tea consumption and blood pressure in the adult population in Southwest China. BMC Public Health 2023, 23, 476. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.N. The Bioavailability of Thallium in Soil-Fenghuangdancong Tea System and Health Risk Assessment of Thallium Exposure. Master’s thesis, Guangzhou University, Guangzhou, China, 2016. (In Chinese with English Abstract). [Google Scholar]
- Nookabkaew, S.; Rangkadilok, N.; Satayavivad, J. Determination of trace elements in herbal tea products and their infusions consumed in Thailand. J. Agric. Food Chem. 2006, 54, 6939–6944. [Google Scholar] [CrossRef]
- Fu, Q.L.; Liu, Y.; Li, L.; Achal, V. A survey on the heavy metal contents in Chinese traditional egg products and their potential health risk assessment. Food Addit. Contam. Part B 2014, 7, 99–105. [Google Scholar] [CrossRef]
- US EPA (United States Environmental Protection Agency). Human Health Risk Assessment. Regional Screening Level (RSL)—Summary Table. 2019. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide (accessed on 13 May 2025).
- Cai, L.M.; Wang, Q.S.; Luo, J.; Chen, L.G.; Zhu, R.L.; Wang, S.; Tang, C.H. Heavy metal contamination and health risk assessment for children near a large Cu-smelter in central China. Sci. Total Environ. 2019, 650, 725–733. [Google Scholar] [CrossRef]
- Yan, P.; Wu, L.; Wang, D.; Fu, J.; Shen, C.; Li, X.; Zhang, L.; Zhang, L.; Fan, L.; Wenyan, H. Soil acidification in Chinese tea plantations. Sci. Total Environ. 2020, 715, 136963. [Google Scholar] [CrossRef]
- Yang, X.D.; Ni, K.; Shi, Y.Z.; Yi, X.Y.; Zhang, Q.F.; Fang, L.; Ma, L.F.; Ruan, J. Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China. Agric. Ecosyst. Environ. 2018, 252, 74–82. [Google Scholar] [CrossRef]
- Larssen, T.; Lydersen, E.; Tang, D.; He, Y.; Gao, J.; Liu, H.; Duan, L. Acid rain in China. Environ. Sci. Technol. 2006, 40, 418–425. [Google Scholar] [CrossRef] [PubMed]
- EMSC (Environment Monitoring Station of China). Background value of soil elements in China; China Environmental Science Press: Beijing, China, 1990. (In Chinese) [Google Scholar]
- Lin, S.; Liu, X.; Yan, Q.; Liang, G.; Wang, D. Research on heavy metal enrichment and transportation in tea plant-soil systems of different varieties. Environ. Geochem. Health 2024, 46, 514. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Nan, F.; Jiang, X.; Tang, Y.; Zeng, Y.; Zhang, W.; Shi, B. Effect of soil pH on the transport, fractionation, and oxidation of chromium (III). Ecotoxicol. Environ. Saf. 2020, 195, 110459. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Z.; Feng, X.; Li, X.; Wang, D.; Sun, G.; Peng, H. Vegetable Houttuynia cordata Thunb. as an important human mercury exposure route in Kaiyang county, Guizhou province, SW China. Ecotoxicol. Environ. Saf. 2020, 197, 110575. [Google Scholar] [CrossRef]
- Bori, J.; Vallès, B.; Navarro, A.; Riva, M.C. Geochemistry and environmental threats of soils surrounding an abandoned mercury mine. Environ. Sci. Pollut. Res. 2016, 23, 12941–12953. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, K.; Wang, Y.; Hu, W.; Liu, B.; Yuan, X.; Huang, B.; Wu, L. Identification of sources and their potential health risk of potential toxic elements in soils from a mercury-thallium polymetallic mining area in Southwest China: Insight from mercury isotopes and PMF model. Sci. Total Environ. 2023, 869, 161774. [Google Scholar] [CrossRef]
- Alekseeva, T.; Alekseev, A.; Xu, R.K.; Zhao, A.Z.; Kalinin, P. Effect of soil acidification induced by a tea plantation on chemical and mineralogical properties of Alfisols in eastern China. Environ. Geochem. Health 2011, 33, 137–148. [Google Scholar] [CrossRef]
- Deng, H.; Li, M.S.; Zhou, Y.C. Soil metal contamination and fractionation of tea plantations: Case studies in a normal tea garden and in a restored mineland tea stand. Pol. J. Environ. Stud. 2012, 21, 1223–1228. [Google Scholar]
- Ma, Y.B.; Li, L.B.; Zhang, M.X.; Mo, C.H.; Meng, W. Discussion on soil forming rock type and its relation with cultivated land soil in Guizhou. Guizhou Geol. 2020, 37, 425–429, (In Chinese with English Abstract). [Google Scholar]
- Li, L.; Fu, Q.L.; Achal, V.; Liu, Y. A comparison of the potential health risk of aluminum and heavy metals in tea leaves and tea infusion of commercially available green tea in Jiangxi, China. Environ. Monit. Assess. 2015, 187, 1–12. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, H.; Xiong, L.; You, X. Investigation and analysis of heavy metal pollution in tea in Jiangxi Province from 2014 to 2016. Exp. Lab. Med. 2020, 38, 1004–1007. (In Chinese) [Google Scholar]
- Chen, S.; Cai, Q.; Zhao, H.; Du, L.; Chen, L. The content analysis of 14 elements and risk evaluation of heavy metals in common teas. Chem. Bull. 2021, 84, 591–595. [Google Scholar]
- Liu, Y.X.; Xing, W.N. Simultaneous determination of multiple elements in green tea by ICP-MS. Anhui Chem. Ind. 2022, 48, 123–125, (In Chinese with English Abstract). [Google Scholar]
- Zhang, N.; Yang, Z.; Li, H.; Zhang, Z. Investigation on heavy metal content and pollution evaluation of different types of tea in Hunan Province. Zhejiang Agric. Sci. 2020, 61, 1436–1439. (In Chinese) [Google Scholar]
- Liu, W.; Chen, Y.; Liao, R.; Zhao, J.; Yang, H.; Wang, F. Authentication of the geographical origin of Guizhou green tea using stable isotope and mineral element signatures combined with chemometric analysis. Food Control 2021, 125, 107954. [Google Scholar] [CrossRef]
- Wang, J. Determination of seven heavy metals in Longnan green tea by ICP-MS and health risk assessment. J. Northwest Norm. Univ. (Nat. Sci.) 2023, 59, 89–93, (In Chinese with English Abstract). [Google Scholar]
- Yu, K.F.; Liu, N. Investigation and analysis of heavy metal contents in tea in Linyi City from 2016 to 2020. Chin. J. Health Lab. Technol. 2021, 31, 2811–2813, (In Chinese with English Abstract). [Google Scholar]
- Gong, Q.L.; Yang, J.Z.; Wang, Z.L.; Yan, H. Migration of heavy metals in the soil-tea plant system and health risks of drinking tea: A case study of Qiongzhong County, Hainan Province. Geophys. Geochem. Explor. 2023, 47, 826–834, (In Chinese with English Abstract). [Google Scholar]
- Brzezicha-Cirocka, J.; Grembecka, M.; Szefer, P. Monitoring of essential and heavy metals in green tea from different geographical origins. Environ. Monit. Assess. 2016, 188, 1–11. [Google Scholar] [CrossRef]
- Koch, W.; Kukula-Koch, W.; Komsta, Ł.; Marzec, Z.; Szwerc, W.; Głowniak, K. Green tea quality evaluation based on its catechins and metals composition in combination with chemometric analysis. Molecules 2018, 23, 1689. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, L.M.; Das, S.; da Silva, E.B.; Gao, P.; Gress, J.; Liu, Y.; Ma, L.Q. Metal concentrations in traditional and herbal teas and their potential risks to human health. Sci. Total Environ. 2018, 633, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Fu, X.; Zhang, H.; Wang, X.; Jia, L.; Zhang, L.; Lin, C.J.; Huang, J.H.; Liu, K.Y.; Wang, S. Combating air pollution significantly reduced air mercury concentrations in China. Natl. Sci. Rev. 2024, 11, nwae264. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Li, J.; Ma, K.; Zhang, J.; Lin, Y.; Tan, H.; Yu, J.; Fang, F. Characteristics of Dissolved Organic Matter (DOM) Combined with As in Fe-Rich Red Soils of Tea Plantations in the Southern Anhui Province, East China. Agriculture 2024, 14, 2289. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, J.; Peng, Y.; Ni, X.; Yang, R. Contents and health risks assessment of heavy metals in soil and tea in Leishan, Guizhou Province. Acta Agric. Zhejiangensis 2020, 32, 1049–1059, (In Chinese with English Abstract). [Google Scholar]
- Bhalerao, S.A.; Sharma, A.S.; Poojari, A.C. Toxicity of nickel in plants. Int. J. Pure Appl. Biosci. 2015, 3, 345–355. [Google Scholar]
- Xu, X.; Luo, P.; Li, S.; Zhang, Q.; Sun, S. Distributions of heavy metals in rice and corn and their health risk assessment in Guizhou Province. Bull. Environ. Contam. Toxicol. 2022, 108, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Y.F.; Li, B.; Dong, Z.; Qu, L.; Gao, Y.; Chai, Z.; Chen, C. Multielemental contents of foodstuffs from the Wanshan (China) mercury mining area and the potential health risks. Appl. Geochem. 2011, 26, 182–187. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, R.; Jin, T.; Chen, J.; Zhang, J. Risk assessment for potentially toxic metal (loid) s in potatoes in the indigenous zinc smelting area of northwestern Guizhou Province, China. Food Chem. Toxicol. 2018, 120, 328–339. [Google Scholar] [CrossRef]
Sampling Area | Parameters | SOM (%) | pH | Hg | As | Pb | Cd | Cr | Ni | Sb | Tl |
---|---|---|---|---|---|---|---|---|---|---|---|
Zunyi (ZY, N = 21) | Mean | 3.00c | 4.23a | 0.17b | 26ab | 39ab | 0.28a | 89a | 41ab | 1.87b | 0.78b |
SD | 0.91 | 0.36 | 0.09 | 12 | 14 | 0.14 | 27 | 17 | 0.53 | 0.32 | |
Guiyang (GY, N = 6) | Mean | 3.60bc | 4.69a | 0.73a | 33a | 53a | 0.39a | 74ab | 66a | 4.68a | 1.62a |
SD | 0.99 | 0.27 | 0.64 | 17 | 16 | 0.22 | 16 | 51 | 3.61 | 1.05 | |
Qiandongnan (QDN, N = 3) | Mean | 5.25ab | 4.69a | 0.13b | 12b | 30b | 0.22a | 40c | 14b | 5.26a | 0.55b |
SD | 2.34 | 0.61 | 0.04 | 4 | 6 | 0.03 | 4 | 5 | 3.21 | 0.05 | |
Qiannan (QN, N = 7) | Mean | 6.00a | 4.33a | 0.19b | 14b | 26b | 0.25a | 55bc | 9b | 2.84ab | 0.48b |
SD | 2.11 | 0.50 | 0.08 | 4 | 8 | 0.12 | 14 | 5 | 0.92 | 0.17 | |
Total (N = 37) | Min. Max. | 1.11 9.18 | 3.64 5.54 | 0.05 1.61 | 7 54 | 14 79 | 0.10 0.72 | 33 165 | 3 164 | 1.05 11.29 | 0.15 3.05 |
Mean | 3.84 | 4.36 | 0.26 | 24 | 38 | 0.29 | 76 | 37 | 2.78 | 0.84 | |
SD | 1.83 | 0.45 | 0.34 | 14 | 16 | 0.15 | 28 | 31 | 2.23 | 0.62 | |
Background of surface soil in Guizhou province [27] | 3.07 | 6.09 | 0.13 | 13 | 34 | 0.40 | 99 | 39 | 1.35 | 0.68 | |
Background of surface soil in China [37] | 3.10 | 6.70 | 0.065 | 11 | 26 | 0.10 | 61 | 27 | 1.21 | 0.62 | |
Environmental standard for organic tea production in China (NY 5199-2002) | -- | 4.0–6.5 | 0.150 | 40 | 50 | 0.20 | 90 | -- | -- |
Sampling Area | Parameters | Hg | As | Pb | Cd | Cr | Ni | Sb | Tl |
---|---|---|---|---|---|---|---|---|---|
Zunyi (ZY, N = 21) | Mean | 0.003b * | 0.057a | 0.31a | 0.056a | 0.62b | 12.8a | 0.024c | 0.025a |
SD | 0.001 | 0.014 | 0.12 | 0.030 | 0.24 | 4.5 | 0.005 | 0.027 | |
Guiyang (GY, N = 6) | Mean | 0.006a | 0.039ab | 0.33a | 0.068a | 0.53b | 9.6a | 0.025c | 0.014a |
SD | 0.003 | 0.010 | 0.17 | 0.025 | 0.19 | 4.6 | 0.005 | 0.011 | |
Qiandongnan (QDN, N = 3) | Mean | 0.004ab | 0.041ab | 0.32a | 0.054a | 0.62b | 11.7a | 0.063a | 0.008a |
SD | 0.001 | 0.007 | 0.08 | 0.037 | 0.39 | 0.9 | 0.024 | 0.001 | |
Qiannan (QN, N = 7) | Mean | 0.004b | 0.034b | 0.21a | 0.035a | 1.18a | 12.3a | 0.040b | 0.013a |
SD | 0.001 | 0.011 | 0.08 | 0.011 | 0.22 | 4.3 | 0.014 | 0.008 | |
Total (N = 37) | Min. | 0.002 | 0.020 | 0.10 | 0.009 | 0.25 | 5.9 | 0.013 | 0.004 |
Max. | 0.009 | 0.101 | 0.60 | 0.133 | 1.47 | 21.5 | 0.078 | 0.136 | |
Mean | 0.004 | 0.048 | 0.30 | 0.054 | 0.71 | 12.1 | 0.030 | 0.019 | |
SD | 0.002 | 0.016 | 0.13 | 0.028 | 0.32 | 4.3 | 0.015 | 0.021 | |
95%UCL ** | 0.004 | 0.054 | 0.35 | 0.064 | 0.81 | 13.5 | 0.035 | 0.027 | |
Limit values of trace elements in tea (NY 659-2003, GB 2762-2022) | 0.3 | 2 | 5 | 1 | 5 | - | - | - |
Region | Hg | As | Pb | Cd | Cr | Ni | Sb | Tl | Reference |
---|---|---|---|---|---|---|---|---|---|
Guizhou, China | 0.004 | 0.048 | 0.300 | 0.054 | 0.71 | 12.1 | 0.030 | 0.019 | This study |
Jiangxi, China | 0.042 | 0.200 | 0.800 | 0.038 | 0.67 | 7.71 | --- | --- | [48,49] |
Jiangsu, China | --- | 0.080 | 0.890 | 0.047 | 0.66 | 13.2 | --- | --- | [50] |
Anhui, China | 0.020 | 0.053 | 0.470 | 0.023 | 0.38 | 8.97 | --- | --- | [50,51] |
Zhejiang, China | --- | 0.110 | 0.650 | 0.030 | 0.88 | 11.9 | --- | --- | [50] |
Henan, China | --- | 0.067 | 0.843 | 0.040 | 0.47 | 6.13 | --- | --- | [50] |
Hunan, China | --- | 0.070 | 0.440 | 0.055 | 0.37 | 9.23 | --- | --- | [52] |
Hubei, China | --- | --- | 0.410 | 5.010 | 0.42 | 13.9 | --- | --- | [53] |
Guangdong, China | --- | --- | 0.760 | 4.810 | 0.62 | 3.17 | --- | --- | [53] |
Gansu, China | 0.007 | 0.105 | 0.972 | 0.045 | 0.71 | --- | 0.043 | --- | [54] |
Shandong, China | 0.011 | 0.058 | 0.373 | 0.048 | --- | --- | --- | --- | [55] |
Hainan, China | 0.002 | 0.050 | 0.080 | 0.020 | 0.59 | --- | --- | --- | [56] |
India | --- | --- | 1.000 | 0.030 | 1.00 | 6.00 | --- | --- | [57] |
Japan | --- | --- | 8.400 | 0.060 | 1.60 | 5.20 | --- | --- | [57] |
Sri Lanka | --- | --- | 0.003 | 0.003 | 0.37 | 3.10 | --- | --- | [58] |
Nepal | --- | --- | 0.002 | 0.004 | 0.67 | 4.07 | --- | --- | [58] |
South Korea | --- | --- | 0.031 | 0.005 | 0.15 | 18.0 | --- | --- | [58] |
USA | --- | 0.380 | --- | 0.060 | --- | --- | --- | --- | [59] |
Sampling Area | Parameters | Hg | As | Pb | Cd | Cr | Ni | Sb | Tl |
---|---|---|---|---|---|---|---|---|---|
Zunyi (ZY, N = 21) | Mean | 0.023a | 0.003a | 0.009a | 0.222a | 0.008b | 0.343c | 0.036a | 0.033a |
SD | 0.012 | 0.001 | 0.005 | 0.115 | 0.004 | 0.132 | 0.005 | 0.005 | |
Guiyang (GY, N = 6) | Mean | 0.025a | 0.002a | 0.007a | 0.211a | 0.007b | 0.172c | 0.008a | 0.010a |
SD | 0.037 | 0.001 | 0.005 | 0.170 | 0.002 | 0.061 | 0.007 | 0.004 | |
Qiandongnan (QDN, N = 3) | Mean | 0.042a | 0.004a | 0.011a | 0.242a | 0.017a | 0.959b | 0.015a | 0.014a |
SD | 0.022 | 0.001 | 0.001 | 0.116 | 0.010 | 0.423 | 0.006 | 0.001 | |
Qiannan (QN, N = 7) | Mean | 0.023a | 0.003a | 0.009a | 0.164a | 0.023a | 1.725a | 0.015a | 0.032a |
SD | 0.011 | 0.001 | 0.004 | 0.059 | 0.010 | 0.796 | 0.006 | 0.021 | |
Total (N = 37) | Mean | 0.025 | 0.003 | 0.009 | 0.211 | 0.011 | 0.603 | 0.025 | 0.027 |
SD | 0.021 | 0.001 | 0.005 | 0.124 | 0.008 | 0.655 | 0.074 | 0.021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Cai, X.; Wang, G.; Wang, Q. Heavy Metal Contamination of Guizhou Tea Gardens: Soil Enrichment, Low Bioavailability, and Consumption Risks. Agriculture 2025, 15, 1096. https://doi.org/10.3390/agriculture15101096
Li Z, Cai X, Wang G, Wang Q. Heavy Metal Contamination of Guizhou Tea Gardens: Soil Enrichment, Low Bioavailability, and Consumption Risks. Agriculture. 2025; 15(10):1096. https://doi.org/10.3390/agriculture15101096
Chicago/Turabian StyleLi, Zhonggen, Xuemei Cai, Guan Wang, and Qingfeng Wang. 2025. "Heavy Metal Contamination of Guizhou Tea Gardens: Soil Enrichment, Low Bioavailability, and Consumption Risks" Agriculture 15, no. 10: 1096. https://doi.org/10.3390/agriculture15101096
APA StyleLi, Z., Cai, X., Wang, G., & Wang, Q. (2025). Heavy Metal Contamination of Guizhou Tea Gardens: Soil Enrichment, Low Bioavailability, and Consumption Risks. Agriculture, 15(10), 1096. https://doi.org/10.3390/agriculture15101096